中考专题黄金分割.docx
黄金分割__专题讲解

黄金分割 专题讲解一、请你填一填(1)如图,若点P 是AB 的黄金分割点,则线段A P 、PB 、AB 满足关系式________,即AP 是________与________的比例中项.(2)黄金矩形的宽与长的比大约为________(精确到0.001).(3)如果线段d 是线段a 、b 、c 的第四比例项,其中a =2 cm,b =4 cm,c =5 cm,则d =_____________cm.(4)已知O 点是正方形ABCD 的两条对角线的交点,则AO ∶AB ∶AC =________.(5)若d c b a ==3(b +d ≠0),则d b c a ++=________. 二、认真选一选 (1)已知yx 23=,那么下列式子成立的是( ) A.3x =2yB.xy =6C.32=y xD.32=x y (2)把ab =21cd 写成比例式,不正确的写法是( )A.b d c a 2=B.b d c a =2C.b d c a =2D.d a b c 2=(3)已知线段x ,y 满足(x +y )∶(x -y )=3∶1,那么x ∶y 等于( )A.3∶1B.2∶3C.2∶1D.3∶2(4)有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则有dc b a= ②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1其中正确的判断有( )A.1个B.2 个C.3个D.4个5、已知P 为线段AB 的黄金分割点,且AP <PB ,则( )A 、PB AB AP ⋅=2; B 、PB AP AB ⋅=2;C 、AB AP PB ⋅=2;D 、222AB BP AP =+4、已知P 、Q 是线段AB 的两个黄金分割点,且AB =10cm ,则PQ 长为( )A 、)15(5-B 、)15(5+C 、)25(10-D 、)53(5-一、选择题 1.已知C 是线段AB 的一个黄金分割点,则AC ∶AB 为( ) A .215- B .253- C .215+ D .215-或253- 2.若=+-1y y x 黄金数,则yx 的值是( ) A .55 B .21 C .25 D .5 3.把2米的线段进行黄金分割,则分成的较短的线段长为( )A .53-B .15-C .51+D .53+4.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美 感的参考,在数学上,这个比例称为黄金分割。
中考数学专题复习:黄金分割比例

中考数学专题复习:黄金分割比例1.如图,在△ABC中,∠A=36°,AB=AC,以点B为圆心任意长为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点O,连接BO,并延长交AC于点D,若AB=2,则CD的长为()A.﹣1B.3﹣C.+1D.3+2.若点C为线段AB的黄金分割点,且AC>BC.则下列各式中不正确的是()A.AC=AB B.BC=ABC.AB=AC D.AB:AC=AC:BC3.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P为AB 的黄金分割点(AP>BP),如果AB的长度为10cm,那么较短线段BP的长度为()A.B.C.D.4.点B把线段AC分成两部分,如果==k,那么k的值为()A.B.C.+1D.﹣15.已知线段AB=2,P是线段AB的黄金分割点,AP>PB,那么线段AP的长度等于()A.B.C.D.6.如果点C是线段AB的黄金分割点,那么下列线段的比值不可能是黄金比的是()A.AB:BC B.BC:AC C.BC:AB D.AC:BC7.已知点C是AB上的黄金分割点(AC>BC),若AB=2,则AC等于()A.B.C.D.8.古希腊人认为,最美人体是肚脐至足底的长度之比与人体身高之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”雕像便是如此.若某人身材大致满足黄金分割比例,且其肚脐至足底的长度为105cm,则此人身高大约为()A.160cm B.170cm C.180cm D.190cm9.舞台纵深为8米,要想获得最佳音响效果,主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点P处,那么主持人站立的位置离舞台前沿较近的距离约为()A.2.5米B.2.9米C.3.0米D.3.1米10.如图,在△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1中画了1条线段,使图中有了2个等腰三角形,请直接写出这2个等腰三角形的顶角度数分别是度和度;(2)若在图2中画2条线段,图中有个等腰三角形,分别是(3)继续按以上操作发现:在△ABC中画n条线段,则图中有个等腰三角形,其中有个黄金等腰三角形.11.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是.12.已知点P在线段AB上,如果AP2=AB•BP,AB=4,那么AP的长是.13.已知点P是线段AB上的点,且BP2=AP•AB,如果AB=2cm,那么BP=cm.14.已知点C是线段AB的黄金分割点且AC>BC,AB=4,则AC=.15.点P是线段AB上的一点,如果AP2=BP•AB,那么的值是.16.如图,C是靠近点B的黄金分割点,若AB=10cm,则AC=cm.(结果保留根号)17.一个偌大的舞台,当主持人站在黄金分割点处时,不仅看起开美观,而且音响效果也非常好,若舞台的长度为8米,那么,主持人到较近的一侧应为米.18.已知在△ABC中,∠B=36°,AB=AC,D是BC上一点,满足AD=CD,则=.19.点C是线段AB的黄金分割点,且AC<BC,若AB=20cm,则BC=cm.20.在基础数学领域,我们把含有36°角的等腰三角形称为“黄金三角形”,如图,△ABC 是顶角为36°的等腰三角形.BD是∠ABC的平分线,过点D作BC的平行线交AB于点E.(1)写出图中所有“黄金三角形”,并写出你的依据;(2)求出(1)中写出的所有“黄金三角形”的腰与底边的比值;21.如图,点B是线段AC的黄金分割点,且AB>BC,若AC=2,求AB、BC的长.22.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图,△ABC中,AB=AC,且∠A=36°.(1)在图中用尺规作边AB的垂直平分线交AC于D,交AB于E,连接BD(保留作图痕迹);(2)请问△BDC是不是黄金三角形,如果是,请给出证明,如果不是,请说明理由.23.我们知道,含有36°角的等腰三角形是特殊的三角形,通常把一个顶角等于36°的等腰三角形称为“黄金三角形”.在△ABC中,已知:AB=AC,且∠B=36°,请用两种不同的尺规作图在BC上找点D,使得△ABD是黄金三角形,并说明其中一种做法的理由.24.我们知道:如图①,点B把线段AC分成两部分,如果=,那么称点B为线段AC的黄金分割点.它们的比值为.(1)在图①中,若AC=20cm,则AB的长为cm;(2)如图②,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B对应点H,得折痕C,G.试说明:G是AB的黄金分割点.25.如图,点C将线段AB分成两部分,若AC2=BC•AB(AC>BC),则称点C为线段AB 的黄金分割点.某数学兴趣小组在进行抛物线课题研究时,由黄金分割点联想到“黄金抛物线”,类似地给出“黄金抛物线”的定义:若抛物线y=ax2+bx+c,满足b2=ac(b ≠0),则称此抛物线为黄金抛物线.(Ⅰ)若某黄金抛物线的对称轴是直线x=2,且与y轴交于点(0,8),求y的最小值;(Ⅱ)若黄金抛物线y=ax2+bx+c(a>0)的顶点P为(1,3),把它向下平移后与x轴交于A(+3,0),B(x0,0),判断原点是否是线段AB的黄金分割点,并说明理由.26.如图,以矩形ABCD的宽为边作正方形AEFD,若矩形EBCF的宽与长的比值等于矩形ABCD的宽与长的比值,则将矩形ABCD称为“黄金矩形”.若AD=2,求BE的长.参考答案1.解:∵∠A=36°,AB=AC=2,∴∠ABC=∠C=(180°﹣36°)=72°,由题意得:BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=36°,∴∠ABD=∠A,∠BDC=∠A+∠ABD=72°=∠C,∴AD=BD=BC,△BCD∽△ABC,∴=,∴=,∴点D是AC的黄金分割点,AD>CD,∴AD=AC=﹣1,∴CD=AC﹣AD=3﹣,故选:B.2.解:∵点C为线段AB的黄金分割点,且AC>BC,∴AC=AB,AB:AC=AC:BC,∴AB=AC,BC=AB﹣AC=AB,故选项A符合题意,选项B、C、D不符合题意;故选:A.3.解:∵P为AB的黄金分割点(AP>PB),AB=10cm,∴AP=AB=×10=(5﹣5)cm,∴BP=AB﹣AP=10﹣(5﹣5)=(15﹣5)cm,故选:D.4.解:∵点B把线段AC分成两部分,==k,∴点B是线段AC的黄金分割点,AB>BC,∴k=,故选:B.5.解:∵点P是线段AB的黄金分割点,AP>BP,AB=2,∴AP=AB=﹣1,故选:B.6.解:∵点C是线段AB的黄金分割点,∴若AC为较长线段,则AC:AB=BC:AC=;若BC为较长线段,则BC:AB=AC:BC=;故选:A.7.解:∵线段AB=2,点C是AB的黄金分割点,且AC>BC,∴AC=AB=×2=﹣1,故选:C.8.解:设此人身高为xcm,∵某人身材大致满足黄金分割比例,且其肚脐至足底的长度为105cm,∴≈0.618,解得:x≈170,即此人身高大约为170cm,故选:B.9.解:∵主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点P处,∴离舞台前沿较近的距离为:×8=12﹣4≈3.1(米),故选:D.10.解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°∴这2个等腰三角形的顶角度数分别是108度和36度.故答案为:108,36(2)如图所示:(3)根据(2)可知:如图所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…在△ABC中画n条线段,则图中有2n个等腰三角形,其中n个黄金等腰三角形.故答案为2n,n11.解:∵线段MN的长为4,点P是线段MN的黄金分割点,MP>NP,∴MP=MN=×4=2﹣2,故答案为:2﹣2.12.解:∵点P在线段AB上,AP2=AB•BP,∴点P是线段AB的黄金分割点,AP>BP,∴AP=AB=×4=2﹣2,故答案为:2﹣2.13.解:∵点P在线段AB上,BP2=AP•AB,∴点P为线段AB的黄金分割点,AB=2cm,∴BP=2×=(﹣1)cm.故答案为:(﹣1).14.解:∵点C为线段AB的黄金分割点(AC>BC),AB=4,∴AC=AB=×4=2﹣2,故答案为:2﹣2.15.解:∵点P是线段AB上的一点,AP2=BP•AB,∴=,∴点P是线段AB的黄金分割点,∴AP=AB,∴=,故答案为:.16.解:∵C是靠近点B的黄金分割点,AB=10cm,∴AC>BC,AC=AB=×10=(5﹣5)cm,故答案为:(5﹣5).17.解:由黄金分割的定义得:当主持人站在黄金分割点处时,舞台的长度为8米,主持人到较近的一侧应为×8=(12﹣4)米,故答案为:(12﹣4).18.解:∵∠B=36°,AB=AC,∴∠C=∠B=36°,∴∠BAC=180°﹣2×36°=108°,∵AD=CD,∴∠DAC=∠C=36°,∴∠BDA=∠DAC+∠C=72°,△ABC∽△DCA,∴∠BAD=108°﹣36°=72°,=,∴AB=BD,∴=,∴D是线段BC的黄金分割点,∴==,故答案为:.19.解:∵点C是线段AB的黄金分割点,且AC<BC,AB=20cm,∴BC=AB=×20=(10﹣10)cm,故答案为:(10﹣10).20.解:(1)图中黄金三角形有:△ABC,△ABD,△BDE,△AED,△BCD共5个,理由如下:∵AB=AC,∠A=36°,∴∠ABC=∠C=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵DE∥BC,∴∠DBC=∠BDE=36°,∠AED=∠ABC,∠ADE=∠ACB,∴∠A=∠ABD,∠BDE=∠ABD=72°,∴∠ABC=∠ACB,∴AD=BD,BE=ED,AE=AD,∴△ABD,△BDE,△AED是等腰三角形;∵∠BDC=2∠A=72°,∴∠BDC=∠BCD,∴△BCD是等腰三角形,∴图中黄金三角形有:△ABC,△ABD,△BDE,△AED,△BCD共5个;(2)设BC=a,CD=b,则BD=AD=AE=a,ED=EB=b,∵∠ABC=∠C,∠A=∠CBD,∴△ABC∽△BCD,∴AB:BC=BC:CD,即(a+b):a=a:b,解得:,(舍去),∴,,∴黄金三角形△ABC,△AED,△BCD的腰与底边的比值为,∴黄金三角形△ABD,△BDE的腰与底边的比值为,21.解:∵点B是线段AC的黄金分割点,且AB>BC,∴AB=×AC=﹣1,∴BC=AC﹣AB=2﹣(﹣1)=3﹣.22.解:(1)作边AB的垂直平分线交AC于D,交AB于E,连接BD,如图所示:(2)△BDC是黄金三角形,理由如下:∵DE是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=36°,∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°,又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BDC是黄金三角形.23.解:①在线段BC上截取BD=BA,连接AD,如图1所示:则△ABD即为所求,理由如下:∵BD=BA,∠B=36°,∴△ABD为黄金三角形;②在∠BAC的内部作∠CAD=∠C,交BC于点D,如图2所示:则△ABD即为所求,理由如下:∵AB=AC,∴∠C=∠B=36°,∴∠CAD=∠C=36°,∠BAC=180°﹣36°﹣36°=108°,∴∠ADB=∠C+∠CAD=72°,∠BAD=∠BAC﹣∠CAD=72°,∴∠ADB=∠BAD,∴BA=BD,又∵∠B=36°,∴△ABD是黄金三角形.24.(1)解:∵点B为线段AC的黄金分割点,AC=20cm,∴AB=×20=(10﹣10)cm.故答案为:(10﹣10);(2)证明:延长EA,CG交于点M,如图所示:∵四边形ABCD为正方形,∴DM∥BC,CD=20cm,∴∠EMC=∠BCG,由折叠的性质可知,∠ECM=∠BCG,∴∠EMC=∠ECM,∴EM=EC,由折叠的性质得:DE=10cm,∴EC===10(cm),∴EM=10(cm),∴DM=(10+10)cm,=,∵AB=BC,∴=,∴G是AB的黄金分割点.25.解:(Ⅰ)∵黄金抛物线的对称轴是直线x=2,∴﹣=2,∴b=﹣4a,又b2=ac∴16a2=ac.且与y轴交于点(0,8),∴c=8.∴a=,b=﹣2.∴y=x2﹣2x+8=(x﹣2)2+6,∵>0,∴y有最小值为6.答:y的最小值为6.(Ⅱ)原点是线段AB的黄金分割点.理由如下:∵黄金抛物线y=ax2+bx+c(a>0)的顶点P为(1,3),把它向下平移后与x轴交于A(+3,0),B(x0,0),∴x0=﹣1﹣.∴OA=3+,OB=1+,AB=4+2.OA2=(3+)2=14+6.OB•AB=(1+)(4+2)=14+6.∴OA2=OB•AB.答:原点是线段AB的黄金分割点.26.解:∵四边形AEFD是正方形,∴AE=AD=2,∵矩形ABCD为黄金矩形,∴AD=AB,即2=AB,解得:AB=+1,∴BE=AB﹣AE=+1﹣2=﹣1.。
初中黄金分割试题及答案

初中黄金分割试题及答案黄金分割是指将一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,其比值约为0.618。
这个比例在自然界和艺术设计中非常常见,被认为是一种美学上的比例。
以下是关于黄金分割的几道初中试题及答案:1. 已知线段AB的长度为10厘米,按照黄金分割点C将线段分割,求AC的长度。
答案:根据黄金分割的定义,AC的长度为10 × (√5 - 1) / 2 ≈ 6.18厘米。
2. 如果一个矩形的长宽比符合黄金分割,且长为20厘米,求宽的长度。
答案:设矩形的宽为x厘米,根据黄金分割的定义,有20 / x = (x + 20) / 20。
解这个方程,我们可以得到x = 20 × (√5 - 1) / 2 ≈ 12.36厘米。
3. 在一个正方形中,按照黄金分割点将正方形的一边分割,求分割后较小部分的长度。
答案:设正方形的边长为a厘米,按照黄金分割点分割后,较小部分的长度为a × (√5 - 1) / 2 厘米。
4. 一个等腰三角形的顶角为36°,底角为72°,求这个三角形的高与底边的比例。
答案:根据黄金分割的定义,这个等腰三角形的高与底边的比例为(√5 - 1) / 2 ≈ 0.618。
5. 已知一个五边形的边长都相等,且每个内角都为108°,求这个五边形的对角线与边长的比例。
答案:这个五边形的对角线与边长的比例符合黄金分割,即对角线长度与边长的比例为(√5 + 1) / 2 ≈ 1.618。
这些题目涵盖了黄金分割在不同几何图形中的应用,通过计算和理解黄金分割的定义,可以解决这些问题。
2024年九年级中考数学复习——黄金分割及其应用含参考答案

2024年新课标中考数学二轮专题黄金分割及其应用1如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,C,D之间的距离为.2在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为米.3在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)A.0.73mB.1.24mC.1.37mD.1.42m4古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12≈0.618,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶与咽喉至肚脐的长度之比也是5-12,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm,则其身高可能是()A.165cmB.178cmC.185cmD.190cm5人们把5-12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a=5-12,b=5+12得ab=1,记S1=11+a+11+b,S2=11+a2+11+b2,⋯,S10=11+a10+11+b10,则S1+S2+⋯+S10=.6黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.如图1,我们已经学过,点C将线段AB分成两部分,如果AC:AB=BC:AC,那么称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.7两千多年前,古希数学家欧多克索斯(Eudoxus,约公元前400年一公元前347年)发现;将一条线段AB分割成长、短两条线段AP、PB,若短线段与长线段的长度之比等于长线段的长度与全长之比,即PBAP=APAB,则点P叫做线段AB的黄金分割点.如图,在△ABC中,点D是线段AC的黄金分割点,且AD< CD,AB=CD.(1)求证:∠ABC=∠ADB;(2)若BC=4cm,求BD的长.8以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示,(1)求AM,DM的长,(2)试说明AM2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?2024年新课标中考数学二轮专题黄金分割及其应用1如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,C,D之间的距离为.【答案】(805-160)cm【解析】【分析】黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是一个无理数,用分数表示为5-12,由此即可求解.【详解】解:弦AB=80cm,点C是靠近点B的黄金分割点,设BC=x,则AC=80-x,∴80-x80=5-12,解方程得,x=120-405,点D是靠近点A的黄金分割点,设AD=y,则BD=80-y,∴80-y80=5-12,解方程得,y=120-405,∴C,D之间的距离为80-x-y=80-120+405-120+405=805-160,故答案为:(805-160)cm.【点睛】本题主要考查线段成比例,掌握线段成比例,黄金分割点的定义是解题的关键.2在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为米.【答案】(5-1)或者-1+5【解析】根据点E是AB的黄金分割点,可得AEBE=BEAB=5-12,代入数值得出答案.∵点E是AB的黄金分割点,∴AE BE =BEAB=5-12.∵AB=2米,∴BE=(5-1)米.【点睛】本题主要考查了黄金分割的应用,掌握黄金比是解题的关键.3在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)A.0.73mB.1.24mC.1.37mD.1.42m 【答案】B 【解析】设雕像的下部高为x m ,由黄金分割的定义得x 2=5-12,求解即可.设雕像的下部高为x m ,则上部长为(2-x )m ,∵雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,雷锋雕像为2m ,∴x 2=5-12, ∴x =5-1≈1.24,即该雕像的下部设计高度约是1.24m .【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.4古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12≈0.618,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶与咽喉至肚脐的长度之比也是5-12,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm ,则其身高可能是()A.165cmB.178cmC.185cmD.190cm【答案】B 【解析】设某人的咽喉至肚脐的长度为xcm ,则26x≈0.618,解得x ≈42.072,设某人的肚脐至足底的长度为ycm ,则26+42.072y≈0.618,解得y ≈110.149,∴其身高可能是110.149÷0.618≈178(cm)。
北京版九年级初三数学上册黄金分割共16页文档

60、生活的道路一旦选定,就要勇敢地 走
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
2017苏科版数学九年级下册12黄金分割及其发觉史word校

黄金分割及其发觉史黄金分割又称黄金律,是指事物各部份间必然的数学比例关系,即将整体一分为二,较大部份与较小部份之比等于整体与较大部份之比,其比值为1∶或∶1,即长段为全段的.被公以为最具有审好心义的比例数字.上述比例是最能引发人的美感的比例,因此被称为黄金分割.黄金分割发觉关于黄金分割比例的起源大多以为来自毕达哥拉斯,听说在古希腊,有一天毕达哥拉斯走在街上,在通过铁匠铺前他听到铁匠打铁的声音超级好听,于是驻足倾听.他发觉铁匠打铁节拍很有规律,那个声音的比例被毕达哥拉斯用数理的方式表达出来,被应用在很多领域.后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”.在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早就存在,只是不知那个谜底.黄金分割的历史来源由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断那时毕达哥拉斯学派已经触及乃至掌握了黄金分割.公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并成立起比例理论.公元前300年前后欧几里得撰写《几何本来》时吸收了欧多克索斯的研究功效,进一步系统论述了黄金分割,成为最先的有关黄金分割的论著.中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说.德国天文学家开普勒称黄金分割为神圣分割.到19世纪黄金分割这一名称才逐渐通行.黄金分割数有许多有趣的性质,人类对它的实际应用也很普遍.最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年第一提出的,70年代在中国推行.欧洲部份2000连年前,古希腊雅典学派的第三大算学家欧道克萨斯第一提出黄金分割.所谓黄金分割,指的是把长为L的线段分为两部份,使其中一部份(长的一部份)对于全数之比,等于另一部份(短的一部份)对于该部份之比.而计算黄金分割最简单的方式,是计算斐波契数列1,1,2,3,5,8,13,21,……后二数之比2/3,3/5,5/8,8/13,13/21,……近似值的.黄金分割在文艺振兴前后,通过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一名数学家,乃至称它为“各类算法中最可宝贵的算法”.这种算法在印度称之为“三率法”或“三数法则”,也就是咱们此刻常说的比例方式.亚洲部分其实有关“黄金分割”,我国也有记载.虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度.经考证,欧洲的比例算法是源于我国而通过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的.。
黄金分割中考题精选

黄金分割中考题精选
黄金分割在中考中是一个常见的考点,以下是一些相关题目:
1. 设点 P 是线段 MN 上一点,NP > MP,若 NP^2 = MP MN,则称点P 是线段 MN 的黄金分割点。
在直角三角形 ABC 中,∠ACB = 90°,CD 是斜边 AB 上的高,BD > AD,若点 D 是线段 AB 的黄金分割点,给出下列说法:①AC = BD;②S△CBD = S△ADC S△ABC;③sinB = 5 - 12;
④tanA = 2。
其中正确的有()
A. ①④
B. ②③
C. ①②③
D. ①②③④
2. 舞台主持人的位置是舞台的黄金分割点,此时观众看起来最舒服。
若舞台长为20米,则主持人从舞台一侧进入,至少走多少米时,才能恰好站在舞台的黄金分割点上?
以上题目主要考查了黄金分割点的定义和性质,以及如何根据实际情况应用这些性质来解决问题。
这些题目都是一些典型的例题,可以帮助你理解和学习黄金分割的相关知识。
专题27.13 黄金分割(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练

专题27.13 黄金分割(基础篇)(专项练习)一、单选题1.大自然巧夺天工,一片树叶也蕴含着“黄金分割”.如图,P为AB的黄金分割点(AP>PB),如果AB的长度为8cm,那么BP的长度是()A.12-B.9-C.4D.42.已知点C是线段AB的黄金分割点,且2<,则AC长是()AB=,AC BCA B1C.3D3523.把2米的线段进行黄金分割,则分成的较短的线段长为()A.3B1C.1D.34.已知2AB=,点P是线段AB上的黄金分割点,且AP BP>,则AP的长为()A1B C35D.325.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对6.下列说法正确的是()A.每一条线段有且只有一个黄金分割点B.黄金分割点分一条线段为两段,其中较短的一段是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC是AB和BC的比例中项D.黄金分割点分一条线段为两段,其中较短的一段与较长的一段的比值约为0.6187.下列命题正确的是()A.任意两个等腰三角形一定相似B.任意两个正方形一定相似C .如果C 点是线段AB 的黄金分割点,那么AC AB =D .相似图形就是位似图形8.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .2020⎝⎭B .2021⎝⎭C .2020⎝⎭D .2021⎝⎭9.已知点C 把线段AB 分成两条线段AC 、BC ,且AC BC >,下列说法错误的是( ) A .如果AC BCAB AC=,那么线段AB 被点C 黄金分割 B .如果2AC AB BC =⋅,那么线段AB 被点C 黄金分割C .如果线段AB 被点C 黄金分割,那么BC 与AB 的比叫做黄金比D .0.618是黄金比的近似值10.等腰△ABC 中,AB=AC ,△A=36°,D 是AC 上的一点,AD=BD ,则以下结论中正确的有( )△△BCD 是等腰三角形;△点D 是线段AC 的黄金分割点;△△BCD△△ABC ;△BD 平分△ABC . A .1个B .2个C .3个D .4个11.在△ABC 中,△A=36°,AB=AC ,BD 是△ABC 的角平分线,下列结论: △△ABD ,△BCD 都是等腰三角形; △AD=BD=BC ; △BC 2=CD•CA ; △D 是AC 的黄金分割点 其中正确的是( )A .1个B .2个C .3个D .4个二、填空题12.在线段AB 上,点C 把线AB 分成两条线段AC 和BC ,若AC BCAB AC=,则点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点(PM PN >),当1MN =时,PM 的长是__________.13.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).14.把2米长的线段进行黄金分割,则分成的较长的线段长为__________.15.古希腊时期,(称为黄金分割比例),著名的“断臂维纳斯” 2.236≈,则黄金分割比例约为______________.(精确到0.01)16.已知AB=2,点C是线段AB的黄金分割点(AC>BC),则AC= .17.把长度为4cm的线段进行黄金分割,则较长线段的长是__________cm.18.已知线段4AB=,点P是线段AB的黄金分割点(AP BP>),那么线段AP=______.(结果保留根号)19.已知线段AB长为2cm,P是AB的黄金分割点,则较长线段PA=___;PB=______.200.61803398=…,将这个分割比保留4个有效数字的近似数是.21.若点C为线段AB的黄金分割点,且AC<BC,若AB=10,则BC=_____.22.若点P是线段AB的黄金分割点,AB=10cm,则较长线段AP的长是_____cm.三、解答题23.已知C、D是线段AB上的点,CD=(√5﹣2)AB,AC=BD,则C、D是黄金分割点吗?为什么?24.已知线段MN = 1,在MN 上有一点A ,如果AN =,求证:点A 是MN 的黄金分割点.25.(1)对于实数a 、b ,定义运算“⊕”如下:2a b a b ⊕=-.若(1)(2)8x x +⊕-=,求: 2(2)(23)x x x -⊕-的值;(2)已知点C 是线段AB 的黄金分割点(AC <BC ),若AB =4,求AC 的长.26.(1)我们知道,将一条线段AB 分割成大小两条线段AP 、PB ,使AP >PB ,点P 把线段AB 分成两条线段AP 和BP ,且=AP BP AB AP ,点P 就是线段AB 的黄金分割点,此时PAAB的值为 (填一个实数):(2)如图,Rt△ABC 中,△B=90°,AB=2BC ,现以C 为圆心、CB 长为半径画弧交边AC 于D ,再以A 为圆心、AD 长为半径画弧交边AB 于E . 求证:点E 是线段AB 的黄金分割点.27.某校要设计一座2m 高的雕像(如图),使雕像的点C (肚脐)为线段AB (全身)的黄金分割点,上部AC (肚脐以上)与下部BC (肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到0.001)米. 2. 236=,结果精确到0.001).28.在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.(1)证明:ΔABE△ΔCAD.(2)若CE=CP,求证△CPD=△PBD.(3)在(2)的条件下,证明:点D是BC的黄金分割点.参考答案1.A【分析】根据黄金分割的定义得到AP AB,然后把AP的长度代入可求出AB的长.【详解】解:△P为AB的黄金分割点(AP>PB),△AP AB,△AB的长度为8cm,△AP×8=4(cm),△BP=AB-AP=8-(4)=12-故选:A.【点拨】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC 是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC AB.2.C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知BC AB===21△21)3=-=-=AC AB BC故选C【点拨】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.3.A【分析】根据黄金分割的定义列式进行计算即可得解.【详解】解: 较短的线段长=2⨯(1=2故选A.【点拨】本题考查了黄金分割的概念, 熟记黄金分割的比值是解题的关键.4.A【分析】根据黄金分割点的定义和AP BP=,代入数据即可得出AP的长度.>得出AP AB【详解】解:由于P为线段AB=2的黄金分割点,且AP BP>,则21==.ABAP=故选:A.35,2.5.B【分析】根据黄金分割的定义分别进行解答即可.【详解】A.每条线段有两个黄金分割点,故本选项错误;B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍,正确;C.若点C把线段AB黄金分割,则AC2=AB•BC,不正确,有可能BC2=AB•AC.故选B.【点拨】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.6.D【分析】根据比例中项和黄金分割的概念分析各个说法.【详解】解:A、每一条线段有两个黄金分割点,错误;B、黄金分割点分一条线段为两段,其中较长的一段是这条线段的0.618倍,错误;C、若点C把线段AB黄金分割,则AC是AB和BC的比例中项,错误;D、黄金分割点分一条线段为两段,其中较长的一段与这条线段的比值约为0.618,正确;故选D.【点拨】此题考查黄金分割问题,理解比例中项、黄金分割的概念,是解题的关键. 7.B 【分析】根据相似多边形的概念、黄金分割点及位似可直接进行排除选项. 【详解】解:A 、任意两个等腰三角形的底角或顶角相等,则这两个等腰三角形相似,故原命题错误; B 、任意两个正方形一定相似,故原命题正确;C 、如果C 点是线段AB 的黄金分割点(AC >BC ),那么AC AB =D 、相似图形不一定是位似图形,故原命题错误; 故选B .【点拨】本题主要考查相似多边形的概念、黄金分割点及位似,熟练掌握相似多边形的概念、黄金分割点及位似是解题的关键. 8.C 【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则11AP ==2323,,AP AP ==⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点拨】本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键. 9.C 【解析】【分析】根据黄金分割的定义判断即可.【详解】根据黄金分割的定义可知A、B、D正确;C.如果线段AB被点C黄金分割(AC>BC),那么AC与AB的比叫做黄金比,所以C错误.所以C选项是正确的.【点拨】本题考查了黄金分割的概念:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB 的黄金分割点.注意线段AB的黄金分割点有两个.10.D【详解】△AB=AC,△△ABC=△C=12(180°-△A)=12(180°-36°)=72°,△AD=BD,△△DBA=△A=36°,△△BDC=2△A=72°,△△BDC=△C,△△BCD为等腰三角形,所以△正确;△△DBC=△ABC-△ABD=36°,△△ABD=△DBC,△BD平分△ABC,所以△正确;△△DBC=△A,△BCD=△ACB,△△BCD△△ABC,所以△正确;△BD:AC=CD:BD,而AD=BD,△AD:AC=CD:AD,△点D是线段AC的黄金分割点,所以△正确.故选D.11.D【解析】试题分析:在△ABC,AB=AC,△A=36°,BD平分△ABC交AC于点D,可推出△BCD,△ABD 为等腰三角形,可得AD=BD=BC,利用三角形相似解题.解:如图,△AB=AC,△A=36°,△△ABC=△C=72°,△BD平分△ABC交AC于点D,△△ABD=△CBD=△ABC=36°=△A,△AD=BD,△BDC=△ABD+△A=72°=△C , △BC=BD ,△△ABD ,△BCD 都是等腰三角形,故△正确; △BC=BD=AD ,故△正确; △△A=△CBD ,△C=△C , △△BCD△△ACB , △,即BC 2=CD•AC ,故△正确; △AD=BD=BC ,△AD 2=AC•CD=(AD+CD )•CD , △AD=CD ,△D 是AC 的黄金分割点.故△正确, 故选D .考点:相似三角形的判定与性质;黄金分割.12 【分析】根据若点P 是线段MN 的黄金分割点(PM PN >),则PM MN 计算即可. 【详解】当PM >PN 时,,.是解题的关键. 13.6.2 【分析】黄金分割又称黄金率,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1:0.618或1.618:1,即长段为全段的0.618,0.618被公认为最具有审美意义的比例数字.上述比例是最能引起人的美感的比例,因此被称为黄金分割.【详解】由题意知AC:AB=BC:AC,△AC:AB≈0.618,△AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为6.2.【点拨】本题考查黄金分割,解题关键是掌握黄金分割定理.14.米【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分叫做黄金比.【详解】解:△将长度为2米的线段进行黄金分割,△较长的线段=2⨯米.是解的关键.15.0.62【分析】把黄金分割比例按要求进行计算即可.【详解】解: 2.236≈,≈2.23612-≈0.62,故答案为:0.62.【点拨】本题考查了求一个数的近似值,有理数的除法,正确计算是解题的关键.161【解析】21AC==17.()2cm.【解析】根据黄金分割的定义得到较长线段的长=×4,然后进行二次根式的运算即可.解:较长线段的长=×4=(2)cm.故答案为(2)cm.18.2【分析】计算即可.【详解】解:△点P是线段AB的黄金分割点(AP>BP)△AP2AB==故答案为:2.【点拨】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.)1cm (3cm【分析】根据黄金分割的概念得到较长线段AB,则PB=AB-352AB,然后把AB=2cm代入计算即可.【详解】解:△P是AB的黄金分割点,△较长线段AB,△PB=AB-352AB,而AB=2cm,△PA=)1cm,PB=(3cm.故答案为:)1cm;(3cm.【点拨】本题考查了黄金分割的概念:一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分倍.20.0.6180【解析】根据有效数字的定义,运用四舍五入法保留4个有效数字,需观察第五位有效数字,由于第五位有效数字是,不需往前面进一位.所以0.61803398…≈0.618021.5【分析】根据黄金分割点的定义,知BC为较长线段;则BC AB,代入数据即可得出AC的值.【详解】解:由于C为线段AB=10的黄金分割点,且AC<BC,BC为较长线段;则BC==5.故答案为:5.【点拨】本题考查黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AB≈0.618AB,并且线段AB的黄金分割点有两个.22.5【解析】△P是线段AB的黄金分割点,AP>BP,AB,△AB=10cm,△AP=105=.故答案为5.点睛:若点P 是线段AB 的黄金分割点,且AP>BP ,则AP 2=BP·AB ,即AB. 23.C 、D 是黄金分割点.【解析】【分析】 根据题意求出AC 与AB 的关系,计算出AD 与AB 的关系,根据黄金比值进行判断即可.【详解】解:C 、D 是黄金分割点,△AC+CD+BD =AB ,CD =(√5﹣2)AB ,AC =BD ,△AC =3−√52AB , AD =AC+CD =3−√52AB+(√5﹣2)AB =√5−12AB , △D 是AB 的黄金分割点,同理C 也是AB 的黄金分割点.【点拨】本题考查黄金分割,关键是掌握黄金分割的概念和黄金比.24.见解析【解析】试题分析:先求得AM=√5−12,即可得到AM MN =AN AM =√5−12,结论得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.中考中的黄金分割问题一、黄金分割点
例 1(湖北十堰)如图1,已知线段AB,点C在AB上,且有AC BC
,则AB AC
AC
的数值为 ______;若AB的长度与中央电视台演播厅舞台的宽度一样长,
AB
那么节目主持人应站在_____位置最好.
2. (2005?太原)如图,乐器上的一根弦AB=80cm,两个端点A、 B 固定在乐器板面上,支撑点 C是靠近点 B 的黄金分割点(即 AC是 AB与 BC的比例中项),支撑点 D 是靠近点 A 的黄金分割点,则AC=cm, DC= cm.
3.(2009?浙江)在中华经典美文阅读中,小明同学发现自己的一本书的宽与
长之比为黄金比.已知这本书的长为20cm,则它的宽约为()
A 12.36cm
B 13.6cm
C 32.36cm
D 7.64cm
....
4.(2009?孝感)美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x 与身高 l 的比值是0.60 ,
为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()
A 4cm
B 6cm
C 8cm
D 10cm
....
二、黄金三角形
例1. (2010?本溪)如图,△ ABC顶角是 36°的等腰三角形(底与腰的比为的三角形是黄金三角形),若△ ABC、△ BDC、△ DEC 都是黄金三角形,
已知 AB=4,则 DE= _________.
2.( 2010 四川内江)如图,在△ ABC中,AB=AC,点E、F
分别在 AB和 AC上,CE与 BF相交于点 D,若 AE= CF,D为 BF的中点,则AE∶ AF的值为.
3. 顶角为 36°的等腰三角形被称为黄金三角形,在∠A=36°的△ ABC 中,有这种特性的三角形的示意图,并在图中标出三角形各内角的度数.
AB=AC,BD是∠ ABC的角平分线,交AC于 D,若 AC=4cm,则 BC=cm.
说明:要求画出的两个三角形不相似,而且既不是等腰三角形也不是直4.( 2007·太原)数学课上,同学们探究下面命题的正确性:顶角为36°的角三角形.
等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小
三、黄金矩形
等腰三角形 . 为此,请你解答问题(1).
例 1(扬州市)若一个矩形的短边与长边的
已知:如图 (1) ,在△ ABC中, AB=AC,∠ A=36°,直线 BD平分∠ ABC交 AC 于点
比值为51(黄金分割数),我们把这样的矩形
2
D. 求证:△ ABD与△ DBC都是等腰三角形
叫做黄金矩形.
(1)操作:请你在如图 2 所示的黄金矩形ABCD ( AB AD) 中,以短边AD 为图(1)
一边作正方形AEFD ;
归纳提升:本题综合考查等腰三角形的性质与判别,还可这样反思:条
(2)探究:在(1)中的四边形EBCF
件改为“在△ ABC中, AB=AC, AD=BD=BC”,求△ ABC中各内角的度数 .
是不是黄金矩形?若是,请予以证
(2) 在证明了该命题后,小颖发现:下列两个等腰三角形如图(2) 、 (3) 也明;若不是,请说明理由;
具有这种特性请你在图(2) 、图 (3) 中分别画出一条直线,把它们分成两个小
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).等腰三角形,并在图中标出所画等腰三角形两个底角的度数;
1.宽与长的比是5 1
的矩形叫黄金矩形,心理学测试表明,黄金矩形令人
(3) 接着,小颖又发现:直角三角形和一些非等腰三角形也具有这样的特性,2
如:直角三角形斜边上的中线可把它分成两个小等腰三角形. 请你画出两个具赏心悦目,它给我们以协调,匀称的美感,现将同学们在教学活动中,折叠
黄金矩形的方法归纳出以下作图步骤(如图所示):
第一步:作一个任意正方形ABCD ;
第二步:分别取AD,BC 的中点 M ,N ,连接 MN ;
第三步:以N 为圆心, ND 长为半径画弧,交BC 的
延长线于 E ;
第四步:过 B 作 EF AD 交 AD 的延长线于 F ,
请你根据以上作法,证明矩形DCEF 为黄金矩形,(可取 AB 2 )
2.(2010 嵊州市)如图,射线 AM, BN都垂直于线段 AB,点 E 为 AM上一点,过点 A 作 BE 的垂线AC分别交BE,BN于点F、C,过点 C 作 AM的垂线CD,垂足为D,若 CD= CF,
则AE
. AD
3.已知线段 AB,点 P 是它的黄金分割点, AP> BP,设以 AP为边的正方形的面积为 S1,以 PB, AB为边的矩形面积为S2,则 S1与 S2的关系是()1、若 3a=4b,则( a﹣ b):( a+b)的值是()
A、B、7 C、﹣D、﹣ 7
2、( 2002?太原)已知, P 是线段 AB上一点,且,则等
于()
A、B、C、D、
3、已知点 P 是线段 MN的黄金分割点, MP> NP,且 MP=(﹣1)cm,则MN 等于()
A、 2cm
B、4cm
C、 6cm
D、无法计算
4、如图所示,以长为 2 的线段 AB为边作正方形ABCD,取 AB的中点 P,连接PD,在 BA的延长线上取点F,使 PF=PD,以 AF 为边作正方形AMEF,点 M在AD上,则 AM的长为()
A、﹣1
B、
C、 3﹣
D、 6﹣ 2
A、 S1> S2
B、 S1< S2
C、 S1 =S2
D、S1≥S2
二、填空题
一、选择题
5、若点 C 是线段 AB的黄金分割点且AC> BC,则,=.
6、在线段 AB上取一点 P,使 AP:PB=1:3,则 AP:AB=,AB:PB=.
7、若点 C 是线段 AB的黄金分割点,则等于.
8.(2008?枣庄)将边长分别为 2、3、 5 的三个正方形按图所示的方式排列,
则图中阴影部分的面积为.。