对数函数·换底公式·例题
对数的运算及换底公式2012.10.27

关系: 1.关系: a b = N
指数式
b = log a N
对数式
a
指数式 a b = N 对数式 log a N = b 底数 对数的底数
N
幂 真数
b
指数 对数
2.特殊对数:1)常用对数 — 以10为底的对数;lg N 特殊对数: ) 为底的对数; 特殊对数 为底的对数 2)自然对数— 以 e 为底的对数;ln N )自然对数 为底的对数; 3.重要结论:1)log a a = 1;2)log a 1 = 0 重要结论: ) 重要结论 ; ) 4.对数恒等式:a log a N = N 对数恒等式: 对数恒等式
n N = log a N m
n
(a, c ∈ (0,1) U (1,+∞), N > 0) a, b ∈ (0,1) U (1,+∞)
1、计算: (1) log 5 35 -2log 5 、计算:
7 + log 5 7 -log 5 1. 8 3
(2) lg 2 5 + lg 2 lg 5 + lg 2
解法一: 解法一: 解法二: 解法二:
7 7 lg 14 − 2 lg + lg 7 − lg 18 lg 14 − 2 lg + lg 7 − lg 18 3 3 7 7 2 = lg 14 − lg( ) + lg 7 − lg 18 = lg(2 × 7) − 2 lg 3 3 2 + lg 7 − lg(2 × 3 ) 14 × 7 = lg 7 2 = lg 2 + lg 7 − 2(lg 7 − lg 3) ( ) × 18 3 + lg 7 − (lg 2 + 2 lg 3) = lg 1 = 0 =0
对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
高一数学典型例题分析 指数函数、对数函数、换底公式 试题

指数函数和对数函数·换底公式·例题制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
例1-6-38log34·log48·log8m=log416,那么m 为 [ ]解 B 由有[ ] A.b>a>1B.1>a>b>0C.a>b>1D.1>b>a>0解 A 由不等式得应选A.[ ] 应选A.[ ] A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,2)2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数,[ ] A.m>p>n>qB.n>p>m>qC.m>n>p>qD.m>q>p>n例1-6-43 (1)假设log a c+log b c=0(c≠0),那么ab+c-abc=____;(2)log89=a,log35=b,那么log102=____(用a,b表示).但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1.例1-6-44函数y=f(x)的定义域为[0,1],那么函数f[lg(x2-1)]的定义域是____.由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得.例1-6-45 log1227=a,求log616的值.例1-6-46比拟以下各组中两个式子的大小:例1-6-47常数a>0且a≠1,变数x,y满足3log x a+log a x-log x y=3(1)假设x=a t(t≠0),试以a,t表示y;(2)假设t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解 (1)由换底公式,得即 log a y=(log a x)2-3log a x+3当x=a t时,log a y=t2-3t+3,所以y=a r2-3t+3(2)由t2-4t+3≤0,得1≤t≤3.值,所以当t=3时,u max=3.即a3=8,所以a=2,与0<a<1矛盾.此时满足条件的a 值不存在.制卷人:打自企;成别使;而都那。
对数函数·换底公式·例题

指数函数和对数函数·换底公式·例题例1-6-38log34·log48·log8m=log416,则m 为[]解B由已知有A.b>a>1 B.1>a>b>0C.a>b>1 D.1>b>a>0解A由已知不等式得故选A.[]故选A.[]A.[1,+∞]B.(-∞,1]C.(0,2)D.[1,2)2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数,[]A.m>p>n>q B.n>p>m>qC.m>n>p>q D.m>q>p>n例1-6-43(1)若log a c+log b c=0(c≠0),则ab+c-abc=____;(2)log89=a,log35=b,则log102=____(用a,b表示).但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1.例1-6-44函数y=f(x)的定义域为[0,1],则函数f[lg(x2-1)]的定义域是____.由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得.例1-6-45已知log1227=a,求log616的值.例1-6-46比较下列各组中两个式子的大小:例1-6-47已知常数a>0且a≠1,变数x,y满足3log x a+log a x-log x y=3(1)若x=a t(t≠0),试以a,t表示y;(2)若t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解(1)由换底公式,得即log a y=(log a x)2-3log a x+3当x=a t时,log a y=t2-3t+3,所以y=a r2-3t+3 (2)由t2-4t+3≤0,得1≤t≤3.值,所以当t=3时,u max=3.即a3=8,所以a=2,与0<a<1矛盾.此时满足条件的a值不存在.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
对数的换底公式及其推论(含参考答案)

一、复习引入: 对数的运算法则 如果 a>0,a 1,M>0, N>0有:
二、新授内容: 1. 对数换底公式 : log a N log m N (a>0,a 1, m>0,m 1,N>0) log m a
证明 :设 log a N=x,则 a x =N
两边取以 m为底的对数: log m a x log m N
2
3=a,则
1 a
log3 2 , 又∵ log 3 7=b,
∴ log 42 56 log 356 log 3 7 3 log 3 2
ab 3
log 3 42 log 3 7 log 3 2 1 ab b 1
5 例 2 计算:① 1 log 0.2 3 ② log 4 3 log 9 2 log 1 4 32
1.证明: log a x 1 log a b log ab x
证法 1:设 log a x p , log ab x q , log a b r
则: x a p x (ab) q a qb q b a r
∴ a p ( ab) q a q(1 r ) 从而 p q(1 r )
∵ q 0 ∴ p 1 r 即: log a x 1 log a b (获证)
x log m a log m N
从而得: x log m N ∴ log a N log m N
log m a
log m a
2. 两个常用的推论 :
① log a b log b a 1, log a b log b c log c a 1
② log am b n
n m
log
a
b
(a,b>0
换底公式练习题

换底公式练习题换底公式练习题换底公式是数学中一个重要的概念,常用于解决对数运算中底数不同的情况。
通过换底公式,我们可以将一个对数的底数变换为另一个底数,从而简化计算。
在本文中,我们将通过一些实际的练习题来加深对换底公式的理解和应用。
练习题一:已知log2 3 ≈ 1.585和log2 5 ≈ 2.322,请计算log3 5。
解析:我们需要将底数为2的对数转换为底数为3的对数。
根据换底公式:loga b = logc b / logc a我们可以将log2 3转换为底数为3的对数:log3 3 = log2 3 / log2 3 ≈ 1.585 / 0.631 ≈ 2.511练习题二:已知log5 2 ≈ 0.431和log5 3 ≈ 0.682,请计算log2 3。
解析:我们需要将底数为5的对数转换为底数为2的对数。
根据换底公式:loga b = logc b / logc a我们可以将log5 3转换为底数为2的对数:log2 3 = log5 3 / log5 2 ≈ 0.682 / 0.431 ≈ 1.583练习题三:已知log10 2 ≈ 0.301和log10 3 ≈ 0.477,请计算log2 3。
解析:我们需要将底数为10的对数转换为底数为2的对数。
根据换底公式:loga b = logc b / logc a我们可以将log10 3转换为底数为2的对数:log2 3 = log10 3 / log10 2 ≈ 0.477 / 0.301 ≈ 1.584通过以上练习题,我们可以看到换底公式的应用。
它可以帮助我们在不同底数的对数运算中进行转换,从而简化计算过程。
换底公式的理解和掌握对于解决复杂的对数问题非常重要。
除了上述练习题,我们还可以通过实际生活中的例子来进一步理解换底公式的应用。
例如,假设我们需要计算某个物质的半衰期,而我们只知道以10为底的对数。
如果我们想要以2为底进行计算,就可以利用换底公式将底数为10的对数转换为底数为2的对数,从而得到准确的半衰期。
对数换底公式例题

对数换底公式例题《对数换底公式例题》对数换底公式是数学中的重要公式之一,用于计算不同底数的对数之间的关系。
它在解决一些复杂的对数问题时起到了关键的作用。
在本文中,我们将探讨一些关于对数换底公式的例题。
例题1:已知 log₅12 ≈ 1.929,求 log₆12 的值。
解析:根据对数换底公式,我们可以将 log₆12 转化为以底数为 5 的对数。
换底公式可以表示为:logₐb = logₙb / logₙa其中,a 和 n 是底数,b 是真数。
根据题目的要求,我们可以将 log₆12 转化为以底数为 5 的对数:log₆12 = log₅12 / log₅6代入已知的 log₅12 的值:log₆12 ≈ 1.929 / log₅6此时,我们需要计算 log₅6 的值。
通过换底公式,我们可以计算出:log₅6 = logₙ6 / logₙ5选择一个适当的底数 n(例如,n=10),我们可以计算出 log₅6 的值:log₅6 ≈ log₁₀6 / log₁₀5 ≈ 0.778将 log₅6 的值代入原式,可以得出:log₆12 ≈ 1.929 / 0.778 ≈ 2.480因此,log₆12 的值约等于 2.480。
例题2:已知 log₂3 ≈ 1.585,求 log₄3 的值。
解析:类似于例题1,我们可以使用对数换底公式来计算 log₄3。
换底公式可以表示为:logₐb = logₙb / logₙa根据题目要求,我们需要计算 log₄3 的值,将其转化为以底数为 2 的对数:log₄3 = log₂3 / log₂4我们已知 log₂3 的值为 1.585,将其代入原式:log₄3 = 1.585 / log₂4此时,我们需要计算 log₂4 的值。
通过换底公式,我们可以计算出:log₂4 = logₙ4 / logₙ2选择一个适当的底数 n(例如,n=10),我们可以计算出 log₂4 的值:log₂4 = log₁₀4 / log₁₀2 ≈ 2 / 0.301 ≈ 6.644将 log₂4 的值代入原式,可以得出:log₄3 = 1.585 / 6.644 ≈ 0.238因此,log₄3 的值约等于 0.238。
高一数学换底公式练习题

指数函数和对数函数·换底公式·例题例1-6-38log34·log48·log8m=log416,则m]为 [[ ]A.b>a>1B.1>a>b>0C.a>b>1D.1>b>a>0解 A 由已知不等式得故选A.知识改变命运][故选A.[ ]A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,2)知识改变命运2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数,[ ]A.m>p>n>qB.n>p>m>qC.m>n>p>qnD.m>q>p>例1-6-43 (1)若log a c+log b c=0(c≠0),则ab+c-abc=____;(2)log89=a,log35=b,则log102=____(用a,b表示).但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1.知识改变命运例1-6-44函数y=f(x)的定义域为[0,1],则函数f[lg(x2-1)]的定义域是____.由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得.例1-6-45已知log1227=a,求log616的值.例1-6-46比较下列各组中两个式子的大小:知识改变命运例1-6-47已知常数a>0且a≠1,变数x,y满足3log x a+log a x-log x y=3(1)若x=a t(t≠0),试以a,t表示y;(2)若t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解 (1)由换底公式,得即 log a y=(log a x)2-3log a x+3当x=a t时,log a y=t2-3t+3,所以y=a r2-3t+3(2)由t2-4t+3≤0,得1≤t≤3.值,所以当t=3时,u max=3.即a3=8,所以a=2,与0<a<1矛盾.此时满足条件的a值不存在.知识改变命运知识改变命运。