地源热泵系统实例分析
深圳利用地源热泵供冷供热的案例

深圳利用地源热泵供冷供热的案例背景深圳是中国南方的一个发达城市,由于气候炎热,空调需求量大,而且在冬季供暖方面也存在一定的需求。
然而,传统的空调和供暖系统对环境的影响较大,能源消耗高,排放物排放量大。
为了解决这个问题,深圳开始采用地源热泵技术来供冷供热,以减少对传统能源的依赖并减少环境污染。
案例1:深圳某商业办公楼的利用地源热泵供冷供热案例背景该商业办公楼位于深圳市中心,是一栋多层建筑,总面积约为5000平方米。
由于深圳的气候炎热,办公楼需要全年提供空调服务,并在冬季提供供暖服务。
为了减少能源消耗和环境污染,该商业办公楼决定采用地源热泵技术来供冷供热。
过程1.地源热泵系统的设计:在商业办公楼的地下安装了一套地源热泵系统。
该系统由地源热泵主机、地源换热器、地源井和地下管道组成。
地源热泵主机通过地源换热器将地下的热能吸收并传给热泵系统,然后再将热能通过地下管道分配到各个办公室。
2.供冷过程:在夏季,地源热泵系统通过地下的地源换热器将地下的低温热能吸收到热泵系统中,然后通过制冷循环将热能释放到室内,达到供冷的效果。
同时,热泵系统还将室内的热能通过地下管道排出到地下,以保持室内的温度。
3.供热过程:在冬季,地源热泵系统通过地下的地源换热器将地下的高温热能吸收到热泵系统中,然后通过加热循环将热能释放到室内,达到供热的效果。
同时,热泵系统还将室内的冷能通过地下管道排出到地下,以保持室内的温度。
4.能耗监测和优化:商业办公楼对地源热泵系统的能耗进行定期监测,并根据监测结果进行系统的优化。
通过优化系统的运行参数和调整工作模式,进一步减少能源消耗,提高供冷供热效率。
结果通过采用地源热泵技术,该商业办公楼取得了以下成果:1.能源消耗减少:与传统空调和供暖系统相比,地源热泵系统的能源消耗减少了约30%。
这不仅减少了商业办公楼的运营成本,还减少了对传统能源的依赖。
2.环境污染减少:地源热泵系统减少了二氧化碳等温室气体的排放,对环境的影响更小。
地源热泵系统实例分析课件

03
04
故障识别
及时发现系统异常,如温度异 常、压力异常等。
故障诊断
根据异常现象分析故障原因, 确定故障部位。
故障排除
采取相应措施排除故障,恢复 系统正常运行。
预防措施
加强日常维护保养,预防故障 发生。
维护与保养建议
定期检查
对系统各部件进行检查,确保无损坏、无泄 漏。
润滑与紧固
定期对系统进行润滑和紧固,确保各部件正 常运转。
操作。
系统分类与应用场景
分类
根据热交换形式的不同,地源热泵可 以分为地下水热泵、地表水热泵和土 壤源热泵等。
应用场景
适用于住宅、酒店、办公楼、学校等 建筑,尤其适用于对节能和环保要求 较高的建筑。
CHAPTERຫໍສະໝຸດ 02地源热泵系统实例介绍住宅型地源热泵系统
总结词
适用于单栋或联排住宅,提供冷暖空调和生活热水。
设计中的关键因素
地质条件
地源热泵系统的性能受到地质 条件的影响,需要考虑土壤导 热性能、地下水情况等因素。
气候条件
气候条件决定了系统的运行效 率和能耗,需要考虑当地的气 候特点,如冬季和夏季的温度 、湿度等。
建筑需求
根据建筑的需求,如冷暖空调 、热水供应等,合理配置系统 设备,以满足建筑的需求。
经济性
成本回收期
在投资回报期结束后,企业即可通 过节省的能源费用实现成本回收。
环境与社会效益评估
环境效益
地源热泵系统作为一种可再生能源利 用方式,具有显著的环保优势。它能 够减少温室气体排放,降低对化石燃 料的依赖。
社会效益
地源热泵系统的推广应用有助于促进 节能减排,推动绿色建筑和可持续发 展。此外,它还能为社会创造更多的 就业机会。
地源热泵系统实例分析

热泵机组开启3台的时间占总运行时间7%以下、开启2台时间占74.5%、开启1台时间占18.5%;深井泵及变频器从06年10月运行以来最多开启1台,夏季平均运行频率为74%、冬季平均运行频率为77.2%;末端循环泵最多开启2台。末端供回水温差大多在2.5~4.8℃之间,系统运行效率较高。
四、本系统与改造前系统对比
通过对比,可以分析得出原系统出现高能耗的原因: 1、系统设计不合理。单台深井泵抽水后经一台板换换热后回灌,能量利用不够充分;地下水系统存在能量短路现象。 2、施工组织不得力,成井质量不高。井水含沙量严重超标,造成井周围抽空导致地面塌陷。提高成井质量可以解决井水含沙量过大的问题,可去除井水侧的二次循环设备能耗及板换换热的温差损失,有利于实现井水的100%回灌。
8.87(kW·h/m2·a)
3.15
本系统与其它采暖空调系统对比 图表4 本系统制冷季折合煤耗为3.15 Kg/m2•季,与冷水机组制冷相比少耗煤3.89Kg/m2•季,节能55.3%。
六、本系统与其它采暖空调系统对比
表6:
不同空调系统总能耗统计表
统计周期 系统类型
采暖季折算标准煤(Kg/m2.a)
四、本系统与改造前系统对比
表2:
改造前后设备投运情况对比
对比项目投入设备
改造前
改造后
改造后节省
备 注
热泵机组kW
123
123
无
深井泵kW
4*37
55/22
126
频率给定70%
井水侧二次循环泵kW
3*15
无
45
末端循环泵kW
3*18.5
18.5
37
合 计kW
371.5
地源热泵系统应用项目实测效果分析

冬季均 值
2.8 9
夏 季
夏季均值
同时 , 也 可 以发 现 地源 热 泵 技 术 在实 际 应 用 中的 一 些 问题 , 各 个 项 目热 泵 系统 运 行 参 数 的差 别 包括 设 计 、设 备 、运 行等 原 因, 系
统 匹配 和 运行 模 式 对 系统 性 能 影 响较 大 , 下面 结 合 测试 情 况 提 出 地 源 热泵 技术 应 用 的几个 关键 性 问题 和建 议 。 部分 项 目方 案 阶段 缺 乏 对水 文 地 质等 基 础 条件 的科 学 调查 .
地 源 热 泵 供 暖 系统 运 行 费 用虽 然 稍 高 于燃 煤 锅 炉 ,但 综 合 考 虑 节
能 、环 保 和 经济 效 益 , 地 源热 泵 系 统是 比较 合 适 的供 暖 方 式 。根
高机组的能效比,以提高地源热泵系统的节能效果。 国
中国 建筑 科学研 究院 青年 科研基 金课题 资助 项 目
供 暖 系 统 比较 , 各 项 目地源 热 泵 系统 节 省 费 用从 4.~ 8 . 万 元/ 1 2 27
3O .8 .755
3.O 5.6 3.2 0 2 9 3.5 4.6 3.2 3~ 9 7
3.O 5.8 3.8 0~ 5 8
年不 等 ,单 位 面积 平均 节 约74 元, 。 .3 年
响。
3 % 5 2 % 7
6 % 5 7 % 3
部 分 项 目对 系 统 各部 分 的匹 配设 计 不 够精 细 , 造 成节 能 效 果 大打 折 扣 。 如循 环 水 泵选 型 过 大 ,输 送 系 统 能耗 比例相 对 过 高 ,
6 节 能 效 果 、
地 源 热 泵 系 统 可 以 替 代 常 规 供 热 制 冷 系 统 满 足 建 筑 物 的采
地源热泵案例

地源热泵案例地源热泵是一种利用地下热能进行空调供暖的系统,它可以高效地利用地下的恒定温度进行换热,从而达到节能环保的效果。
下面我们将介绍一个地源热泵的实际案例,来看看它是如何应用于实际工程中的。
该案例发生在某大型商业综合体的供暖改造项目中。
由于原有的供暖系统老化严重,效率低下,运行成本高,因此业主决定引进地源热泵系统进行改造。
经过专业工程师的勘察和设计,最终确定了地源热泵系统的应用方案。
首先,工程师们对商业综合体的地下进行了详细的勘察,确定了地源热泵系统的地埋管布置方案。
考虑到商业综合体的用能特点,他们设计了合理的地埋管布局,确保了地源热泵系统的高效运行。
在施工过程中,工程人员严格按照设计要求进行施工,保证了地源热泵系统地埋管的质量和稳定性。
其次,地源热泵系统的主体设备安装也是关键的一环。
工程师们根据商业综合体的供暖需求,选用了合适的地源热泵主机和配套设备。
在设备安装过程中,他们严格按照安装要求进行操作,确保了地源热泵系统的安全运行。
同时,他们还对地源热泵系统进行了严格的调试和检测,保证系统的稳定性和高效运行。
最后,地源热泵系统的投入使用,取得了良好的效果。
商业综合体的供暖问题得到了有效解决,系统运行稳定,能耗大幅降低,运行成本得到了有效控制。
同时,地源热泵系统的环保效益也得到了充分体现,为商业综合体的可持续发展做出了积极贡献。
通过这个案例,我们可以看到地源热泵系统在实际工程中的应用效果。
它不仅可以有效解决供暖问题,降低能耗成本,还能为环境保护做出积极贡献。
因此,地源热泵系统在今后的建筑节能工程中有着广阔的应用前景,相信随着技术的不断进步和成本的不断降低,它将会得到更广泛的推广和应用。
建筑节能施工中的地源热泵应用案例

建筑节能施工中的地源热泵应用案例地源热泵是一种利用地质热能进行建筑节能的先进技术。
它通过地下水或地表土壤中的热能,将低温热能提升到适宜供暖或供冷的温度,实现建筑物的能源高效利用。
本文将介绍几个地源热泵在建筑节能施工中的应用案例。
案例一:住宅小区的地源热泵供暖系统某住宅小区为了实现环保节能目标,在建设初期就采用了地源热泵供暖系统。
该系统通过埋设在地下的塑料管道,将地下水中的热量吸收到地源热泵中,再利用热泵技术提高温度,供给小区内的每栋建筑物供暖。
该系统具有稳定可靠、无污染的特点,能够满足小区居民冬季供暖的需求,并且实现了较高的节能效果。
案例二:商业办公楼的地源热泵空调系统一座商业办公楼在进行环保节能改造时,采用了地源热泵空调系统。
该系统通过地下埋设的管道,将地下土壤中的热能吸收到地源热泵中,通过冷却和压缩等技术,将热能转移到建筑物内部,实现空调供冷。
相比传统的空调系统,地源热泵空调系统能够减少对环境的热污染,提高能源利用效率,降低运行成本。
案例三:学校教学楼的地源热泵供暖与供冷系统某所学校的教学楼在进行新建时,考虑到能源利用问题,决定采用地源热泵供暖与供冷系统。
该系统通过地下埋设的地源热泵井,利用地下水中的热能进行供暖与供冷。
系统运行过程中,地下水中的热能被吸收到地源热泵中,经过增压和处理后,分别用于供暖和供冷。
这种系统不仅能够满足学校教学楼内部的温度需求,还能够为学校节省大量能源。
综上所述,地源热泵在建筑节能施工中的应用案例是多样化的。
通过采用地源热泵技术,建筑物可以更高效地利用地下热能,实现供暖与供冷的需求,并达到节能减排的目标。
在未来的建筑节能工程中,地源热泵技术将发挥越来越重要的作用,为社会可持续发展做出更大的贡献。
地源热泵案例

7我公司无锡环科新能源科技工程有限公司主做地源热泵,而地源热泵系统拥有五大系统:1:室内采暖系统:采用的是地暖原理,就是通过地板下面的管道里面循环的热水达到先热地板,然后地板加热上层的空气,热气上升,冷空气下降达到室内采暖;2:中央空调系统:风机里面循环的不再是氟利昂,而是水,一排排细管道里面的温度较低的水吸收管道周围的热量降低空气温度,再通过风机后面的涡轮风扇把冷空气吹出去达到制冷作用,他的好处是无毒,舒适,环保等作用,最主要的是他的制冷不会像普通空调那样刺骨。
3:生活热水系统:在地源热泵主机旁边有一个大的水箱,根据户型面积和人口数量配备一定量的水箱如300升,里面的水属于生活热水,最高能够达到58度,而且我们环科跟任何一家业主都能在合同里面签上最高温度能够达到58度这一要求。
因为我们采用的是美意的主机,美意主机的优点是:一边使用的时候一边补水,并且能够迅速制热到58度,这样就避免了您在用生活热水洗澡的时候温度越来越低的现象。
不像特灵布德鲁斯其他品牌的主机,洗澡的时候水温越来越低。
以上三个系统是地源热泵三位一体机最常用的三个系统,通过一台主机实现提取地下能源,供给三个系统运用,4:新风系统:我公司用的都是法国布朗新风系统,全热回收主机,采用地处风的方式进行室内室外空气交换,因为顶送顶排的话虽然造价便宜,但是有两个个缺点就是他交换了上面的空气,而下方的空气很难交换导致上方是新鲜空气,下方依旧是污气;第二个是顶送顶排在梁山会打更多的洞,这样就导致整个房子的牢固程度,新风的优点有下列几点:健康:有组织通风,一年365天、每天24小时连续通风;高效:提高含氧量、除异味、排甲醛;静音:超静音风机,不影响生活和睡眠(37分贝以内);节能:平均每天消耗约0.7度电;品质:可连续不间断运行16万小时(相当于20年不用开窗也能享受大自然的新鲜空气;避免社会上广泛议论的“空调病”;避免室内家具衣物的发霉清除室内装饰后长期缓释的有害气体,利于人体健康;有能量回收系统,避免通风换气造成能量过分损耗;有效排除室内各种细菌、病毒。
地源热泵经济案例分析

地源热泵经济案例分析系统介绍能够节电50%的环保中央空调阳光假日别墅位于延庆,该别墅建筑结构为地面三层,地下一层,每户都有一个40平方花园,这就给安装地源热泵中央空调提供了必要条件。
依据我司对已经施工完成的户型作比较,其结果如下:一、采用传统的风冷热泵中央空调,其造价:52500元。
二、采用地源热泵中央空调系统,其造价:72500元。
三、采用地源热泵中央空调系统每年可节省的电费和燃气费用:5550元。
四、除去燃气炉的成本约11500元,两年内节省的费用就超过增加的投资。
随着空调工业的发展,先进的中央空调系统不断的出现,空调在现代建筑中扮演着越来越重要的角色。
人们对空调的要求也不断提高,节能、环保、灵活成为今后共同追求的目标。
近年来,随着国际经济技术合作的不断深入,地源热泵中央空调系统进入了我国,并通过在工程中的成功运用得到了空调界人士的认可和推崇,成为了我国中央空调发展的趋势,体现了节能、环保、灵活、舒适的新概念。
美国环境保护局已经宣布,地源热泵系统是目前可使用的对环境最友好和最有效的供热、供冷系统。
组成地源热泵空调机组是一种水冷式的供冷/供热机组。
机组由封闭式压缩机、同轴套管式水/制冷剂热交换器、热力膨胀阀(或毛细膨胀管)、四通换向阀、空气侧盘管、风机、空气过虑器、安全控制等所组成。
机组本身带有一套可逆的制冷/制热装置,是一种可直接用于供冷/供热的热泵空调机组。
原理地源热泵系统是一种由双管路水系统连接起建筑物中的所有地源热泵机组而构成的封闭环路的中央空调系统。
在冬季,地源热泵系统通过埋在地下的封闭管道(称为环路)从大地收集自然界的热量,而后由环路中的循环水把热量带到室内。
再由装在室内的地源热泵系统驱动的压缩机和热交换器把大地的能量集中,并以较高的温度释放到室内。
在夏季,此运行程序则相反,地源热泵系统将从室内抽出的多余热量排入环路而为大地所吸收,使房屋得到供冷。
尤如电冰箱那样,从冰箱内部抽出热量并将它排出箱外使箱内保持低温。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
142.72 135.58
120
100
80
60
40
21.73
20
17.35 16.33 26.03
0
城市热网(Kg/m²·a) 电热膜(kW·h/m²·a) 直燃机(Nm³/m²·a)
1 蓄热式电锅炉(kW·h/m²·a)
壁挂式燃气炉(Nm³/m²·a)
本系统(地源热泵)(kW·h/m²·a)
图表2
二、工程概况
2006年初由建研院空调所进行热泵系统改造设计、北 京市地质矿产勘查开发总公司进行了系统改造施工、调 试,并承担了空调系统的日常运行维护管理工作。改造 后主楼利用原有水源热泵机组5台,钻凿抽水井3眼、回 灌井3眼、水量调节池1眼,新安装深井泵3台,标称功率 55kW并配ABB变频器3台,井水经除沙器及电子水处理 仪处理后直接进入机组,无井水侧二次循环泵;使用原 末端循环泵5台;末端设备采用新风机组加风机盘管进行 冬季供暖及夏季供冷。其中新风机组17台,合计71.1kW; 风机盘管542台,合计20.3kW。裙楼利用原有水源热泵 机组2台;井水部分与主楼共用,使用原末端循环泵2台。
热效率
折算标煤
So2
Nox
烟尘
(Kg /m2.a) (g /m2.a) (g /m2.a) (g /m2.a)
城市热网 21.73(Kg/m2·a) 0.65~0.85
蓄热式
电锅炉
142.72(kW·h/m2·a)
0.95
电热膜 135.58(kW·h/m2·a)
1
壁挂式
燃气炉
17.35(Nm3/m2·a)
0
702135
系统改造前后电耗对比
393120 309015
453230 253760
199470
供暖季电耗KW.H
制冷季电耗KW.H
改造前电耗 改造后电耗 改造后节能
图表1
四、本系统与改造前系统对比
通过以上数据表明系统改造是成功的。按 表中计算系统供暖季节电393120度;制冷季 节电253760度,全年共节电646880度,比原 系统节电56%。
四、本系统与改造前系统对比
3、运行维护不得力。运维人员未定期除 沙,对系统运行原理理解不够,造成系统管路 严重堵塞(如图1),增加了水阻而降低了深 井泵的运行效率;在井水供应不足的条件下增 开末端循环泵,造成末端系统大流量小温差运 行。
四、本系统与改造前系统对比
五、本系统与其它地源热泵系统对比
地源热泵系统实例分析
内容介绍
➢ 工程概况 ➢ 实际运行情况 ➢ 现行运行数据与改造前对比分析 ➢ 本系统与其它热泵系统对比分析 ➢ 本系统与其它空调系统对比分析
开头语
然而在实际工程应用中,很多地源热泵 项目因设计、施工及运行管理等问题,远远没有 发挥其应有的优势。下面通过对我单位实施的某 地下水源热泵系统改造前后的运行数据进行对比, 以及与其它地源热泵项目、与其他空调形式进行 对比,说明了地源热泵系统在运行中的经济性及 影响其经济性的相关因素。
三、本系统运行情况
热泵机组开启3台的时间占总运行时间7% 以下、开启2台时间占74.5%、开启1台时间占 18.5%;深井泵及变频器从06年10月运行以来 最多开启1台,夏季平均运行频率为74%、冬季 平均运行频率为77.2%;末端循环泵最多开启2 台。末端供回水温差大多在2.5~4.8℃之间,系 统运行效率较高。
四、本系统与改造前系统对比
由于原系统运行能耗数据无从考究,在 与原系统进行对比过程中,根据原运行人员 口述系统设备投入运行的情况做简要对比。
四、本系统与改造前系统对比
原系统于2004年6月建成并部分投入使用。运 行中地下井水能量短路及含沙量严重超标,加上板 换两侧流体之间的换热效率低下、运行维护不善, 致使系统井水侧水路严重堵塞。系统长期处于大流 量小温差运行状态:为满足一台热泵机组的正常工 作需开启深井泵4台、井水侧二次循环泵3台、末端 循环泵3台,井水侧及板换侧温差均工作在2℃以下。 末端温度不能有效提升,为满足末端负荷需求进而 增开末端循环泵,无形之中又增加了热泵对冷热源 需求。如此反复恶性循环,造成系统运行效率低下、 热泵机组启停频繁、外管线土方塌陷等问题。
本次同系统对比分析数据来源于北京市地 质调查研究院王泽龙工程师所做的《北京市平 原区浅层地温能资源地质勘查项目-浅层地温 能资源开发利用经济效益分析研究》。文中参 与分析研究的项目为30个,其中地埋管地源热 泵项目5个,地下水地源热泵25个;有制冷数据 的项目27个,有采暖数据的项目29个。
因多数项目的末端风机盘管或新风机组的电耗 没有单独计量,故在本节的对比分析中不计算 末端设备能耗。
四、本系统与改造前系统对比
表2:
对比项目 投入设备
改造前后设备投运情况对比
改造前 改造后 改造后节省
备注
热泵机组kW
123
深井泵kW
4*37
井水侧二次循环泵kW 3*15
末端循环泵kW
3*18.5
合 计kW
371.5
日耗电量kW·h
3715
耗电量 供暖季kW·h 702135
制冷季kW·h 453230
六、本系统与其它采暖空调系统对比
表5:
本系统制冷与冷水机组制冷能耗表
采暖方式
指标
单位面积能耗
冷水机组
19.89(kW·h/m2·a)
本系统(地源热泵)
三、本系统运行情况
表1:
07年供暖季及08年制冷季统计数据
相关参数
运行工况
供暖季
制冷季
备注
主楼建筑面积(m2)
28000
28000
冷暖机房(kW·h)
600255
204233.4
用电量
末 端(kW·h) 128596.9
44155.4
小 计(kW·h) 728851.9
248388.8 含过渡季通风电耗
五、本系统与其它地源热泵系统对比
以此分析数据可以看出: 1、热泵系统运行能耗效率差距较大,在日后的 推广与发展中还需不断进行优化与完善。 2、热泵系统专业性强。为充分发挥其节能、环 保等优势,还需我们延伸服务范围,从项目全 寿命周期出发,加强日后运行维护管理队伍的 建设,以充分体现地源热泵工程的价值。 3、热泵系统是一项好技术,但是能否达到节能 效果,则需要对项目实施的各个阶段严格把关, 最重要的环节是地下系统的施工质量。
五、本系统与其它地源热泵系统对比
表3
本系统电耗与其它地源热泵系统电耗对比
项目指标 运行工况
最大值
参与分析项目电耗 平均值 最小值
样本数
含末端
本系统 不含末端 运行天数
供暖季
kW·h/(m2•d) 0.527 0.281 0.111
29
0.138 0.113
189
制冷季
kW·h/(m2•d) 0.382 0.174 0.067
四、本系统与改造前系统对比
表2列出了改造前后一台热泵机组满负荷运 行工况下所投入的设备,图表1为改造前后节能 情况对比。其中改造后的深井泵供一台热泵机 组运行时只需给定70%的负荷,此时电流约为 43A(在开式系统中适当下延回水管可降低深井 泵扬程以达到节电的目的),合功率约22kW, 故表2中改造后深井泵功率按22kW计算。
二、工程概况
本文以主楼地源热泵系统07年冬季及08年夏 季运行数据进行分析,在下文中将改造后的主楼 地源热泵空调系统简称为本系统。
三、本系统运行情况
本系统运行以来,井水出水温度最高 16.3℃,最低15.3℃;利用温差大多在3.5~7℃ 之间;单井出水量大于180m3/h; 静水位 30.15m、动水位约30.5m;抽水降深为 0.35m±8%;水量调节池静水位为12.13m、动 水位15.3m,差为3.17m;井水含沙量小于二十 万分之一。依此数据判定地下水系统运行较为 稳定。
六、资料为: 中国国际工程咨询公司2001年所做的《北 京城市采暖供热方式研究》,该报告中计 算了各种采暖方式折合为标准煤的能耗和 污染物的排放量。
六、本系统与其它采暖空调系统对比
表4:
指标 采暖方式
本系统采暖与其它系统采暖能耗及污染物排放表
单位面积 能耗
123 55/22 无 18.5 163.5 1635 309015 199470
无 126 45 37 208 2080 393120 253760
频率给定70%
按每天工作10h 07年供暖189天 08年制冷122天
四、本系统与改造前系统对比
800000 700000 600000 500000 400000 300000 200000 100000
六、本系统与其它采暖空调系统对比
不同采暖方式单位面积能耗对比(折算标煤)
60
57.1
54.23
50
40
30
21.73
20
10
20.82
19.59
9.21
0
单位(Kg /m².a)
城市热网 蓄热式电锅炉 电热膜 壁挂式燃气炉 直燃机 本系统(地源热泵)
图表3
六、本系统与其它采暖空调系统对比
本系统供暖季能耗折合为煤耗为9.21Kg/m2•季,与 其它采暖方式相比能耗最低。与城市热网采暖相比每平 方米每季少耗煤12.52Kg/m2•季,节能58%,每平方米 每季少排二氧化硫326克/m2•季、氮氧化物121.7克/m2• 季、烟尘34.8克/m2•季;与蓄热式电锅炉相比每平方米 每季少耗煤47.89Kg/m2•季,节能83.9%;与电热膜相比 每平方米每季少耗煤45.02Kg/m2•季,节能83%;与壁 挂式燃气炉相比每平方米每季少耗煤11.61Kg/m2•季,节 能55.8%,每平方米每季少排氮氧化物43.4克/m2•季、 烟尘2.95克/m2•季;与直燃机相比每平方米每季少耗煤 10.38Kg/m2•季,节能53%,每平方米每季少排氮氧化 物40.8克/m2•季、烟尘2.8克/m2•季。