双水相萃取.
双水相萃取解析

➢ 一般采用室温操作: 成相系统聚合物PEG对蛋白质有稳定作用,常温下蛋 白质不会发生变性; 常温下溶液粘度较低, 容易相分离; 常温操作节省冷却费用。
4.双水相萃取技术的发展
(1)历史:
➢ 早在1896年,Beijerinck发现,当明胶与琼脂或明胶与 可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随 之分为两相,上相富含明胶,下相富含琼脂(或淀粉), 这种现象被称为聚合物的不相溶性(incompatibility); ➢ 20世纪60年代,瑞典Lund大学的Albertsson P A及同事 最先提出了双水相萃取技术; ➢ 1979年,西德的Kula M R等人首次将ATPE应用于生物产 品分离;
➢大量研究表明:生物分子的分配系数取决于溶质与双水相系统 间的各种相互作用,主要有静电作用、疏水作用和亲和作用等, 其分配系数可为各种相互作用之和。
ln m ln me ln mh ln ml
①静电作用:两相系统中若有带电溶质存在,会ห้องสมุดไป่ตู้大分子在两 相间的分配系数产生影响。(图5-15) Donnan Potential:当大分子或粒子带有静电荷时,在带有电荷 分配不相等时,就会在两相间产生电位差,称为道南电位。 ②疏水作用:某些大分子物质表面具有疏水区,溶质的表面疏 水性会对其在两相间的分配系数产生影响。
3.影响双水相分配的主要因素
高聚物的相对分子质量 高聚物的浓度 盐的种类和浓度 PH值 温度
(1)高聚物的相对分子质量:
➢在高聚物浓度保持不变的前提下,降低该高聚物的相对分子质 量,被分配的可溶性生物大分子如蛋白质或核酸,或颗粒如细 胞或细胞碎片和细胞器,将更多地分配于该相。
以PEG-Dextran体系为例,↓Dextran→K↓ ↓PEG→K↑(表5-4)
第五节_双水相萃取

二、双水相萃取的原理
• 双水相萃取的原理 • 是生物物质在双水相体系中的选择性分配,当物 质进入双水相体系后,由于表面性质、电荷作用 和各种作用力(如憎水键、氢键和离子键等)的 存在和环境的影响,使其在上、下相中的浓度不 同,即分配系数不同。
三、影响分配系数因素
1、聚合物:不同聚合物的水相系统显示出不同 的疏水性,同一聚合物的疏水性随分子量的增加 而增加。 2、pH:主要针对蛋白质及酶的稳定性。 3、无机盐:离子环境影响溶质(蛋白质)在两 相系统中的分配。 4、温度:分配系数对温度的变化不敏感,所以 室温操作即可。
双水相的形成
将两种不同的水溶到一定值,体系会自然的分成互不相溶的两相,这
就是双水相体系。这种含有不同聚合物分子的溶液发生分 相的现象叫聚合物的不相容性。
形成原因:由于高聚物之间的不相溶性,即高聚物分子 的空间阻碍作用,相互无法渗透,不能形成均一相,从而 具有分离倾向,在一定条件下即可分为二相。
常用的双水相体系
高聚物/高聚物体系:聚乙二醇(简称PEG) / 葡聚糖(简 称Dextran) 高聚物/无机盐体系:硫酸盐体系。常见的高聚物/ 无机 盐体系为: PEG/ 硫酸盐或磷酸盐体系。
PEG = 聚已二醇(polyethylene glycol) Kpi = 磷酸钾 DX = 葡聚糖(dextran)
第五节 双水相萃取
(Aqueous two-phase extraction, ATPE)
定义:利用物质在互不相溶的两水相间分配系 数的差异来进行萃取的方法。
一、双水相的形成 二、双水相萃取的原理 三、影响分配系数因素 四、双水相萃取的优点 五、 双水相萃取的应用
一、双水相的形成
1896年Beijerinck发现, 当明胶与琼脂或明胶与可 溶性淀粉溶液相混时,得 到一个混浊不透明的溶液, 随之分为两相,上相富含 明胶,下相富含琼脂(或 淀粉)。
双水相萃取全解

聚乙二醇
非离子型聚合物/ 非离子型聚 合物
聚丙二醇
聚乙烯醇 聚乙二醇 聚乙烯吡咯烷酮
高分子电解质/非离子型聚合物
羧甲基纤维素钠
聚乙二醇
高分子电解质/高分子电解质
聚合物/ 低分子量化合物
葡聚糖硫酸钠
葡聚糖
羧甲基纤维素钠
丙醇
磷酸钾
聚合物/ 无机盐 聚乙二醇 硫酸铵
双水相的形成
在聚合物∕盐或聚合物∕聚合物系统混合时, 会出现两个不相混溶的水相
②聚合物∕无机盐双水相
某些聚合物溶液和一些无机盐溶液 相混时,在一定浓度下,由于盐析作 用,也会形成两相,即聚合物/ 无机 盐双水相体系,常用的无机盐有磷酸 盐和硫酸盐。除高聚物、无机盐外, 能形成双水相体系的物质还有高分子 电解质、低分子量化合物。
各种类型的双水相体系
类 型 形成上相的聚合物 形成下相的聚合物 葡聚糖
影响双水相萃取平衡的主要因素有: 组成双水相体系的高聚物类型、高聚物 的平均分子量和分子量分布、高聚物的 浓度、成相盐和非成相盐的种类、盐的 离子浓度、pH值、温度等。
1)聚合物的类型
不同聚合物的水相系统显示出不同的疏水 性,聚合物的疏水性按下列次序递增:葡萄 糖硫酸盐糖<葡萄糖<羟丙基葡聚糖<甲基 纤维素<聚乙二醇<聚丙三醇,这种疏水性 的差异对目的产物的作用是重要的。
缺点:
• 成相聚合物的成本较高, 且高聚物回收困难。 • 水溶性高聚物大多数粘度 较大,不易定量控制。 • 易乳化,相分离时间较长。 • 影响因素复杂。
3、双水相萃取原理
(1) 分配系数
双水相萃取与一般的水-有机物萃取的 原理相似, 都是依据物质在两相间的选择 性分配。当萃取体系的性质不同, 物质进 入双水相体系后, 由于分子间的范德华力、 疏水作用、分子间的氢键、分子与分子之 间电荷的作用, 目标物质在上、下相中的 浓度不同, 从而达到分离的目的。
第五章 双水相萃取

• 盐离子 • pH值 • 温度
五、双水相萃取工艺流程
六、双水相萃取应用
1)蛋白酶的提取、纯化 2)核酸的提取、纯化 3)细胞调节生长因子的提取:β—干扰素、EPO等 4)病毒的提取、纯化 5)生物活性物质的分析检测
七、双水相萃取的研究进展
1. 2. 廉价双水相体系的研究开发 双水相萃取与其它分离技术的结合
5.Βιβλιοθήκη 6.第五章 双水相萃取
(Aqueous Two-phase Extraction)
一、概述
1、定义——利用生物物质在
互不相溶的两水相间分配系数的 差异进行分离的过程
PEG——聚乙二醇 Dextran(DEX)——葡聚糖
图1 PEG/DEX形成的双水相的组成
2、双水相体系
1) 双水相体系的形成——高聚物分子间的作用力
思考题
1. 2. 3. 4. 何谓双水相萃取? 双水相体系可分为那几类?目前常用的体系有那两 种? 为什么说双水相萃取适用于生物活性大分子物质分 离? 影响双水相萃取的因素有那些?当电解质存在,pH 是如何影响双水相萃取的? 用双水相萃取细胞破碎(匀浆)液时,一般是把目 标产物分布在上相,而细胞碎片、杂蛋白等杂质分 布在下相,为什么? 何谓双水相亲和萃取?
• 作用力为斥力:形成双水相体系 • 作用力为引力:形成两相,其中一相为两高聚物相,一相 为水相 • 作用力没有强烈的引力或斥力:完全互溶,形成均一相
2)双水相体系的种类
–
–
两种都是非离子型高聚物(PEG / DEX、聚丙二醇/ DEX等)
其中一种是离子型高聚物(羧甲基纤维素钠/葡聚糖DEX)
–
–
两种都是离子型高聚物(羧甲基纤维素/羧甲基葡聚糖钠)
双水相萃取

各种双水相系统
聚合物1 聚合物1 聚丙二醇 聚合物2 聚合物2或盐 甲基聚丙二醇,聚乙二醇,聚乙烯醇, 甲基聚丙二醇,聚乙二醇,聚乙烯醇, 聚乙烯吡咯烷酮,羟丙基葡聚糖, 聚乙烯吡咯烷酮,羟丙基葡聚糖,葡聚 糖 聚乙烯醇,葡聚糖,聚蔗糖 聚乙烯醇,葡聚糖, 羟甲基葡聚糖,葡聚糖 羟甲基葡聚糖, 葡聚糖 葡聚糖 葡聚糖 硫酸镁,硫酸铵,硫酸钠,甲酸钠,酒 硫酸镁,硫酸铵,硫酸钠,甲酸钠, 石酸钾钠, 石酸钾钠,磷酸钾
4、电化学分配 、 i、盐的种类及浓度 、
pH 升高, H2PO4- HPO42- PO43在PEG / K2HPO4 系统使带负电蛋白 蛋白有较高的K。 蛋白
ii、 pH 值的影响 改变两相的电位差 如体系pH 值与蛋白质的等电点相差越大, 则蛋白质在两相中分配越不均匀。 pH 值的变化也会导致组成体系的物质电 性发生变化,也会使被分离物质的电荷发 生改变,从而影响分配的进行。
6、双水相萃取的工艺流程 、 工艺流程主要由三部分构成:目的产物的萃取; 工艺流程主要由三部分构成:目的产物的萃取 PEG的循 的循 无机盐的循环。 环; 无机盐的循环。
一、目的产物的萃取: 目的产物的萃取: 第一步,匀浆液与PEG和无机盐在萃取器中混合,然后进 和无机盐在萃取器中混合, 第一步,匀浆液与 和无机盐在萃取器中混合 入分离器分相。一般使目标蛋白质分配到上相( 入分离器分相。一般使目标蛋白质分配到上相(PEG相), 相 而细胞碎片、核酸、多糖和杂蛋白等分配到下相( 而细胞碎片、核酸、多糖和杂蛋白等分配到下相(富盐 相) 。 第二步,在上相中加盐,形成新的双水相体系, 第二步,在上相中加盐,形成新的双水相体系,将目标蛋白 质转入富盐相,从而将蛋白质与PEG分离,以利于使用超 分离, 质转入富盐相,从而将蛋白质与 分离 滤或透析将PEG回收利用。 回收利用。 滤或透析将 回收利用 的回收循环: 二、PEG的回收循环: 的回收循环 加入盐使目标蛋白质转入富盐相来回收PEG; ①加入盐使目标蛋白质转入富盐相来回收 相通过离子交换树脂, ②将PEG相通过离子交换树脂,用洗脱剂先洗去 相通过离子交换树脂 用洗脱剂先洗去PEG,再 , 洗出蛋白质。 洗出蛋白质。 无机盐的循环: 三、无机盐的循环: 冷却,结晶,以离心机分离收集。除此之外还有电渗析法、 冷却,结晶,以离心机分离收集。除此之外还有电渗析法、 膜分离法回收盐类或除去PEG相的盐。 相的盐。 膜分离法回收盐类或除去 相的盐
双水相萃取的名词解释

双水相萃取的名词解释双水相萃取是萃取的一种方法。
两种水溶性不同的聚合物,或一种聚合物和无机盐的混合溶液,在一定的浓度下,其体系会自然分成互不相溶的两相。
当被分离物质进入双水相体系后,由于表面性质、电荷间作用和各种作用力等的影响,被分离物质在两相间的分配系数不同,导致其在上下相的浓度不同,即可达到分离的目的。
早在1896年人们就已观察到,明胶与琼脂,或明胶与可溶性淀粉溶液混合时,会得到一种不透明的混合溶液。
静置后可分为两相,上相中含有大部分的明胶,下相中含有大部分琼脂(或淀粉),这种现象称为聚合物的不相容性,从而产生了双水相。
双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境的影响,使其在上、下相中的浓度不同。
分配系数K等于物质在两相的浓度比。
各种物质的K值不同,例如各种类型的细胞粒子、噬菌体等分配系数都大于100或小于0.01,酶、蛋白质等生物大分子的分配系数在0.1~10之间,而小分子盐的分配系数在1.0左右。
因而,双水相体系对生物物质的分配具有很大的选择性。
双水相的优势ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取、纯化表现出以下优势:(1)含水量高(70%--90%),在接近生理环境的体系中进行萃取,不会引起生物活性物质失活或变性;(2)可以直接从含有菌体的发酵液和培养液中提取所需的蛋白质(或者酶),还能不经过破碎直接提取细胞内酶,省略了破碎或过滤等步骤;(3)分相时间短,自然分相时间一般为5min~15 min;(4)界面张力小(10-7~10-4mN/m),有助于两相之间的质量传递,界面与试管壁形成的接触角几乎是直角;(5)不存在有机溶剂残留问题,高聚物一般是不挥发物质,对人体无害;(6)大量杂质可与固体物质一同除去;(7)易于工艺放大和连续操作,与后续提纯工序可直接相连接,无需进行特殊处理;(8)操作条件温和,整个操作过程在常温常压下进行;(9)亲和双水相萃取技术可以提高分配系数和萃取的选择性。
双水相萃取

操作步骤
一、重点 双水相萃取放大容易:一般10ml离心管的实验结果可直接放大到工业规模。具体实验步骤: 1、配制一系列不同浓度、pH及离子强度的双水相,每个双水相改变一个参数。 2、加入料液,再加水使整个系统质量达到5~10g。离心管封口后充分混合。 3、1800-2000g下离心3-5min,使两相完全分离。 4、用吸管或移液管将上相和下相分别吸出,测定上、下相中目标产物的浓度或生物活性,计算分配系数。 5、上、下两相中目标产物的总量应与加入量对比,以检验是否存在沉淀或界面吸附现象,并可确认浓度或活 性测定中产生的系统误差。 6、分析目标产物的收率和纯化倍数,确定最佳双水相系统。 二、特点: 1、含水量高(70%~90%),适宜提取水溶性的蛋白质、酶等生物活性物质,且不易引起蛋白质的变性失活。 2、不存在有机溶剂残留问题。3、易于放大,各种参数可按比例放大而产物收率并不降低。
可形成双水相的双聚合物体系很多,如聚乙二醇(PEG)/葡聚糖(Dx),聚丙二醇/聚乙二醇,甲基纤维素/ 葡聚糖。双水相萃取中采用的双聚合物系统是PEG/Dx,该双水相的上相富含PEG,下相富含Dx。另外,聚合物与 无机盐的混合溶液也可以形成双水相,例如,PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于双水相萃 取。PEG/无机盐系统的上相富含PEG,下相富含无机盐。
原理
某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成 双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质, Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous two-phase extraction),又称双水相分配法。 20世纪70年代,科学家又发展了双水相萃取在生物分离过程中的应用,为蛋白质特别是胞内蛋白质的分离和纯化 开辟了新的途径。
双水相萃取技术

三、双水相萃取3.1 双水相萃取的原理及特点3.1.1 双水相萃取的原理双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。
分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。
3.1.2 双水相萃取的特点双水相体系萃取具有如下特点:(1)含水量高(70%~90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min;(3)界面张力小(10-7~10-4mN/m),有助于强化相际间的质量传递;(4)不存在有机溶剂残留问题;(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。
由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。
3.2 双水相萃取在分离和提取各种蛋白质(酶)上的应用用聚乙二醇(PEG)/羟丙基淀粉酶(Reppal PEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。
在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。
在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH在下相的收率均在80%以上。
萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。
用PEG/(NH4)2SO4双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取α-淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2SO4(20%),pH=8,α-淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H2O加量 次数 (g)
(NH4)2SO4溶液 加量 ml g
纯 溶液累计 PEG 400 (NH4)2SO4 总量(g) (%) 累计量
(NH4)2SO 4(%)
1 2
0.5 0.5
3
4 5 6 7 8
0.5
0.5 0.5 0.5 0.5 0.5
根据聚合物的质量平衡 : mO mB mT 式中mO , mT 和mB分别为聚合物的总质量 和在上相和下相中的质 量,它们分别为: mO (VB B VT T) cO mB VB B cB mT VT T cT 式中V , 和c分别为相体积、密度和 聚合物的浓度; 下标O、T则分别代表在有机混合 物(O)、下相(B)和上相(T)中。 V c c 可以得到:T T B O VB B cO cT cB cO MB 从相图可知: cO cT MT 综合方程式,得 VT MB B VB MT T
双水相萃取法是利用物质 在互不相溶的两水相间分配系 数的差异来进行萃取的方法。 双水相系统可将水溶性的酶、 蛋白质等生物活性物质从一个 水相转移到另一水相中。
2.2%的葡聚糖水溶 液与等体积的0.72% 甲基纤维素钠的水溶 液相混合并静置后, 可得到两个粘稠的液 层,下层含有大部分 葡聚糖.上层含有大 部分甲基纤维素纳, 两相中 98%以上的 成分是水。
PEG和Dex团其无毒性和 良好的可调性广泛应用。
二、相平衡和混溶性
T′
相 图
M′
A
B
B′
相图的制作
精确配制 43.00% ( g/ml )左右的 (NH4)2SO4 溶液,并测其 密度。
精确称取PEG 400溶液0.700g 于试管中,按表格中所列第 一号数据,用吸管加入 0.5 mlH2O( H2O的密度以1g/ml计) 缓慢滴入已配制好的 (NH4)2SO4 溶液,并不断在混合器上 混合,观察溶液的澄清程度,直至试管内溶液开始出现混 浊为止。记录 (NH4)2SO4 的加量( ml ),根据密度值求出 重量(g),然后,按下表所列的第2号数据加入H2O,使 其澄清(加H2O量根据数据点的密集程度控制),继续向 试管中滴加 (NH4)2SO4 溶液,使其再次达到混浊,如此反 复操作,计算每次达到混浊时, PEG 和 (NH4)2SO4 在系统 总量中的重量百分比(%),将PEG的百分浓度为纵坐标, (NH4)2SO4 的百分浓度为横坐标配平衡的参数
影响分配平衡的主要参数有成相聚合物的分子量和浓度、体 系的pH、体系中盐的种类和浓度、体系中菌体或细胞的种类 和浓度、体系温度等等。选择合适的条件,可以达到较高的 分配系数,较好地分离目的物。
(1)聚合物的影响
(2)体系中无机盐离子的影响 在PEG/DEX体系中,无机盐离子在两相中也有不同 的分配,因此在两相间形成电位差。由于各相要保持电中 性,这对带电生物大分子,如蛋白质和核酸等的分配,产 生很大的影响。
pH=6.9 溶菌酶带正电, 卵蛋白带负电。
KCl K Na
此性质常被用于提高 物质在双水相系统的 分配系数。
(3)体系pH的影响
pH会影响蛋白质中可离解基团的离 解度,因而改变蛋白质所带电荷和 分配系数;另外,pH还影响系统缓 冲物质磷酸盐的离解程度,影响相 间电位差,从而影响分配系数。
一、双水相的形成
高聚物水溶液的混合
互不溶性,形成两个水 相,两种聚合物分别富 集于上下两相; 复合凝聚,也形成两个 水相,但两种高聚物主 要集中于一相。另一项 几乎为水; 完全互溶形成均相的高 聚物水溶液。
一、双水相的形成
双水相形成机理
双水相系统的形成在于聚合物的不相溶性产生的空间障碍 作用。 两个亲水成分的非互溶性,通常来源于各自分子结构上的 不同所产生的相互排斥作用。相反两种高聚物如果产生引 力则会形成互溶或者复合凝聚。 双水相系统也可由聚合物和无机盐之间。只要浓度达到一 定值,也 会形成两相,即聚合物-盐双水相体系,成相机理 尚不清楚,一 种解释为“盐析”作用。
不相溶性是一普遍现象,其溶剂也不一定是水,也可 能是有机溶剂。 如果多种不相溶的聚合物混在一起,就可得到多相体 系,如硫酸葡聚糖、葡聚糖、羟丙基葡聚糖和聚乙二 醇相混时,可形成四相体系。
与溶剂萃取比较,双水相的两相性质差别小(密度和 折射率),有时难以看到界面。
生化工程中广泛应用的双 水相体系:聚乙二醇 (PEG)/葡聚糖(Dex)体系, PEG/盐等体系。 分离某一生物大分子,两 相系统的选择必须有利于 目的物的萃取和分离,同 时又要兼顾到聚合物的物 理性质。如甲基纤维素和 聚乙烯醇,因其粘度太高 而限制了它们的应用。
M′ T′
A
B B′
VT MB VB MT
CT
Co
CB
物质在两相中的分配
和溶剂萃取法一样,物质在两水相中的分配用分 配系数K 表示。
K ct cb
ct , cb分别为上相和下相中溶 质(分子或粒子)的浓 度。 当相系统固定时,分配 系数为常数。
K——与温度、压力以及溶质和溶剂的性质有关, 与溶质的浓度无关
双水相萃取技术
萃取是最常用的一种液液分离方法,在制药和化 工行业应用极为普遍。但是普通的有机溶剂萃取法由 于以下原因难于应用于蛋白质分离: (1)许多蛋白质都有极强的亲水性,不溶于有机溶 剂;
(2)蛋白质在有机溶剂相中易变性失活。
1896年Beijerinck观察到当把明胶与琼脂或把明胶和可 溶 性淀粉的水溶液混合时,先得到一混浊不透明的溶 液,随后分成两相,上相含有大部分明胶,下相含有 大部分琼脂(或可溶性淀粉)。 60年代,瑞典Lund大学的Albertsson P A等人首先将双 水相系统应用于萃取技术。 70年代,德国将此技术应用于从细胞液中提取酶和蛋 白质,大大改善了酶的提取效果。 目前,仍然停留于实验室阶段,没有一套完善的理论 来解释生物大分子在体系中分配机理。工业化的例子 不多,原因在于成本过高,使技术上的优势被削弱。