双水相萃取全解
双水相萃取的原理及应用 (2)

双水相萃取的原理及应用1. 引言双水相萃取是一种常用的分离和提取技术,它利用两种不相溶的溶剂,即水相和有机相,在液-液界面上进行分相和萃取。
该技术具有高效、简便、环保等特点,被广泛应用于化学、生物、环境等领域。
本文将介绍双水相萃取的原理和一些常见的应用。
2. 双水相萃取的原理双水相萃取的原理基于不同溶剂之间的亲疏水性差异,以及化合物在两种溶剂中的分配系数。
在水相和有机相的界面上,亲水性较强的化合物会向水相转移,而亲水性较弱的化合物则会向有机相转移。
这样,在两相之间可实现化合物的分离和富集。
3. 双水相萃取的步骤双水相萃取通常包括以下几个步骤:•第一步:选择合适的水相和有机相溶剂。
一般情况下,水相为水,有机相为有机溶剂如乙醚、丙酮等;•第二步:将待提取物溶解在适量的水相溶液中,并加入适量的有机相溶液;•第三步:进行充分摇匀和混合,使两相形成均匀混合体;•第四步:静置一段时间,使两相分离,从而形成上下两层液相;•第五步:将两相分离,分别收集上下相中的物质。
4. 双水相萃取的应用4.1. 生物化学•蛋白质分离纯化:双水相萃取可用于蛋白质的富集和纯化,对于分子量较大的蛋白质特别有效;•酶的富集:通过双水相萃取,可以有效地从复杂的酶混合物中富集目标酶,提高其活性和纯度;•生物活性物质的提取:双水相萃取可用于提取天然产物中的生物活性物质,如草药提取液中的有效成分。
4.2. 环境科学•水样前处理:对于含有大量有机物的水样,双水相萃取能够有效地去除有机物,净化水质;•环境污染物的富集:通过双水相萃取,可以将水中微量的有机污染物富集到有机相中,方便进一步分析和检测。
4.3. 化学合成•有机合成中的分离提取:在化学合成过程中,双水相萃取可用于分离和富集目标化合物,提高产率和纯度。
5. 结论双水相萃取是一种高效、简便、环保的分离和提取技术,适用于多个领域。
它的原理基于不同溶剂之间的亲疏水性差异,通过分配系数的差异实现化合物的分离和富集。
双水相萃取解析

➢ 一般采用室温操作: 成相系统聚合物PEG对蛋白质有稳定作用,常温下蛋 白质不会发生变性; 常温下溶液粘度较低, 容易相分离; 常温操作节省冷却费用。
4.双水相萃取技术的发展
(1)历史:
➢ 早在1896年,Beijerinck发现,当明胶与琼脂或明胶与 可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随 之分为两相,上相富含明胶,下相富含琼脂(或淀粉), 这种现象被称为聚合物的不相溶性(incompatibility); ➢ 20世纪60年代,瑞典Lund大学的Albertsson P A及同事 最先提出了双水相萃取技术; ➢ 1979年,西德的Kula M R等人首次将ATPE应用于生物产 品分离;
➢大量研究表明:生物分子的分配系数取决于溶质与双水相系统 间的各种相互作用,主要有静电作用、疏水作用和亲和作用等, 其分配系数可为各种相互作用之和。
ln m ln me ln mh ln ml
①静电作用:两相系统中若有带电溶质存在,会ห้องสมุดไป่ตู้大分子在两 相间的分配系数产生影响。(图5-15) Donnan Potential:当大分子或粒子带有静电荷时,在带有电荷 分配不相等时,就会在两相间产生电位差,称为道南电位。 ②疏水作用:某些大分子物质表面具有疏水区,溶质的表面疏 水性会对其在两相间的分配系数产生影响。
3.影响双水相分配的主要因素
高聚物的相对分子质量 高聚物的浓度 盐的种类和浓度 PH值 温度
(1)高聚物的相对分子质量:
➢在高聚物浓度保持不变的前提下,降低该高聚物的相对分子质 量,被分配的可溶性生物大分子如蛋白质或核酸,或颗粒如细 胞或细胞碎片和细胞器,将更多地分配于该相。
以PEG-Dextran体系为例,↓Dextran→K↓ ↓PEG→K↑(表5-4)
双水相萃取全解

( aqueous two-phase extraction )
主要内容:
一、双水相萃取的基本理论 二、双水相萃取工艺流程操作
三、影响双水相的因素
四、双水相萃取的应用 五、双水相萃取技术的发展
前 言
• 双水相萃取现象最早是1896年由Bei jerinck 在琼脂与可溶性淀粉或明胶混合时发现的, 这种现象被称为聚合物的“不相溶性” (incompatibility)。 • 20 世纪 60 年代瑞典 Lund 大学的 Albertsson P A及其同事们最先提出双水相萃取技术并做 了大量的工作。 • 70年代中期西德的Kula M R和Kroner K H等 人首先将双水相系统应用于从细胞匀浆液中 提取酶和蛋白质,大大改善了胞内酶的提取 效果。
R=Vt/Vb,K=Ct/Cb,G=1/RK, Y=(1+1/RK)-1 ×100% 式中:R-相比;Vb-下相体积,mL; Vt-上相体积,mL; K-分配系数; Cb-下相溶质的质量浓度,g/mL; Ct -上相溶质的质量浓度,g/mL; G-上、下相溶质的质量比; Y-萃取率,%。
(3) 双水相相图制作
① 聚合物∕聚合物ห้องสมุดไป่ตู้水相
当2种聚合物混合时,由于2种聚合物 间存在较强的斥力或空间阻碍,使2者无 法相互渗透,不能形成均一相,故达到平 衡后形成两相,这2种聚合物分别位于互 不相溶的两相中,即形成聚合物/聚合物 双水相体系。
聚合物双水相形成机理
两种聚合物 相互混合 体系熵的增加 两个因素 混合 分离(聚合物的不相容性) 分子间作用力
6)无机盐的浓度
盐的正、负离子在两相间分配系数不 同,两相间形成电位差,从而影响带电 生物大分子的分配。无机盐浓度的不同 能改变两相间的电位差。
双水相萃取详细资料

三步两水相萃取酶的流程:
细胞匀浆液
第一步双水相萃取
+PEG +盐(或是葡聚糖)
分离机
下相 ) 细胞碎片
杂蛋白 (核酸、多糖)
上 相(PEG相
(目标产物)如prot、E +盐
第二步双水相萃取 静置分层
下 相(盐相) 核酸多糖
上 相(PEG相) 目标产物
杂蛋白
(亲水性较强)
+盐
第三步双水相萃取 静置分层
分子间作用力与熵增加相比占主导地位。
➢ 作用力为斥力:形成两个水相,两种高聚物分 别富集于上、下两相。
➢ 作用力为引力:也形成两个水相,但两种高聚 物都分配于一相,另一相几乎为溶剂。
➢ 作用力没有强烈的引力或斥力:完全互溶,形
成均相的高聚物水溶液
• 聚合物的不相容性:两种聚合物分子间存在斥力,在 达到平衡后,分成两相,两种聚合物分别进入到一相 中。
优点:1.与固定床反应器相比,不需载体,不存在多孔载体中的 扩散阻力,故反应速度快,生产能力较高;2.生物催化剂在两水 相系统中教稳定;3.两相间表面张力低,轻微搅拌即能形成高度 分散的系统,分散相液滴在10μm一下,有很大的表面积,有利于 底物和产物的传递。
PEG系统中细胞碎片分配到下相中较容易 分配在上相中的蛋白质可通过加入适量的盐(有时也可 加入适量的PEG),尽兴第二次双水相萃取,以除去多 糖和核酸,它们的亲水相较强因而容易分配在盐相中, 而蛋白质就留在了PEG相中;在第三步萃取中,应该使 蛋白质分配在盐相中(例如:调节pH),以使和主体 PEG分离。色素由于其疏水性,通常分配在上相。主体 PEG可循环使用,而盐相蛋白质则可用超滤方法去除残 余的PEG以提高产品的纯度。
双水相萃取名词解释

双水相萃取名词解释双水相萃取是一种分离和提取物质的物理化学方法,它基于物质在两种不相溶的水相中的分配差异来实现。
其中,一相为有机溶剂相,另一相为水相。
双水相萃取能够实现目标物质从混合物中的分离纯化,常用于生物化学、制药、环境监测等领域。
与传统的单相溶剂萃取相比,双水相萃取具有高选择度、高灵敏度、快速分离和减少环境污染等优点,在实际应用中具有广泛的应用前景。
双水相萃取的核心原理是不同物质在两相之间的分配差异。
混合物溶解在有机溶剂相中后,目标物质会因其在两相中的溶解度不同而分配到两相中。
根据目标物质在两相中的分配系数,可以通过调整两相的物理化学性质,例如溶剂种类、pH值和离子强度等,来控制目标物质的转移和分离。
在双水相萃取中,通常使用的有机溶剂相为水不溶性有机溶剂,例如丁醚、乙醚、正己烷等。
水相通常为含有盐或酸碱调节剂的水溶液。
混合物溶解在有机溶剂相中后,通过搅拌、超声波处理等方法,使混合物中的目标物质与两相中的溶剂发生混溶,然后静置使两相分层。
最后,可以通过分液、离心等方式分离出两相,从而得到纯净的目标物质。
双水相萃取在实际应用中,常常与其他分离和纯化技术相结合,例如薄层色谱、气相色谱、高效液相色谱等,以实现更精确、高效的分离和纯化。
该技术不仅适用于分离化学品、天然产物、有机合成产物等有机化学领域,也可用于生物分子、生物体内代谢产物等在生物化学、制药等领域中的应用。
总之,双水相萃取是一种基于物质在两种不相溶的溶剂相中分配差异来实现目标物质的分离和纯化的物理化学方法。
它具有许多优点,广泛应用于化学、生物化学、制药和环境监测等领域,并与其他分离和纯化技术相结合,促进了科学研究和工业生产的发展。
双水相萃取名词解释

双水相萃取名词解释双水相萃取是一种分离技术,是通过在混合液体中将一种物质分离出来的过程。
该过程常用于将两种不同物质分离开来,如果它们具有相同的电荷和形状,它们就可以在混合液体中被有效分离。
双水相萃取基于一种叫作分配系数的概念。
分配系数是物质之间的电荷和形状的比率,它决定了物质在混合液体中的分布情况。
根据分配系数的不同,被萃取的物质将分布在两个不同的表面上。
在双水相萃取中,混合液体会被分为两个相分离部分,一部分富含物质A,而另一部分富含物质B。
在双水相萃取过程中,混合液体会被放入一容器中,然后以静态或动态的方式搅拌,使物质A和B之间的分配系数得到改变。
当混合液体中的物质A和B改变分布率时,它们就会被从中分离出来。
这种技术可以极大地提高物质分离的速度,从而使分离的效率极高,而且还可以分离出非常精细的物质,如大小不一的纳米粒子等。
双水相萃取技术在药物分离、石油分离、食品加工等领域具有广泛应用,可以帮助工程师们解决大量问题,提高产品质量与生产效率。
此外,双水相萃取还可以用于能源转换,可以将太阳能和风能有效转换为其它形式的能源,以满足人类的能源需求。
综上所述,双水相萃取是一种重要的技术,它可以解决大量混合液体中不同物质的分离问题,在药物分离、石油分离、食品加工等领域有着广泛应用,帮助工程师们极大地提高分离的速度和效率,并可以将能源有效转换。
虽然双水相萃取技术带来了诸多好处,但是它也有一定的局限性。
由于其基本原理是以分配系数为基础的,在进行双水相萃取时,受到混合液体种类的限制,只能用于水基混合液体。
此外,双水相萃取过程中所产生的废水也不能直接排放,必须经过处理才能安全排放。
因此,在进行双水相萃取之前,需要进行充分的技术评估,确保双水相萃取过程安全有效。
双水相萃取技术的发展越来越快,它不仅帮助我们解决了大量的分离问题,而且还能帮助满足人类能源需求。
未来,双水相萃取技术将会得到更深入的研究,希望有一天它能够应用到更加广泛的领域,为促进人类社会发展作出更多的贡献。
第十章双水相萃取

▪ 如,PEG/KPi系统中上、下相(或称轻重相) 的PEG和磷酸钾浓度以及Cl离子在上、下相 中的分配平衡随添加NaCl浓度的增大而改变。
▪ 这种相组成即相性质的改变直接影响蛋白质 的分配系数。
▪ 离子强度对不同蛋白质的影响程度不同,利 用这一特点,通过调节双水相系统中的盐浓 度,可有效地萃取分离不同的蛋白质。
▪ PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于生 物产物的双水相萃取。PEG/无机盐系统的上相富含PEG, 下相富含无机盐。
典型的双水相体系
物质类型
物质P的名称
两种非离子型聚合物
聚丙二醇
P为带电荷聚电解质
P Q都为聚电解质 P为聚合物 Q为盐类
聚乙二醇(PEG)
硫酸葡聚糖钠盐 羧甲基葡聚糖钠盐 羧甲基葡聚糖钠盐 聚乙二醇
双水相系统的应用
双水相萃取自发现以来,无论在理论上还是实践上 都有很大的发展。在最近几年中更为突出,在若干生物 工艺过程中得到了应用,其中最重要的领域是蛋白质 的分离和纯化。
▪ (1) 产品的浓缩 ▪ (2)蛋白质的提取和纯化 ▪ (3)生物小分子的分离和纯化 ▪ (4) 中草药有效成分的提取 ▪ (5)生物活性物质的分析检测
11.3.4 温度的影响
温度影响双水相系统的相图, 因而影响蛋白质的分配系数。 但一般来说,当双水相系统离 双节线足够远时,温度的影响 很小,1-2度的温度改变不影响 目标产物的萃取分离。
大规模双水相萃取操作一般在
室温下进行,不需冷却。这是 基于以下原因:(1)成相聚合物 PEG对蛋白质有稳定作用,常 温下蛋白质一般不会发生失活 或变性;(2)常温下溶液粘度较 低,容易相分离;(3)常温操作 节省冷却费用。
• 氢键 • 电荷力 • 疏水作用 • 范德华力 • 构象效应
第五节_双水相萃取

二、双水相萃取的原理
• 双水相萃取的原理 • 是生物物质在双水相体系中的选择性分配,当物 质进入双水相体系后,由于表面性质、电荷作用 和各种作用力(如憎水键、氢键和离子键等)的 存在和环境的影响,使其在上、下相中的浓度不 同,即分配系数不同。
三、影响分配系数因素
1、聚合物:不同聚合物的水相系统显示出不同 的疏水性,同一聚合物的疏水性随分子量的增加 而增加。 2、pH:主要针对蛋白质及酶的稳定性。 3、无机盐:离子环境影响溶质(蛋白质)在两 相系统中的分配。 4、温度:分配系数对温度的变化不敏感,所以 室温操作即可。
双水相的形成
将两种不同的水溶到一定值,体系会自然的分成互不相溶的两相,这
就是双水相体系。这种含有不同聚合物分子的溶液发生分 相的现象叫聚合物的不相容性。
形成原因:由于高聚物之间的不相溶性,即高聚物分子 的空间阻碍作用,相互无法渗透,不能形成均一相,从而 具有分离倾向,在一定条件下即可分为二相。
常用的双水相体系
高聚物/高聚物体系:聚乙二醇(简称PEG) / 葡聚糖(简 称Dextran) 高聚物/无机盐体系:硫酸盐体系。常见的高聚物/ 无机 盐体系为: PEG/ 硫酸盐或磷酸盐体系。
PEG = 聚已二醇(polyethylene glycol) Kpi = 磷酸钾 DX = 葡聚糖(dextran)
第五节 双水相萃取
(Aqueous two-phase extraction, ATPE)
定义:利用物质在互不相溶的两水相间分配系 数的差异来进行萃取的方法。
一、双水相的形成 二、双水相萃取的原理 三、影响分配系数因素 四、双水相萃取的优点 五、 双水相萃取的应用
一、双水相的形成
1896年Beijerinck发现, 当明胶与琼脂或明胶与可 溶性淀粉溶液相混时,得 到一个混浊不透明的溶液, 随之分为两相,上相富含 明胶,下相富含琼脂(或 淀粉)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚乙二醇
非离子型聚合物/ 非离子型聚 合物
聚丙二醇
聚乙烯醇 聚乙二醇 聚乙烯吡咯烷酮
高分子电解质/非离子型聚合物
羧甲基纤维素钠
聚乙二醇
高分子电解质/高分子电解质
聚合物/ 低分子量化合物
葡聚糖硫酸钠
葡聚糖
羧甲基纤维素钠
丙醇
磷酸钾
聚合物/ 无机盐 聚乙二醇 硫酸铵
双水相的形成
在聚合物∕盐或聚合物∕聚合物系统混合时, 会出现两个不相混溶的水相
②聚合物∕无机盐双水相
某些聚合物溶液和一些无机盐溶液 相混时,在一定浓度下,由于盐析作 用,也会形成两相,即聚合物/ 无机 盐双水相体系,常用的无机盐有磷酸 盐和硫酸盐。除高聚物、无机盐外, 能形成双水相体系的物质还有高分子 电解质、低分子量化合物。
各种类型的双水相体系
类 型 形成上相的聚合物 形成下相的聚合物 葡聚糖
影响双水相萃取平衡的主要因素有: 组成双水相体系的高聚物类型、高聚物 的平均分子量和分子量分布、高聚物的 浓度、成相盐和非成相盐的种类、盐的 离子浓度、pH值、温度等。
1)聚合物的类型
不同聚合物的水相系统显示出不同的疏水 性,聚合物的疏水性按下列次序递增:葡萄 糖硫酸盐糖<葡萄糖<羟丙基葡聚糖<甲基 纤维素<聚乙二醇<聚丙三醇,这种疏水性 的差异对目的产物的作用是重要的。
缺点:
• 成相聚合物的成本较高, 且高聚物回收困难。 • 水溶性高聚物大多数粘度 较大,不易定量控制。 • 易乳化,相分离时间较长。 • 影响因素复杂。
3、双水相萃取原理
(1) 分配系数
双水相萃取与一般的水-有机物萃取的 原理相似, 都是依据物质在两相间的选择 性分配。当萃取体系的性质不同, 物质进 入双水相体系后, 由于分子间的范德华力、 疏水作用、分子间的氢键、分子与分子之 间电荷的作用, 目标物质在上、下相中的 浓度不同, 从而达到分离的目的。
双水相体系的双结线模型
系线上的各点上 下相的组成相同,而 体积不同,上下相的 体积比近似服从杠杆 原理,即: Vt/Vb=Ab/At 其中, Vt/Vb分 别为上相和下相体积, Ab/At分别为A点与B 点和A点与T点之间的 距离。
双水相体系的双结线模型
系线长度通过下式 计算:
△代表上下相的 浓度差。一般情 况下,体系对被 分配物质的处理 能力与系线长度 成正比。
① 聚合物∕聚合物双水相
当2种聚合物混合时,由于2种聚合物 间存在较强的斥力或空间阻碍,使2者无 法相互渗透,不能形成均一相,故达到平 衡后形成两相,这2种聚合物分别位于互 不相溶的两相中,即形成聚合物/聚合物 双水相体系。
聚合物双水相形成机理
两种聚合物 相互混合 体系熵的增加 两个因素 混合 分离(聚合物的不相容性) 分子间作用力
但一般来说,当双水相系统离双节线足够 远时,温度的影响很小,1-2度的温度改变不 影响目标产物的萃取分离。 大规模双水相萃取操作一般在室温下进行, 不需冷却。这是基于以下原因: (l)常温下,溶液的粘度较低,容易分相 (2)成相聚合物PEG对某些具有生物活性溶 质如蛋白质有稳定的作用,常温下蛋白质一般 不会发生失活、变性。 (3)常温操作节省冷却费用。
以PEG4000∕硫酸铵双水相体系为例
①建立PEG4000的吸光度-质量分数标准 曲线
②建立硫酸铵的电导率-质量分数标准 曲线
③建立PEG4000∕硫酸铵双水相相图
约取5mL20%的PEG4000溶液溶于50mL的 离心管里面,用100μL移液器逐滴加入40% 的硫酸铵溶液,振荡混匀直至出现浑浊,将 混合液放在离心机上离心5min,溶液分层后 分别取其上、下相各1克稀释100倍,并测其 电导率记录数据。再取溶液上下相的溶液 各1克溶于100mL容量瓶中,测定其吸光度 并记录数据。
分相
富含不同聚合物的两相
形成双水相的双聚合物体系很多, 如聚乙二醇(polyethylene glycol, PEG)/ 葡聚糖(dextran,Dx),聚丙二醇 (polypropylene glycol) / 聚乙二醇和甲 基纤维素(methylcellulose)/葡聚糖等。 双水相萃取中常采用的双聚合物系统 为PEG/Dx,该双水相的上相富含PEG, 下相富含Dx。
2)聚合物及其相对分子质量
不同聚合物的水相系统,疏水性不同; 同一聚合物,疏水性随分子量增加而增加, 其大小的选择取决于萃取过程的目的和方 法,在PEG/Dex体系中,PEG分子量的减少, 会使萃取液在两相中的分配系数增大,当 PEG的分子量增加时,在质量浓度不变的 情况下,亲水性蛋白质不再向富含PEG相 中聚集而转向另一相。
(2) 萃取率
当某一物质A的水溶液, 用有机溶剂萃取 时, 则萃取率E应该等于: E= 有机相中被萃取物的量 ×100% 两相中被萃取物的量 萃取率反应了物质被萃取的完全程度。 双水相萃取是一种可以利用较为简单的 设备,并在温和条件下进行简单操作就可获 得较高收率和纯度的新型分离技术。
双水相体系中相关的计算公式为:
6)无机盐的浓度
盐的正、负离子在两相间分配系数不 同,两相间形成电位差,从而影响带电 生物大分子的分配。无机盐浓度的不同 能改变两相间的电位差。
利用双水相萃取技术分离纯化时, 其选择双水相体系的一般原则是: (l)目标产物在两相中有较大的分配系数 (2)能保持具有生物活性溶质的活性 (3)体系易于分相,可利用静止或者离心 沉降法进行分相 (4)降低操作成本,采用廉价的双水相体 系来萃取分离
两相区
双节线
临界点
二、双水相萃取工艺流程操作
工艺流程主要由三部分组成:
• 目标产物的萃取 • 聚合物(PEG)的循环 • 无机盐的循环
双水相萃取工艺流程图
萃取液
相似相溶原理
上相
PEG
ATPE
无机盐
相体系回收示意图
PEG的循环
在大规模双水相萃取过程中,成相材料 的回收和循环使用,不仅可以减少废水处 理的费用,还可以节约化学试剂,降低成 本。PEG回收有2种方法:一种即前面所述 的加入盐使蛋白质转入富盐相来回收PEG, 一种是将PEG通过离子交换树脂,洗脱剂先 洗出PEG,再洗出蛋白质。现在常用的方法 是将第1步萃取的PEG相或除去部分蛋白质 的PEG相循环利用。
其分配规律服从Nernst分配定律,即 K=Ct/Cb,其中Ct、Cb分别为上相和下相的浓度, K为分配系数。各种物质的分配系数K是不一样 的,因而双水相体系对生物物质的分配具有很 大的选择性。 系统固定时,分配系数K为一常数, 与溶质 的浓度无关。当目标物质进入双水相体系后, 在上相和下相间进行选择性分配,这种分配关 系与常规的萃取分配关系相比,表现出更大或 更小的分配系数。
尽管刚开始应用时,大多数双水相萃 取是间歇式的,但此技术更适合于错流萃 取的连续生产,这样可有效利用空间和时 间,尤其是在与其他分离技术如凝胶过滤、 膜分离等相结合使用时。1988 年, Hustedt 等人证明在工业生产规模上可将 双水相体系用于连续错流萃取延胡索酸酶 和青霉素配基转移酶。
三、影响双水相萃取的因素
双水相萃取技术
( aqueous two-phase extraction )
主要内容:
一、双水相萃取的基本理论 二、双水相萃取工艺流程操作
三、影响双水相的因素
四、双水相萃取的应现象最早是1896年由Bei jerinck 在琼脂与可溶性淀粉或明胶混合时发现的, 这种现象被称为聚合物的“不相溶性” (incompatibility)。 • 20 世纪 60 年代瑞典 Lund 大学的 Albertsson P A及其同事们最先提出双水相萃取技术并做 了大量的工作。 • 70年代中期西德的Kula M R和Kroner K H等 人首先将双水相系统应用于从细胞匀浆液中 提取酶和蛋白质,大大改善了胞内酶的提取 效果。
双水相体系的双结线模型
系线越长,界 面张力就越大,两 相间的性质差别就 越大,被分配物质 在相间分配系数K亦 越大;反之就越小。 当系线长度趋向于 零即接近于临界点 (criticalpoini, 简称Cp)时,两相差 别消失,界面张力 为零,体系成为均 一的一相。
双水相体系的双结线模型
a 系线 b 两相区 系线 双节线 均相区 均相区
无机盐的循环
一种方法是将无机盐相冷却,如将含 磷酸钠的盐相冷却到6℃,使盐结晶析出, 然后用离心机分离收集;另一种是用电渗 析法、膜分离法回收盐类或除去PEG相的 盐。双水相萃取所用的设备一般都是其他 两相体系如水和有机溶剂体系所通用的设 备,有商业化的混合器和沉淀器系统以及 离心分离机已成功应用于双水相萃取。
PEG = 聚乙二醇(polyethylene glycol) Kpi = 磷酸钾
DX = 葡聚糖(dextran)
2、双水相体系的特点
优点:
• 操作条件温和,在常温常压 下进行。 • 两相的界面张力小,一般在 10-4N/cm 量级,两相易分散。 • 两相的相比随操作条件而变 化。
• 易于连续操作,处理量大,适合工 业应用。 • 两相的溶剂都是水,上相和下相的 含水量高达70%~ 90%,不存在有机 溶剂残留问题。
温度对双水相系统的影响
5)PH值的影响
体系pH值会影响溶液分子中可离解基 团的离解度,从而改变分子表面的电荷数 来影响分配。同时PH值还会影响缓冲离子 如HPO42-、PO43-等的分配,以改变相间电 位来达到改变分配系数的目的。另外在研 究分配系数与pH值的关系时,若加入不同 种类的中性盐,由于电位差的不同,其相 应关系也不同。
Fig.1 PEG200(400)-(NH4)2SO4 相图 60 50 40
PEG_400 PEG200
PEG (% w/w)
30 20 10 0
8
12
16
20
24
28
32