失效分析的思路与诊断
失效分析思路方法和基本程序

第三章失效分析思路方法和基本程序• 3.1 失效分析的思想方法1.整体观念原则设备失效要考虑的对象不仅仅是设备,要把设备---环境—人当作一个系统来考虑a.失效构件与邻近非失效构件之间的关系b.失效构件与周围环境的关系c.失效构件与操作人的各种关系大胆设想可能与环境发生哪些问题,逐个列出失效因素,对照调查,检测,试验数据再逐个排除,特别是大型构件更要如此.2.从现象到本质的原则失效的表现是现象原因才是本质许多失效表现出一定的现象,如一个断口出现贝壳花样;又知道其承受交变载荷,就可认定失效类型是疲劳,但还要进一步弄清为什么会发生疲劳失效,找出原因才是本质。
3.动态原则位置机械产品对周围的环境相对运动变化之中条件设计参量和操作工艺指标只能是一个分析的参考量。
甚至存放在仓库的新产品也要认为在动态中。
内部受力条件会变化,外部温度、介质会变化,产品本身的某些因素也会变化。
4.两分法原则好的方面任何事物、事件一分为二不好的方面失效分析中对任何事物、事件都要一分为二,名牌、进口和质量好的产品也会失效,也会出现设计不当或材料问题。
5.立体原则客观事物在不同的时空范围内是变化的a.对同一设备在不同的服役阶段或不同的环境就会具有不同的性质。
b.同一工况条件构件的不同部位也会产生不同的失效模式失效分析要多方位综合考虑问题。
6.比较方法、历史方法、逻辑方法失效与已失效系统进行比较,依赖过去失效资料积累分析,分析比较综合归纳作出判断和推类。
3.2 相关性分析的思路及方法1.按失效零件制造全过程和使用条件进行分析(1)审查设计使用条件设计包括标准选用导致零件失效设计判据条件(估计不足)高应力区缺陷标准(选用不当)截面变化太陡判据(不准)倒角过小表面质量过低(2)材料分析选用不当热处理不合理成分不合格材料夹杂物超标导致失效产生组织不合要求材料各向异性冶金缺陷(3)加工制造缺陷铸造缺陷锻造缺陷焊接缺陷缺陷冷加工缺陷导致失效产生碰伤表面缺陷腐蚀表面缺陷装配不当缺陷(4)使用和维护情况分析超载超温超速问题频繁启动停车导致失效产生润滑问题冷却问题保养问题2.根据产品的失效形式及机械模式进行分析根据产品的失效表现形式进一步分析失效模式分析导致失效的内因和外因找出失效原因(后面详细讲解)3.“四M”分析思路及方法1)man人操作人员的情况分析工作态度责任心大小玩忽职守人主观臆断造成失效违章操作缺乏经验反映迟钝技术低能2)Media 环境产品使用状态下的环境情况分析载荷状态变化载荷大小变化载荷方向变化环境周围温度导致失效周围湿度周围尘埃腐蚀介质3)Machine 设备情况分析分析材料的选择结构设计加工制造水平造成失效安装水平运输保护措施4)Management 管理情况分析作业程序保护措施管理辅助工作造成失效使用工具维护保养3.3 系统工程的分析思路及方法▪ 1. 复杂系统▪除常规影响因素外▪还有人的因素和软件因素,用相关性及物理检测无法解决,必须采用系统工程来解决。
失效分析的思路和诊断

失效分析的思路与诊断第二章失效分析的思路第一节常用的几种失效分析思路一、“撤大网”逐个因素排除法二、以设备制造全过程为一系统进行分析任何一个设备都要经历规划、设计、选材、机械加工(包括铸、锻、焊等工艺)、热处理、二次精加工(研磨、酸洗、电镀)和装配等制作工序,如果失效已确定纯属设备问题,还可对上述工序逐个进一步分析,包括以下容:1.设计不当(1)开孔位置不当造成应力集中;(2)缺口或凹倒角半径过小;(3)高应力区有缺口;(4)横截面改变太陡;(5)改变设计,没有相应地改变受力状况;(6)设计判据不足;(7)计算中出现过载荷;(8)焊缝选择位置不当,以及配合不适当等;(9)对使用条件的环境影响,未做适当考虑;(10)提高使用材料的受力级别;(11)刚性和韧性不适当;(12)材料品种选择错误;(13)选择标准不当;(14)材料性能数据不全;(15)材料韧脆转变温度过高;(16)对现场调查不充分,认识不足就投入设计;(17)与用户配合有差错。
2.材料、冶金缺陷(1)成分不合格;(2)夹杂物含量及成分不合格;(3)织组不合格;(4)各种性能不合格;(5)各向异性不合格;(6)断口不合格;(7)冶金缺陷(缩孔、偏析等);(8)恶化变质;(9)混料。
3.锻造等热加工工艺缺陷(1)折叠、夹砂、夹渣;(2)裂缝;(3)锻造鳞皮;(4)流线分布突变或破坏;(5)晶粒流变异常;(6)沿晶氧化(过烧);(7)氧化皮压入;(8)分层、疏松;(9)带状组织;(10)过热、烧裂;(11)外来金属夹杂物;(12)缩孔;(13)龟裂;(14)打磨裂纹;(15)皱纹。
4.机械加工缺陷(1)未按图纸要求;(2)表面粗糙度不合格;(3)倒角尖锐;(4)磨削裂纹或过烧;(5)裂纹;(6)划伤、刀痕;(7)毛刺;(8)局部过热;(9)矫直不当。
5.铸造缺陷(1)金属突出;(2)孔穴;(3)疏松;(4)不连贯裂纹;(5)表面缺陷;(6)浇注不完全;(7)尺寸和形状不正确;(8)夹砂、夹渣;(9)组织反常;(10)型芯撑、冷铁。
压力容器和压力管道的失效(破坏)与事故分析

压力容器和压力管道的失效(破坏)1.失效的定义:完全失去原定功能;虽还能运行,但已失去原有功能或不能达到原有功能;虽还能运行,但已严重损伤而危及安全,使可靠性降低。
2.失效的方式:1)从广义上分类:过度变形失效:由于超过变形限度而失效。
断裂失效:由于出现裂口而失效。
表面损伤失效;因表面腐蚀而导至失效。
2)一般分类:可分为a)过度变形失效:失效后存在较大的变形。
b)断裂失效:失效是由于存在缺陷如裂纹、腐蚀等缺陷而引起的。
c)表面损伤失效:因腐蚀、表面损伤、材料表面损伤等原因引起的失效。
3.失效的原因1)韧性失效:容器所受应力超过材料的屈服强度发生较大的变形而导致失效,原因为设计不当、腐蚀减薄、材质劣化强度下降、超压、超温。
断口有纤维区、放射纹区、剪切唇区。
2)脆性失效:容器在无明显变形情况下出现断裂导致失效,开裂部位存在较大的缺陷(主要是裂缝),材质劣化变脆、应力腐蚀、晶间腐蚀、疲劳、蠕变开裂。
断口平齐,有金属光泽,断口和最大主应力方向垂直。
3)疲劳失效:容器长期受交变载荷引起的疲劳开裂导致疲劳失效。
原因为容器长期受交变载荷、开裂点应力集中、开裂点上有小缺陷。
断口比较平齐光整,有三个区萌生区、疲劳扩展区和瞬断区。
其中扩展区有明显的贝壳样条纹。
4)腐蚀失效:因腐蚀原因导致失效。
均匀腐蚀减薄导致强度不够;应力腐蚀导致断裂;晶间腐蚀导致开裂;氢蚀导致开裂、点蚀造成的泄漏;缝隙腐蚀造成的泄漏或开裂;冲蚀造成局部减薄,泄漏;双金属腐蚀造成局部减薄。
晶间腐蚀:金属材料均属多晶材料,晶粒间存在晶界,晶间腐蚀是指晶界发生腐蚀。
应力腐蚀:金属材料的材质、介质、和拉应力三个因素共同作用下发生的裂纹不断扩大。
裂纹的发展可以是沿晶的也可以是串晶的。
氢蚀:在高温下氢气常形成原子状态氢极易渗透到钢材内部,进入钢材的氢与渗碳体中的碳生成甲烷,使渗碳体脱碳材料变软,生成的甲烷在金属中体积增大,使金属内压力增大金属表面形成鼓包。
腐蚀失效的形式:韧性失效、脆性失效、局部鼓胀、爆破、泄漏、裂纹泄漏、低应力脆断、材质劣化。
失效分析的流程

失效分析的流程
失效分析的流程主要包括以下步骤:
1. 故障现象记录:详细记录失效产品的故障表现、使用环境和条件,初步判断失效模式。
2. 样品收集与预处理:获取失效产品或部件样本,进行必要的保护和清洗,确保后续分析不受干扰。
3. 外观检查与非破坏性测试:通过肉眼观察、光学显微镜检查、X射线透视等手段,寻找外部可见的缺陷及内部结构异常。
4. 破坏性分析:采用金相分析、化学成分分析、断口分析等方法,深入探究失效机理。
5. 功能测试与模拟实验:对样品进行电气性能测试、力学性能测试,并根据需要设计加速老化、应力测试等模拟实验,重现失效过程。
6. 数据分析与结论得出:综合所有测试结果,分析失效原因,确定责任方,并提出改进措施或预防对策。
7. 报告编写与反馈:整理失效分析报告,将结论反馈给相关部门,指导产品质量改进和工艺优化。
失效分析的思路和方法

4.用局部复合强化,克服零件上的薄弱环节,争取达到材料 的等强度设计。
克服失效措施的几个结合
在进行失效分析和提出克服失效的措施时,还应做到几个结 合
第四章 失效分析的思路和方法
4.1、失效分析的常规思路
失效分析的常规思路有三种思路: 1)以失效抗力指标为主线的失效分析思路 2)以制造过程为主线的失效分析思路 3)以零件或设备为类别的失效分析思路
1.以失效抗力为主线的失效分析思路
零件的失效是由于其失效抗力与服役条件这一对矛盾的 因素相互作用的结果,当零件的失效抗力不能胜任服役条 件时,便造成了零件失效。
零件的服役条件主要包括载荷和环境两方面的因素 。而零件的失效抗力指标一方面决定于材料因素如成分、 组织和状态等,一方面与零件的几何细节有关。
思路图
分析思路要点
1.对具体服役条件下的零件作具体分析,从中找出主要的失 效分析方式及主要失效抗力指标。
2.运用金属学、材料强度学和断裂物理、化学、力学的研究 成果,深入分析各种失效现象的本质:主要失效抗力指标 与材料成分、组织和状态的关系,提出改进措施。
1.设计、选材和工艺相结合 2.结构强度(力学计算、实验应力分析)与材料强度相结合 3.宏观规律与微观机理相结合(断口与组织分析) 4.实验室规律性试验研究与生产考验相结合
2.以制造过程为主线的失效分析思路
任何零件都要经历设计、选材、热加工(铸锻焊)、冷加工、热处 理、精加工、装配等工序,如果业己已经确认零件失效纯属于制 造过程中的问题,则可对上述诸工序一一展开分析。找出失效分 析的原因,提出克服失效的措施。
失效和失效形式的分类

第1章失效和失效形式的分类1第1章 失效和失效形式的分类机械构件或机械制品在实际使用过程中,由于载荷、温度、介质等力学及环境因素的作用,以磨损、腐蚀、断裂、变形等方式失效,这给国民经济带来极大的损失,严重的失效事故甚至会造成人身伤亡。
失效分析的目的是确定失效性质,查找失效原因,提出预防监控以及设计改进意见,避免和防止类似失效的重复发生。
失效分析工作对材料的正确选择和使用,促进新材料、新工艺、新技术和新结构的发展,对产品设计、制造技术的改进,对材料及零件质量检查、验收标准的制定,改进设备的操作与维护,以及促进设备监控技术的发展等方面具有重要作用。
1.1 失效的定义机械产品的零件或部件处于下列3种状态之一时,就可定义为失效:① 当它完全不能工作时;② 仍然可以工作,但已不能令人满意地实现预期的功能时;③ 受到严重损伤不能可靠而安全地继续使用,必须立即从产品或装备上拆下来进行修理或更换时。
机械产品及零部件常见的失效类型包括变形失效、损伤失效和断裂失效三大类。
机械产品及零部件的失效是一个由损伤、萌生、扩展(积累)直至破坏的发展过程。
不同失效类型其发展过程不同,过程的各个阶段的发展速度也不相同。
按照机械产品使用的过程,可将失效分为3类。
1.早期失效在使用初期,由于设计和制造上的缺陷而诱发的失效,称为早期失效。
因为使用初期,容易暴露上述缺陷而导致失效,因此失效率往往较高,但随着使用时间的延长,其失效率则很快下降。
假若在产品出厂前即进行旨在剔除这类缺陷的过程,则在产品正式使用时,便可使失效率大体保持恒定值。
2.随机失效在理想的情况下,产品或装备发生损伤或老化之前,应是无“失效”的。
但是由于环境的偶然变化、操作时的人为差错或者由于管理不善,仍可能产生随机失效或称偶然2 材料成型缺陷及失效分析失效。
偶然失效率是随机分布的,其值很低而且基本上是恒定的。
这一时期是产品的最佳工作时间。
3.耗损失效经过随机失效期后,产品中的零部件已到了寿命后期,于是失效开始急剧增加,这种失效叫作耗损失效或损伤累积失效。
失效分析的思路和方法课件

详细描述
02
分析系统级产品的整体性能 和失效模式,研究各组成部 分之间的相互影响。
05 失效分析的展望
失效分析技术的发展趋势
01
02
03
智能化分析
利用人工智能和大数据技 术,实现失效分析的智能 化,提高分析效率和准确 性。
多学科交叉
整合物理、化学、材料科 学等多学科知识,深入研 究失效机制,揭示失效本 质。
事件树分析法
事件树分析法是一种自下而上的归纳分析方法,通过分析 基本事件的发生概率和它们之间的逻辑关系,推导出系统 事件的概率和可能结果。
事件树分析法需要确定初始事件和后续事件,通过逻辑门 将它们连接起来,形成事件树,然后对事件树进行定性和 定量分析,找出关键事件和重要事件,评估系统事件的概 率和可能结果。
可靠性工程设计
将失效分析结果纳入产品可靠性工程 设计,优化产品设计,提高产品可靠 性和寿命。
感谢您的观看
THANKS
确定失效原因和机理 ,预防类似失效再次 发生。
为设计、材料、工艺 等方面提供改进依据 。
提高产品质量和可靠 性,降低维修和保障 成本。
失效分析的基本流程
收集失效产品或部件, 了解使用环境和条件。
01
进行深入分析,如断口 观察、化学分析、金相
检查等。
03
验证改进措施的有效性 ,进行跟踪和反馈。
பைடு நூலகம்
05
进行初步检查和测试, 记录失效现象和特征。
02
确定失效原因和机理, 提出改进措施和建议。
04
02 失效分析的思路
失效模式识别
确定失效模式
通过观察、检测和实验,识别产品或 系统的失效模式,即确定失效的表现 形式。
失效分析流程

失效分析流程失效分析是指对产品或系统发生故障或失效的原因进行分析和解决的过程。
失效分析流程通常包括以下几个步骤,失效观察、失效描述、失效假设、失效验证和失效原因分析。
首先,失效观察是指对产品或系统失效现象进行观察和记录。
在失效观察阶段,需要详细描述失效发生的时间、地点、环境条件、失效现象等信息。
这些信息对于后续的失效分析非常重要,能够帮助工程师更快地找到失效原因。
接下来,失效描述是指对失效现象进行详细的描述和分析。
失效描述需要包括失效的外部表现和内部表现,以及失效对产品或系统性能的影响。
通过对失效现象的描述,可以帮助工程师更好地理解失效的特点和规律。
然后,失效假设是指对失效原因进行初步的推测和假设。
在失效假设阶段,工程师需要根据失效现象和产品或系统的工作原理,提出可能的失效原因。
这些失效假设将成为后续失效验证和原因分析的依据。
随后,失效验证是指对失效假设进行验证和排除。
在失效验证阶段,工程师需要通过实验、测试或仿真等手段,验证每一个失效假设的可行性和可靠性。
通过失效验证,可以确定哪些失效假设成立,哪些失效假设需要进一步分析。
最后,失效原因分析是指对经过验证的失效假设进行深入分析,找出真正的失效原因。
在失效原因分析阶段,工程师需要综合考虑失效现象、失效描述、失效假设和失效验证的结果,找出导致产品或系统失效的根本原因。
通过失效原因分析,可以采取相应的措施,防止类似的失效再次发生。
综上所述,失效分析流程是一个系统的、有条不紊的过程,需要工程师对失效现象进行认真观察和描述,提出合理的失效假设,进行有效的失效验证,最终找出真正的失效原因。
只有在每一个步骤都认真对待,才能确保失效分析的准确性和可靠性,为产品或系统的改进和优化提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
失效分析的思路与诊断
第二章失效分析的思路
第一节常用的几种失效分析思路
“撤大网”逐个因素排除法
表2-1 事故的管理责任
二、以设备制造全过程为一系统进行分析
任何一个设备都要经历规划、设计、选材、机械加工(包括铸、锻、焊等工艺)、热处理、二次精加工(研磨、酸洗、电镀)和装配等制作工序,如果失效已确定纯属设备问题,还可对上述工序逐个进一步分析,包括以下内容:
1.设计不当
(1) 开孔位置不当造成应力集中;
(2) 缺口或凹倒角半径过小;
(3) 咼应力区有缺口;
(4) 横截面改变太陡;
(5) 改变设计,没有相应地改变受力状况;
(6) 设计判据不足;
(7) 计算中出现过载荷;
(8) 焊缝选择位置不当,以及配合不适当等;
(9) 对使用条件的环境影响,未做适当考虑;
(10) 提高使用材料的受力级别;
(11) 刚性和韧性不适当;
(12) 材料品种选择错误;
(13) 选择标准不当;
( 14) 材料性能数据不全; ( 15) 材料韧脆转变温度过高;
( 16) 对现场调查不充分,认识不足就投入设计; ( 17) 与用户配合有差错。
2. 材料、冶金缺陷 1) 成分不合格; 2)
夹杂物含量及成分不合格;
3) 织组不合格;
4) 各种性能不合格; 5) 各向异性不合格; 6) 断口不合格;
7) 冶金缺陷(缩孔、偏析等); 8) 恶化变质; 9) 混料。
3. 锻造等热加工工艺缺陷 1 ) 折叠、夹砂、夹渣; 2 ) 裂缝;
3 ) 锻造鳞皮;
4) 流线分布突变或破坏; 5) 晶粒流变异常;
6) 沿晶氧化(过烧); 7) 氧化皮压入; 8) 分层、疏松; 9) 带状组织; 10) 过热、烧裂; 11) 外来金属夹杂物; 12) 缩孔; 13) 龟裂; 14) 打磨裂纹; 15)
皱纹。
(1) 未按图纸要求; (2) 表面粗糙度不合格; (3) 倒角尖锐; (4) 磨削裂纹或过烧; (5) 裂纹; (6) 划伤、刀痕; (7) 毛刺;
(8) 局部过热; (9)
矫直不当。
铸造缺陷
(1) 金属突出;
(2) 孔穴; (3) 疏松; (4) 不连贯裂纹; (5) 表面缺陷;
(6) 浇注不完全;
(7) 尺寸和形状不正确; (8) 夹砂、夹渣; (9)
组织反常;
(10) 型芯撑、内冷铁。
焊接缺陷
5. 6. 机械加工缺陷 4.
(1) 错口超标; (2) 咬边超标; (3) 焊肉过凸或过凹; (4) 焊道深沟;
(5) 焊趾、焊缝或根部有裂纹; (6) 熔化不全; (7) 打弧;
(8) 焊接深度不够,未焊透; (9)
夹渣、夹杂或疏松;
(10) 接头尺寸不合格; (11) 热输入不适当;
(12) 焊前预热不足;
(13) 焊后消除热应力不够或未消除; (14) 显微组织不合格; (15) 焊接裂纹。
热处理不当
(1) 过热或过烧;
(2) 显微组织不合格; (3) 淬火裂纹;
(4) 淬火变形、翘曲;
(5) 奥氏体化温度不当使晶粒粗大;
(6) 脱碳或增碳; (7) 渗氮;
(8) 回火脆化;
(9)
淬火后未及时回火;
(10) 热应力。
再加工缺陷
(1) 酸洗后或电镀后未除氢或除氢不够; (2) 酸迹清洗未尽;
(3) 镀前喷丸清洗不全;
(4) 电镀电极打弧引起硬点; (5) 镀Cd 、镀Zn 的液态金属脆化; (6) 形成金属间化合物致脆;
(7) 碰伤、标记压痕过深或位置不当; (8) 校直引起残余应力; (9)
镀铬碎屑划伤; (10) 化学热处理不当;
a. 渗层组织反常;
b.
力学性能不合格。
装配检验中的问题
(1) 轴线对中不正; (2) 紧固件松动; (3) 敲打损伤; (4) 装配损伤; (5) 装配不正确; (6) 强迫装配;
(7) 装配说明书说明不全或不清楚; (8) 装配马虎大意; (9)
磁粉检查电弧烧伤;
(10) 磁化吸住钢屑造成磨损; (11) 漏检。
7. 8. 9. 使用和维护不当
10.
(1)超载、超温、超速;
(2)冲撞、热冲击;
(3)振动过大的断续载荷;
(4)操作错误、没按说明书要求做;
(5)每次开车或停车猛烈、突然;
(6)清洗剂不适合;
(7)润滑不当;
(8)疏忽,不按期维护;
(9)没定期检查;
(10)修理不当;
(11)灾害预防措施不完善;
(12)安全措施差;
(13)漏电;
(14)早期疲劳裂纹。
11.环境损伤
(1)腐蚀性气氛介质;
(2)高温或温度陡度过大;
(3)低温;
(4)海洋气氛;
(5)碱性溶液;
(6)氨气氛;
(7)润滑介质不适合;
(8)润滑剂变质或污染;
(9)流体介质中含有磨粒;
(10)控制的或规定的环境不适当。
上面列举了可能引起设备系统失效的一些主要因素,当然这并非全部因素。
还应指出,在某一大方面(如热处理不当)的因素中,有的还可以往前追查原因,例如对于热处理不当的淬火裂纹,还可进一步分析其原因,如表2-2所列举的。
表2-2 导致形成淬火裂纹的因素
对于使用中承受交变载荷的部分出现的早期疲劳断裂,也可进一步分析其失效原因,如表所示:
机械产品一旦失效,一般表现为过量变形、表面损伤、破裂或断裂三种主要形式。
这些类型还要进一步按失效模式再细分类。
下面表2-4是按实际观察到的一些失效模型⑵所作的分类。
表2-4 金属零部件的各种失效模式
1.轴类零件的失效原因
轴类的失效模式,有以下12种:
(1)单向弯曲疲劳;
⑵双向弯曲疲劳;
(3)旋转弯曲疲劳;
(4)扭转疲劳;
(5)接触疲劳;
(6)微振疲劳;
⑺脆性疲劳;
(8)延性疲劳;
(9)塑性变形;
(10)磨损失效;
(11)蠕变断裂;
(⑵腐蚀断裂。
常见的有弯曲疲劳损坏、扭转疲劳损坏、复合的(弯曲和扭转)疲劳损坏、和超载或撞击的延性断裂。
引起轴类失效的原因如表2-8和表2-9所示⑸。
表2-9 联邦德国阿利安茨技术中心1968 —1975年间对传动轴和
支承轴失效案例统计
包括制订产品规划和设计的失误(结构布局不合理、计算错误、几何形状不合理、选材不当
等)。
制造工艺和处理工艺所造成的缺陷(如焊接、铸造、热处理、机加工缺陷等),装配或安装造成的缺陷,以及混料、用错料等原因引起的失效。
b.如因振动造成的松动、安全保护装置失灵,伺服设施故障、磨损、腐蚀、失效老化等引起的失效。
c.如自然灾害、异物侵袭、电网超高压等造成的失效。
2.滑动轴承的失效原因
滑动轴承失效的表现形式,常见的是轴瓦上有磨损沟槽、腐蚀斑块,剥落和麻点。
其原因和诱发因素列于表2-10。
3.滚动轴承的失效原因
不同的失效原因造成滚动轴承失效的形式也大不相同,说明于表2-11和表2-12。
4.弹簧的失效原因
弹簧失效的主要模式是疲劳断裂和脆性断裂。
其次是腐蚀断裂、应力腐蚀断裂、氢脆、黑脆、松弛、变形和磨损。
现将弹簧脆断和疲劳断裂的原因和影响因素列表于2-13。
至于两种断裂的特
征,横向平断口上无贝壳花样的为脆断;斜断口上有贝壳花样的为疲劳断。
表2-11 滚动轴承失效的原因及其对应的损坏形式
表2-13 弹簧脆性断裂和疲劳断裂的原因
断裂模式断裂原因及影响因素
1.脆性断裂1
( 1材料缺陷表面缺陷 a. 表面裂纹
b. 冷拔或冷绕留下的折叠或刻痕
c. 磨光钢丝的横向磨痕、麻点碰伤表面脱碳
内部缺陷 a. 粗大夹杂
b. 层状结构
c. 晶粒异常粗大
d. 马氏体脆性相
1( 2制造及热处理 a. 成形不当
方法不当 b. 机加工不当
c. 组织不正常
d. 过热或过烧
e. 淬火裂纹
f. 电镀不当
g. 其它工艺不当(如除氢不尽)
2.疲劳断裂1
( 1材料缺陷 a. 化学成分不当
b. 魏氏组织
c. 表面缺口
d. 横向微裂纹
e. 小孔
f. 皱皮
g. 折迭
h. 麻坑
i. 分层
j. 皮下碳化物
1( 2设计不当 a. 弹簧指数和硬度配合不当
b. 截面尺寸小
c. 转速过高,应力循环快
1( 3制造工艺不当 a. 拉拔过度引起撕裂
b. 工具伤痕
c. 尖锐弯曲
d. 绕簧刻痕或裂纹
e. 焊接缺陷
f. 表面脱碳
g. 酸洗电镀除氢不尽
表2-12 滑动轴承和滚动轴承失效案例原因的统计分布⑸
5.齿轮的失效原因
齿轮损伤的模式,主要表现为断齿和齿面损伤。
现将齿轮失效模式和失效原因列表如下。
表2-14 齿轮失效的模式、形貌和原
注:上述失效模式中,以疲劳断裂、麻点、磨损和咬接四种最常见。
2. 麻点、齿面剥落、磨损、咬接、塑性变形和裂纹都能促进疲劳断裂,其中的后二种常导致疲劳
断裂。