Raid5磁盘阵列数据恢复,raid数据恢复案例

合集下载

乔鼎(promise)Pegasus2 R4 raid5 阵列恢复成功!

乔鼎(promise)Pegasus2 R4 raid5 阵列恢复成功!

乔鼎(promise)Pegasus2 R4 raid5 阵列恢复成功!
跟客户交流中我们了解到,客户已经在天津找了多家数据恢复公司,均宣告恢复失败。

最后经朋友推荐来到了数据恢复公司。

该设备是四块3T东芝台盘组成的raid5阵列。

据客户介绍,该设备先是有一块盘掉线,在调试过程中,由于员工误操作,强制关机导致阵列无法启动,并且在尝试修复过程中搞乱了硬盘顺序,现在阵列的硬盘顺序已经无从得知。

了解了基本情况,我们数据恢复工程师团队经过讨论、研究,总结出此设备的数据恢复难点主要集中在以下几个方面:
1、该设备在国内用户很少,经过查阅资料,目前没有类似的成功经验可以借鉴。

2、该设备有两块盘已经出现物理故障,可能是由于强制关机导致,4块盘的raid5阵列,
有两块盘故障,数据恢复难度相当大。

3、客户拆卸过程中,Raid阵列的硬盘顺序已经打乱,给恢复带来难度。

4、客户要求两天内要拿到数据,没有时间进行各种尝试,必须一次成功。

面对这些困难,技术团队没有退缩。

技术小组马上开始细致的分工协作。

终于经过两天一夜的阵列底层代码分析,我们成功的弄清楚了阵列硬盘的正确顺序,块大小和块的顺序以及每一块盘的起始扇区数。

经过阵列的虚拟重组,客户的数据被完整的恢复!
当客户来取数据的时候,他带了各种水果以表达对数据恢复团队的感谢。

这次数据恢复的成功,充分体现了丰富的数据恢复经验和技术团队的专业。

数据安全,选择贵公司!我们十二年的专注,带给您的是数据安全的保障。

作为华北地区最早的数据恢复公司,我们的技术实力,值得您的信赖。

数据重组的案例

数据重组的案例

1、重组RAID重组过程中发现本RAID5缺失2块盘(第一掉线盘掉线后热备盘顶替,之后又掉线一块盘使得RAID5处于降级状态。

最后在掉线第三块盘时盘片划伤RAID崩溃),无法通过校验直接获取丢失盘的数据,所以只能使用磁盘同等大小的全0镜像进行重组(此方法只可用于紧急情况,因为依赖空镜像组成的RAID文件系统结构会被严重破坏,相当于每个条带都会缺失两个块的数据)。

2、提取LUN分析存储结构,获取存储划分的MAP块。

在找到MAP块之后解析得到各个LUN的数据块指针,编写数据提取程序提取LUN碎片。

提取完成后进行碎片拼接,组成完整LUN。

导出LUN内所有虚拟机,尝试启动。

导出虚拟机后尝试启动,同预想相同,操作系统被破坏虚拟机无法启动。

3、提取虚拟机内文件在虚拟机无法启动的情况下只能退而求其次,提取虚拟机内文件。

在取出文件后进行测试,发现大多数文件都被破坏,只有少部分小文件可以打开。

在与客户沟通后得知虚拟机内有MYSQL数据库,因为数据库底层存储的特殊性,可以通过扫描数据页进行数据提取。

在找到此虚拟机后发现虚拟机启用快照,父盘和快照文件都被损坏的情况下常规合并操作无法完成,使用北亚自主研发VMFS快照合并程序进行快照合并。

4、获取MYSQL数据页并分析根据MYSQL数据页特征进行数据页扫描并导出(innodb引擎可以使用此方案,myisam因为没有“数据页”概念所以不可用),分析系统表获取各用户表信息,根据各个表的ID进行数据页分割。

5、提取表结构因为数据库使用时间已久,表结构也曾多次变更,加上系统表在存储损坏后也有部分数据丢失,记录提取过程遇到很大阻力。

首先获取最初版本数据库各个表的表结构:合并快照前的父盘因为写入较早,使用第一块掉线盘进行校验获取到这个文件的完整数据,然后提取出其中数据库各个表的表结构,之后客户方提供了最新版的数据库建表脚本。

提取记录:分别使用两组不同表结构对数据记录进行提取并导入恢复环境中的MYSQL数据库内,然后剔除各个表中因为表结构变更造成的乱码数据,最后将两组数据分别导出为.sql文件。

RAID5扩容与数据还原

RAID5扩容与数据还原

RAID5扩容与数据还原RAID 5使用至少三块硬盘来实现阵列,它既能实现RAID 0的加速功能也能够实现RAID 1的备份数据功能,在阵列当中有三块硬盘的时候,它将会把所需要存储的数据按照用户定义的分割大小分割成文件碎片存储到两块硬盘当中,此时,阵列当中的第三块硬盘不接收文件碎片。

RAID 5也被叫做带分布式奇偶位的条带。

每个条带上都有相当于一个“块”那么大的地方被用来存放奇偶位。

与RAID 3不同的是,RAID 5把奇偶位信息也分布在所有的磁盘上,而并非一个磁盘上,大大减轻了奇偶校验盘的负担。

尽管有一些容量上的损失,RAID 5却能提供较为完美的整体性能,因而也是被广泛应用的一种磁盘阵列方案。

它适合于输入/输出密集、高读/写比率的应用程序,如事务处理等。

RAID 5使用至少三块硬盘来实现阵列,它既能实现RAID 0的加速功能也能够实现RAID 1的备份数据功能,在阵列当中有三块硬盘的时候,它将会把所需要存储的数据按照用户定义的分割大小分割成文件碎片存储到两块硬盘当中,此时,阵列当中的第三块硬盘不接收文件碎片,它接收到的是用来校验存储在另外两块硬盘当中数据的一部分数据,这部分校验数据是通过一定的算法产生的,可以通过这部分数据来恢复存储在另外两个硬盘上的数据。

另外,这三块硬盘的任务并不是一成不变的,也就是说在这次存储当中可能是1号硬盘和2好硬盘用来存储分割后的文件碎片,那么在下次存储的时候可能就是2号硬盘和3号硬盘来完成这个任务了。

可以说,在每次存储操作当中,每块硬盘的任务是随机分配的,不过,肯定是两块硬盘用来存储分割后的文件碎片另一块硬盘用来存储校验信息。

这个校验信息一般是通过RAID控制器运算得出的,通常这些信息是需要一个RAID控制器上有一个单独的芯片来运算并决定将此信息发送到哪块硬盘存储。

RAID 5同时会实现RAID 0的高速存储读取并且也会实现RAID 1的数据恢复功能,也就是说在上面所说的情况下,RAID 5能够利用三块硬盘同时实现RAID 0的速度加倍功能也会实现RAID 1的数据备份功能,并且当RAID 5当中的一块硬盘损坏之后,加入一块新的硬盘同样可以实现数据的还原。

如果RAID-5卷中某一块磁盘出现了故障,怎样恢复?

如果RAID-5卷中某一块磁盘出现了故障,怎样恢复?

如果RAID-5卷中某⼀块磁盘出现了故障,怎样恢复?RAID-5 卷(RAID-5 Volume):具有数据和奇偶校验的容错卷,有时分布于三个或更多的物理磁盘。

奇偶校验是⽤于在失败后重建数据的计算值。

如果物理磁盘的某⼀部分失败,您可以⽤余下的数据和奇偶校验重新创建磁盘上失败的那⼀部分上的数据。

您不能镜像或扩展 RAID-5 卷。

在 Windows NT 4.0中,RAID-5 卷也被称为带奇偶校验的带区集。

RAID5的缺点就是在⼀块硬盘发⽣故障后,RAID组从在线状态变为降级状态,这时如果第⼆块硬盘出现故障,那么整个RAID组的数据都将丢失,这对企业来说是灾难性的。

惠普RAID5 ADG技术则在原理上克服了这⼀缺陷,其最⼤特点是部署了2个奇偶校验集,并提供了2个硬盘的容量存储这些奇偶校验信息,理论上能同时允许2块硬盘出现故障,突破了以往RAID允许在同⼀时刻只可以有⼀块硬盘发⽣故障的限制,很有效地提⾼了服务器硬盘上数据的可靠性。

RAID5 ADG⽐双RAID 0+1具有更低的实施成本,却能提供⽐ RAID 5 更⾼的容错能⼒。

我们可以认识到这两点:磁盘阵列内的硬盘是否有顺序的要求以及⾮掉线硬盘的稳定应当特别⼩⼼。

很多⼈认为磁盘阵列内的硬盘顺序不是很重要,但这是严重错误的。

假如您⽤10个硬盘做阵列,在最初初始化时,此10个硬盘是有顺序放置在磁盘阵列内,分为第⼀、第⼆…到第⼗个硬盘,是有顺序的。

如果您买的磁盘阵列是有顺序的要求,则您要注意了:有⼀天您将硬盘取出,做清洁时⼀定要以原来的摆放顺序插回磁盘阵列中,否则您的数据可能因硬盘顺序与原来的不符,磁盘阵列上的控制器不认⽽数据丢失!⽽⾄于⾃⾏操作的强制上线,则更应该⼩⼼暂时还未掉线的硬盘是否稳定。

如果在操作RAID时缺乏经验,我们建议⼤家咨询服务器售后服务⼯程师,在涉及到⼀些⾼难度的技术问题时,选择专业的数据恢复服务商也将是很好的选择。

针对⽬前RAID灾难屡见不鲜并且服务器售后服务并⾮以确保数据安全为核⼼的服务策略,越来越多的企业⽤户选择了固定数据恢复服务商。

某公司Dell服务器raid5阵列数据丢失恢复成功案例

某公司Dell服务器raid5阵列数据丢失恢复成功案例

某公司Dell服务器raid5阵列数据丢失恢复成功案例
服务器基础配置:
北京某公司的一台dell r730xd型号服务器,配备了14块硬盘组成了raid5磁盘阵列,单块硬盘容量为4TB,其中包括2块热备盘,服务器操作系统为Windows server 2012r2.。

服务故障情况介绍:
由于机房突然意外断电,重新通电后服务器无法正常使用,管理员进行了重启操作后故障还是没有解决,查看管理界面发现有3块硬盘状态为离线。

于是管理员将硬盘进行了重新上线操作,但服务器依然不可用,所有硬盘离线,raid信息丢失。

于是管理员进行服务器层面的数据恢复操作。

服务器数据恢复过程:
工程师前往客户现场,首先了解了客户服务器的故障情况,随后指导客户管理员将服务器关机、断电、将所以硬盘按照一定规则编号后从服务器上取出,妥善包装后带至数据恢复中心,连接到数据恢复专用服务器上进行镜像备份。

备份完成后将所有硬盘归还客户,使用镜像数据进行数据恢复分析。

使用数据恢复工具对每块硬盘的底层扇区进行逐一分析,最终确认了这组raid阵列的硬盘盘序、校验方式、条带大小、条带顺序等基本信息,分析到这些信息后就可以进行raid阵列虚拟重组了。

数据恢复工程师使用数据恢复工具对raid阵列进行了虚拟重组,在重组后的阵列中提取数据并进行数据验证。

通过对恢复数据的验证初步判定数据恢复完整。

数据恢复结果验证:
由客户的服务器管理员亲自对恢复的数据进行验证,经过验证,管理员确认恢复的数据完整、正确,确认本次数据恢复成功。

数据恢复结果移交:
由客户重新搭建一组raid5磁盘阵列,工程师配合将恢复出的数据迁移回客户服务器上。

本次数据恢复成功。

磁盘阵列的数据恢复探析

磁盘阵列的数据恢复探析

磁盘阵列的数据恢复探析摘要:随着电子政务、电子商务及全球信息化的发展,企业级服务器正在国家职能部门、企事业单位等得到普及。

而这些服务器大多采用了磁盘阵列技术,一旦磁盘阵列发生故障,如何能快速地恢复该服务器中的数据至关重要。

就针对磁盘阵列的工作原理、技术规范、恢复方法、恢复工具等方面作了简要的探讨。

关键词:磁盘阵列;工作原理;恢复方法1磁盘阵列(RAID)1.1磁盘阵列的原理磁盘阵列原理就是利用数组方式将多块硬盘组合成磁盘组,并当作一个磁盘驱动器来使用,配合数据分散排列的设计,以提升数据的安全性。

磁盘阵列主要针对硬盘在容量及速度上无法跟上CPU及内存的发展而提出的改善方法,目的是提高系统的存储能力及容错能力。

1.2磁盘阵列的技术规范根据数据组织的方式,目前业界公认的可将磁盘阵列分为8个级别(RAID0~RAID7),它们的侧重点各不相同。

每个RAID等级分别针对速度、保护或两者设计的结合而设计,各个级别的简单定义见表1。

此外,磁盘阵列还有RAID1+0、5+0、JBOD等模式。

其中JBOD (无冗余模式)严格上来讲不属于磁盘阵列范畴,只是现在很多计算机主板上带有这种功能。

由表1可知,RAID5集合了RAID2、RAID3、RAID4的优点,因此应用最广泛,同时也淘汰了前3种RAID技术,RAID6是RAID5的扩充,进一步增强了数据的可靠性,但效率低且成本高。

RAID7虽然增强了数据的可靠性但成本过高故而很少使用,除非是在安全性极高的场合。

1.3RAID5的数据存储原理RAID5是目前应用最为广泛的RAID技术,其数据存储原理是将多块独立硬盘进行条带化分割,相同带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上,这样任何一块硬盘上的数据丢失均可以通过校验数据推算出来,并且以N块硬盘构建RAID5阵列用户可以有N-1块硬盘的容量,存储空间利用率非常高,读写数据的速度也快。

虽然,RAID5提供了一定的冗余性(支持一块硬盘掉线仍可继续工作),但一旦掉盘后,运行效率将会大幅下降。

P6-550 更换RAID卡后Array 数据的恢复

P6-550 更换RAID卡后Array 数据的恢复

P6-550 更换RAID卡后Array 数据的恢复环境:P6-550 (8204-E8A)FW: EL340-103本地5块硬盘做RAID5故障现现像:系统宕机,每次重启都会自动进入SMS,在引导设备里找不到cdrom和磁盘的信息,系统不能正常引导。

进入ASMI看event log,发现有SRC: BA180020. 解决过程:1.SRC: BA180020 call procedure:FWPCI18204-E8A, 10N9369 System backplane Un-P1。

基本定位为主板故障。

找到location code: U78A0.001.DNWK2AH-P1-T9,由于在info center里找不到关于P1-T9的相关说明,找到新力查到对P1-T9的说明,如下图:这个图片说明P1-T9是集成的Disk Controller,订了主板打算更换。

2.更换完主板后发现ASMI里仍报出SRC: BA180020,故障依旧,由于找不到光驱,无法确认RAID信息是否完好。

由于P1-T9是Disk Controller,想到了RAID卡可能损坏,又订RAID 卡进行更换。

3.这里对硬RAID卡简单介绍:先看两张图:1. CCIN 57B8 planar RAID enablement card如下图:CCIN 57B8 planar RAID enablement card2. Auxiliary write cache adapterCCIN 57B7 Planar auxiliary cache简单的说,要实现硬RAID功能,必须两块卡配合使用,两块卡物理连接如下图:两块卡的工作原理:A。

AWC (辅助写入缓存)为与它相连的RAID卡cache数据提供了一个完整的copy,在AWC卡上有两块电池,增强了cache 数据的保护,如果RAID上写cache或RAID卡自身损坏,那么写cache的数据是不能重新获得的。

RAID5数据恢复

RAID5数据恢复

RAID5数据恢复 step by step一、准备知识RAID-5是数据和奇偶校验间断分布在三个或更多物理磁盘上的、具有容错功能的阵列方式。

如果物理磁盘的某一部分失败,您可以用余下的数据和奇偶校验重新创建磁盘上失败的那一部分上的数据。

对于多数活动由读取数据构成的计算机环境中的数据冗余来说,RAID-5是一种很好的解决方案。

有一些服务器或者磁盘阵列柜会将RAID信息存储在磁盘的某些地方,一般是阵列内每块磁盘的最前面的一些扇区或者位于磁盘最后的一些扇区内。

当RAID信息存储在每块磁盘的前面的扇区时,在分析与重组RAID的时候就需要人为的去掉这些信息,否则就会得到错误的结果。

在做RAID5的数据恢复的时候,除了需要知道RAID内数据的起始扇区,还需要了解(数据)块大小(也称深度,depth)、数据与校验的方式等。

在实际应用中,阵列控制器一般要先把磁盘分成很多条带(Stripe,如图1上绿色线框起来的部分就是一个条带),然后再对每组条带做校验。

每个条带上有且仅有一个磁盘上存放校验信息,其他的磁盘上均存放数据。

数据被控制器划分为相等的大小,分别写在每一块硬盘上面。

每一个数据块的长度或者说数据块的容量就被称为块大小或者叫(条带)深度。

在阵列内,条带大小一般是相同的,即在每个磁盘内的数据块的大小和校验块的大小是一致的。

图1每一个条带内的校验盘上的内容是通过这个条带上其他磁盘上的数据做异或而来,如P1=D1 XOR D2 XOR D3(见图2)。

一般来说,在盘序是正确的情况下,校验块在RAID5内每块磁盘的写入顺序都是从第一块盘到最后一块盘或者从最后一块盘到第一块盘(如图2)。

从图上看,校验的排列总是从图的左上角到右下角,或者从图的有上角到左下角。

这就为我们判断磁盘的顺序提供了依据。

如果考虑上数据写入磁盘的顺序(这个就是所谓的校验旋转方式,以下简称旋转方式),我们便得到了如图2所示的4种数据与校验的排列形式:forward 123(右不对称)、forward dyn(右对称)、backward 321(左不对称)、backward dyn(左对称)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档