2012年中考数学模拟试题4
2012年中考数学模拟试卷

2012年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算-2-1的结果是()(A)-1 (B)1 (C)3 (D)-32.如左图,这个几何体的主视图是()A. B. C. D.3.的角平分线AD交BC于点D,,则点D到AB的距离是( )A.1 B.2 C.3 D.44.估计+1的值是()A.在2和3之间 B.在3和4之间C.在4和5之间 D.在5和6之间5.《茂名日报》(2007年5月18日)报道,刚刚投产半年的茂名百万吨乙烯工程传来喜讯,正在创造全国最好的效益,每月为国家创利30 000万元,这个数用科学记数法表示是( )A. B. C. D.6.设一元二次方程的两个根分别是,则下列等式正确的是()A. B.C. D.7.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是()城市北京上海杭州苏州武汉重庆广州东莞珠海深圳最高温26252929313228272829度(℃)A.28 B.28.5 C.29 D.29.58.不等式组的解集是()A. B.C. D.9.如图,一扇形纸片,圆心角为,弦的长为,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()DD1D2AA1A2A3A4B1B2CC2C1C3C4BA.cm B.cmOBAOC.cm D.cm10.在平行四边形中,点,,,和,,,分别是和的五等分点,点,和,分别是和的三等分点,已知四边形的面积为1,则平行四边形的面积为()A. B. C. D.11.如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的函数图象是()A.B.C.D.12.如图,记抛物线的图象与正半轴的交点为,将线段分成等份.设分点分别为,,,,过每个分点作轴的垂线,分别与抛物线交于点,,…,,再记直角三角形,,…的面积分别为,,…,这样就有,,…;记,当越来越大时,你猜想最接近的常数是()P1P2P3P n-11AxyQ1Q2Q3Q n-1O1A. B. C. D.二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中横线上)13.分解因式:分解因式:.APO14.如图,PA与半圆O相切于点A,如果∠P=35°,那么∠AOP=_____°.15.如图,把矩形纸片放入平面直角坐标系中,使,分别落在轴,轴上,连结,将纸片沿折叠,使点落在点的位置.若,,则点的坐标为____________.703532285450595616.下图是一组数据的折线统计图,这组数据的极差是 ,平均数是 .FCGDHAEB17.如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是___________厘米.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤)18.(本小题满分7分)(1)计算:先化简,再求值:,其中.(2)解分式方程:解方程:.19.(本小题满分7分)(1)如图,在平行四边形中,,的平分线分别交对边于点,交四边形的对角线于点.求证:.(2)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.20.(本小题满分8分)在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①②③④小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定是等腰三角形吗?说说你的理由;(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使不能构成等腰三角形的概率.ADEBC21.(本小题满分8分)今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:班级(1)班(2)班(3)班金额2000(元)吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数.22.(本小题满分9分)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,xOyAB以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(本小题满分9分)如图①,在边长为的正方形中,是对角线上的两个动点,它们分别从点,点同时出发,沿对角线以的相同速度运动,过作垂直交的直角边于;过作垂直交的直角边于,连接,.设,,,围成的图形面积为,,,围成的图形面积为(这里规定:线段的面积为).到达到达停止.若的运动时间为,解答下列问题:FEGDCBAH图①BA图②CD(1)当时,直接写出以为(2)顶点的四边形是什么四边形,(3)并求为何值时,.(2)①若是与的和,求与之间的函数关系式.(图②为备用图)②求的最大值.24.(本小题满分9分)如图,已知平面直角坐标系中,有一矩形纸片OABC,O为坐标原点,轴,B(3,),现将纸片按如图折叠,AD,DE为折痕,.折叠后,点O落在点,点C落在点,并且与在同一直线上.CDOABEO1C1xy(1)求折痕AD 所在直线的解析式; (2)求经过三点O,,C的抛物线的解析式; (3)若⊙的半径为,圆心在(2)的抛物线上运动,⊙与两坐标轴都相切时,求⊙半径的值.。
中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(四)一.选择题(共9小题,满分45分,每小题5分)1.(5分)在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.82.(5分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(5分)若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.(5分)下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球5.(5分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.(5分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(5分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣158.(5分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.(5分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共6小题,满分30分,每小题5分)10.(5分)分解因式:16m2﹣4=.11.(5分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).12.(5分)一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.13.(5分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(5分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP 为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.15.(5分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三.解答题(共4小题,满分30分)16.(6分)计算:.17.(6分)解关于x的不等式组:,其中a为参数.18.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.四.解答题(共4小题,满分45分)20.(10分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量频数百分比(单位:t)2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.21.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22.(12分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(13分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.中考数学模拟试卷(四)参考答案与试题解析一.选择题(共9小题,满分45分,每小题5分)1.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选:C.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.4.【解答】解:A、购买一张福利彩票,中奖是随机事件;B、在一个标准大气压下,加热到100℃,水沸腾是必然事件;C、有一名运动员奔跑的速度是80米/秒是不可能事件;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件;故选:A.5.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选:D.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.8.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.9.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,O G⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共6小题,满分30分,每小题5分)10.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)11.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).12.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.13.【解答】解:设这件运动服的标价为x元,则:妈妈购买这件衣服实际花费了0.8x元,∵妈妈以八折的优惠购买了一件运动服,节省30元∴可列出关于x的一元一次方程:x﹣0.8x=30解得:x=1500.8x=120故妈妈购买这件衣服实际花费了120元,故答案为120.14.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.15.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三.解答题(共4小题,满分30分)16.【解答】解:原式=1﹣2+4+﹣1=4﹣.17.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.18.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.19.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.四.解答题(共4小题,满分45分)20.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.21.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120 150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△A OC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OCA+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。
2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)

2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)一.选择题1.(3分)(2011•郴州)的绝对值是()A.B.C.﹣2 D.22.(3分)(2008•大连)在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)(2010•大连)下列运算正确的是()A.a2•a3=a6B.(﹣a)4=a4C.a 2+a3=a5D .(a2)3=a54.(3分)(2011•兰州)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.5.(3分)(2012•沙河口区模拟)据统计,去年“十一”期间某景区共接待游客人数为246000人,将246000用科学记数法表示为()A.2.46×103B.2.46×104C.2.46×105D.以上都不对6.(3分)(2011•大连)下列事件是必然事件的是()A.抛掷一次硬币,正面朝上B.任意购买一张电影票,座位号恰好是“7排8号”C.某射击运动员射击一次,命中靶心D.13名同学中,至少有两名同学出生的月份相同7.(3分)(2012•和平区三模)设a=,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.(3分)(2012•沙河口区模拟)已知点E在矩形ABCD边CD上,将矩形沿AE折叠后点D落在点D′,∠CED′=35°,则∠BAD′的大小是()A.40°B.45°C.55°D.60°二.填空题9.(3分)(2012•沙河口区模拟)如果在实数范围内有意义,那么x的取值范围是_________.10.(3分)(2013•丹东一模)如图,直线a∥b,∠1=55°,则∠2=_________.11.(3分)(2012•沙河口区模拟)不等式组的解集为_________.12.(3分)(2012•沙河口区模拟)某印刷厂一月份印书17万册,三月份印书30万册,若设二、三月份平均每月的增长率为x,那么根据题意,可列出的方程是_________.13.(3分)(2012•沙河口区模拟)同时掷两枚质地均匀的硬币,向上一面都是正面的概率是_________.14.(3分)(2012•沙河口区模拟)抛物线y=x2+2x﹣3,当y<0时,x的取值范围为_________.15.(3分)(2012•沙河口区模拟)如图,正方形剪去四个角后成为一个正八边形,如果正八边形的边长为2,则原正方形的边长为_________.16.(3分)(2012•沙河口区模拟)如图,在直角坐标系中,O为原点,点B、C的坐标分别为(2,0)、(8,0),点A为反比例函数图象上的一点,∠ACO=30°,且AC=BC.则反比例函数解析式为_________.三.解答题17.(2012•沙河口区模拟)计算:.18.(2011•清远)解方程:x2﹣4x﹣1=0.19.(2012•沙河口区模拟)如图,平行四边形ABCD中,点E、F在对角线AC上,且AF=CE,求证:∠ADF=∠EBC.20.(2012•沙河口区模拟)对某班50名同学每月所花费的零用钱情况进行了统计,绘制成下面的统计图.(1)求这50名同学每月所花费的零用钱的平均数;(2)这组数据的众数和中位数是多少?(3)该校共有学生1200名,请根据该班的每月所花费的零用钱情况,估计这个中学的同学每月所花费的零用钱总数大约是多少元?四、解答题21.(2012•沙河口区模拟)军舰在点A处接到命令,要求它向位于点B处的渔船进行营救.已知军舰在渔船的北偏西53°方向60海里处,渔船沿正西方向航行.如果军舰立即沿东南方向航行,恰好能在点C处与渔船相遇.(1)求军舰行驶的距离AC的长;(2)求渔船行驶距离BC的长;(结果精确到0.1km.参考数据:≈1.41,sin53°=0.7986,cos53°=0.6018,tan53°=1.3270)22.(2010•聊城)如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.(1)若AD=3,BD=4,求边BC的长;(2)取BC的中点E,连接ED,试证明ED与⊙O相切.23.(2012•沙河口区模拟)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图,根据图象所提供的信息,解答问题:(1)他们在进行_________米的长跑训练,在0<x<15的时间段内,速度较快的人是_________;(2)求甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式,并求当x=15时,两人相距的距离;(3)在15<x<20的时间段内,求两人速度之差.五.解答题24.(2012•沙河口区模拟)在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,作PE⊥AP,PE交射线DC于点E,射线AE交射线BC于点F,设BP=x,CE=y.(1)如图,当点P在边BC上时(点P与点B、C都不重合),求y关于x的函数解析式,并写出它的定义域;(2)当x=3时,求CF的长;(3)当tan∠PAE=时,求BP的长.25.(2012•沙河口区模拟)如图,正方形ABCD与正方形BEFG有公共顶点B,点G在边BC上,AG的延长线交CE于点H,连接BH.(1)求证:∠BAG=∠BCE;(2)若AB=2BG,求的值;(3)若AB=kBG,直接写出的值(用含k的代数式表示).26.(2012•沙河口区模拟)如图,二次函数y=ax2+bx+c的图象与x轴、y轴分别交于A(﹣1,0)、B(5,0)、C (0,4)三点,顶点为点D.(1)求二次函数的解析式,并求出顶点坐标;(2)x轴上方的抛物线是否存在异于B、C的点P,过点P作x轴的垂线,垂足为点M,使直线BC平分△PMB的面积?如果存在,请求出点P的坐标;如果不存在,请说明理由;(3)抛物线的对称轴上是否存在点Q,使AQ等于点B到直线AQ的距离?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)参考答案与试题解析一.选择题1.(3分)(2011•郴州)的绝对值是()A.B.C.﹣2 D.2考点:绝对值.专题:计算题.分析:根据绝对值的定义即可求解.解答:解:|﹣|=.故选A.点评:本题主要考查了绝对值的性质,负数的绝对值是它的相反数,比较简单.2.(3分)(2008•大连)在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出点P的横纵坐标的符号,进而判断其所在的象限.解答:解:∵点P的横坐标﹣2<0,纵坐标为3>0,∴点P(﹣2,3)在第二象限.故选B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)(2010•大连)下列运算正确的是()A.a2•a3=a6B.(﹣a)4=a4C.a2+a3=a5D.(a2)3=a5考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的运算性质和合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、应为a2•a3=a5,故本选项错误;B、(﹣a)4=a4,正确;C、a2和a3不是同类项不能合并,故本选项错误;D、应为(a2)3=a2×3=a6,故本选项错误.故选B.点评:本题主要考查:合并同类项,同底数幂的乘法,幂的乘方的性质,熟练掌握法则和运算性质是解题的关键,要注意不是同类项的不能合并.4.(3分)(2011•兰州)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.专题:作图题.分析:找到从正面看所得到的图形即可.解答:解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)(2012•沙河口区模拟)据统计,去年“十一”期间某景区共接待游客人数为246000人,将246000用科学记数法表示为()A.2.46×103B.2.46×104C.2.46×105D.以上都不对考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将246000用科学记数法表示为2.46×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)(2011•大连)下列事件是必然事件的是()A.抛掷一次硬币,正面朝上B.任意购买一张电影票,座位号恰好是“7排8号”C.某射击运动员射击一次,命中靶心D.13名同学中,至少有两名同学出生的月份相同考点:随机事件.专题:分类讨论.分析:必然事件就是一定发生的事件,即发生的概率是1的事件.据此判断即可解得.解答:解:A、抛掷一次硬币,正面朝上,是可能事件,故本选项错误;B、任意购买一张电影票,座位号恰好是“7排8号”,是可能事件,故本选项错误;C、某射击运动员射击一次,命中靶心,是可能事件,故本选项错误;D、13名同学中,至少有两名同学出生的月份相同,正确.故选D.点评:本题主要考查理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)(2012•和平区三模)设a=,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5考点:估算无理数的大小.专题:探究型.分析:先估算出的大小,再求出a的取值范围即可.解答:解:∵9<13<16,∴3<<4,∴2<﹣1<3,即a在2和3之间.故选B.点评:本题考查的是估算无理数的大小,根据题意估算出的大小是解答此题的关键.8.(3分)(2012•沙河口区模拟)已知点E在矩形ABCD边CD上,将矩形沿AE折叠后点D落在点D′,∠CED′=35°,则∠BAD′的大小是()A.40°B.45°C.55°D.60°考点:翻折变换(折叠问题).专题:探究型.分析:先根据图形翻折变换的性质得出∠D=∠D′=90°,再由∠CED′=35°即可求出∠DED′的度数,再由四边形内角和定理求出∠DAD′的度数,根据∠BAD′=∠DAB﹣DAD′即可得出结论.解答:解:∵△AD′E由△ADE翻折而成,∠D=∠D′=90°,∵∠CED′=35°,∴∠DED′=180°﹣∠CED′=180°﹣35°=145°,∴∠DAD′=180°﹣∠DED′=180°﹣145°=35°,∴∠BAD′=∠DAB﹣DAD′=90°﹣35°=55°.故选C.点评:本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二.填空题9.(3分)(2012•沙河口区模拟)如果在实数范围内有意义,那么x的取值范围是x≥﹣2.考点:二次根式有意义的条件.专题:计算题.分析:二次根式的被开方数是非负数.解答:解:根据题意,得2+x≥0,解得x≥﹣2.故答案是:x≥﹣2.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(3分)(2013•丹东一模)如图,直线a∥b,∠1=55°,则∠2=125°.考点:平行线的性质.专题:探究型.分析:先根据平行线的性质求出∠3的度数,再由两角互补的性质求出∠2的度数即可.解答:解:∵直线a∥b,∠1=55°,∴∠3=∠1=55°,∵∠2+∠3=180°,∴∠3=180°﹣∠2=180°﹣55°=125°.故答案为:125°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.11.(3分)(2012•沙河口区模拟)不等式组的解集为1<x<4.考点:解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>1,由②得,x<4,故此不等式组的解集为:1<x<4.故答案为:1<x<4.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(3分)(2012•沙河口区模拟)某印刷厂一月份印书17万册,三月份印书30万册,若设二、三月份平均每月的增长率为x,那么根据题意,可列出的方程是17(1+x)2=30.考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据一般用增长后的量=增长前的量×(1+增长率),如果设平均每月增率是x,那么根据三月份印书30万册可以列出方程.解答:解:设平均每月的增长率为x,17(1+x)2=30.故答案为:17(1+x)2=30.点评:此题主要考查了由实际问题抽象出一元二次方程,求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).13.(3分)(2012•沙河口区模拟)同时掷两枚质地均匀的硬币,向上一面都是正面的概率是.考点:列表法与树状图法.分析:用列举法,可求得同时掷两枚质地均匀的硬币所出现的所有等可能的结果,又由向上一面都是正面的有1种情况,利用概率公式求解即可求得答案.解答:解:∵同时掷两枚质地均匀的硬币出现的情况有:正正,正反,反正,反反,又∵向上一面都是正面的有1种情况,∴向上一面都是正面的概率是:.故答案为:.点评:此题考查了列举法求概率的知识.此题比较简答,注意列举法需要不重不漏的列举出所有的结果,注意概率=所求情况数与总情况数之比.14.(3分)(2012•沙河口区模拟)抛物线y=x2+2x﹣3,当y<0时,x的取值范围为﹣3<x<1.考点:二次函数的性质.专题:常规题型.分析:令线y=x2+2x﹣3<0,解出x的取值范围即可.解答:解:令y=x2+2x﹣3<0,即(x+3)(x﹣1)<0,解得﹣3<x<1,故答案为﹣3<x<1.点评:本题主要考查二次函数的性质,解答本题的关键是熟练掌握二次函数的图象的特点,此题难度不大.15.(3分)(2012•沙河口区模拟)如图,正方形剪去四个角后成为一个正八边形,如果正八边形的边长为2,则原正方形的边长为2+2.考点:正多边形和圆.分析:设剪去三角形的直角边长x,利用正八边形的边长为2,根据勾股定理可得,三角形的直角边长,进而求出原正方形的边长.解答:解:∵正方形剪去四个角后成为一个正八边形,根据正八边形每个内角为135度,∴∠CAB=∠CBA=45°,设剪去△ABC边长AC=BC=x,可得:x2+x2=4,解得:x=,则EC=BC+DE+BD=2+2,故原正方形的边长为:2+2.故答案为:2+2.点评:本题考查了正方形和正八边形的性质以及勾股定理的运用,解题的关键是设出未知数用列方程的方法解决几何问题.16.(3分)(2012•沙河口区模拟)如图,在直角坐标系中,O为原点,点B、C的坐标分别为(2,0)、(8,0),点A为反比例函数图象上的一点,∠ACO=30°,且AC=BC.则反比例函数解析式为y=.考点:反比例函数综合题.专题:探究型.分析:先由B、C两点坐标求出BC的长即可得出AC的长,过点A作AD⊥x轴,在Rt△ACD中利用直角三角形的性质可求出AD及CD的长,故可得出A点坐标,设反比例函数的解析式为y=,把A点坐标代入即可求出k的值,进而得出其解析式.解答:解:∵点B、C的坐标分别为(2,0)、(8,0),∴BC=8﹣2=6,∵AC=BC,∴AC=6,过点A作AD⊥x轴,在Rt△ACD中,∵∠ACO=30°,∴AD=AC=×6=3,CD=AC•cos30°=6×=3,∴OD=OC﹣CD=8﹣3,∵点A在第一象限,∴A(8﹣3,3),设反比例函数的解析式为;y=,∵点A(8﹣3,3)在反比例函数的图象上,∴3=,解得k=24﹣9,∴反比例函数的解析式为:y=.故答案为:y=.点评:本题考查的是反比例函数综合题,根据题意作出辅助线,利用直角三角形的性质求出A点坐标是解答此题的关键.三.解答题17.(2012•沙河口区模拟)计算:.考点:分式的混合运算.分析:首先计算括号内的式子,把除法转化成乘法,然后进行约分即可求解.解答:解:原式=÷=•=a﹣1点评:本题考查了分式的混合运算,正确理解运算顺序是关键.18.(2011•清远)解方程:x2﹣4x﹣1=0.考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5,∴x=2±,∴x1=2+,x2=2﹣.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.19.(2012•沙河口区模拟)如图,平行四边形ABCD中,点E、F在对角线AC上,且AF=CE,求证:∠ADF=∠EBC.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由平行线的性质,易得∠CAD=∠ACB,由AF=CE,利用SAS即可判定△AFD≌△CEB,继而证得:∠ADF=∠EBC.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠CAD=∠ACB,在△AFD和△CEB中,,∴△AFD≌△CEB(SAS),∴∠ADF=∠EBC.点评:此题考查了平行四边形的性质、全等三角形的判定与性质以及平行线的性质.此题难度不大,注意数形结合思想的应用.20.(2012•沙河口区模拟)对某班50名同学每月所花费的零用钱情况进行了统计,绘制成下面的统计图.(1)求这50名同学每月所花费的零用钱的平均数;(2)这组数据的众数和中位数是多少?(3)该校共有学生1200名,请根据该班的每月所花费的零用钱情况,估计这个中学的同学每月所花费的零用钱总数大约是多少元?考点:条形统计图;加权平均数;中位数;众数.专题:图表型.分析:(1)根据加权平均数的计算方法列式计算即可得解;(2)根据众数的定义,找出人数最多的金额就是众数;根据中位数的定义,按照钱数从少到多排列,找出50人中的第25、26两人的零用钱数,然后求平均数就是中位数;(3)用学生人数乘以平均每人所花费的零用钱数,进行计算即可得解.解答:解:(1)(10×7+20×15+30×18+40×10)÷50,=(70+300+540+400)÷50,=1310÷50,=26.2元;(2)由图可知,30元的人数最多,是18人,所以,这组数据的众数是30元,按照钱数从少到多排列,50人中的第25人的钱数是30元,第26人的钱数是30元,(30+30)÷2=30元,所以,这组数据的中位数是30元;(3)1200×26.2=31440(元),答:这个中学的同学每月所花费的零用钱总数大约是31440元.点评:本题考查的是条形统计图的运用,条形统计图能清楚地表示出每个项目的数据,还考查了平均数、中位数、众数的认识.四、解答题21.(2012•沙河口区模拟)军舰在点A处接到命令,要求它向位于点B处的渔船进行营救.已知军舰在渔船的北偏西53°方向60海里处,渔船沿正西方向航行.如果军舰立即沿东南方向航行,恰好能在点C处与渔船相遇.(1)求军舰行驶的距离AC的长;(2)求渔船行驶距离BC的长;(结果精确到0.1km.参考数据:≈1.41,sin53°=0.7986,cos53°=0.6018,tan53°=1.3270)考点:解直角三角形的应用-方向角问题.分析:(1)作AD⊥BC,垂足点D在BC的延长线上,根据已知得出在Rt△BAD中,∠D=90°,∠BAD=53°,cos53°=,即可求出AD的长,再利用等腰直角三角形的性的性质得出AD=CD,即可求出答案;(2)利用sin53°=,求出BD的长,进而得出BC的长即可.解答:解:(1)作AD⊥BC,垂足点D在BC的延长线上,由题意得出:∵∠BAD=53°,∠ACD=45°,在Rt△BAD中,∠D=90°,∠BAD=53°,cos53°=,sin53°=,∴AD=ABcos53°=0.60×60=36,在Rt△ADC中,∠D=90°,∠ACD=45°,∴AD=CD=36,AC=AD=36≈50.8,答:军舰行驶的距离AC的长50.8海里;(2)由(1)可得:BD=sin53°•AB=0.8×60=48,故BC=BD﹣CD≈12.答:渔船行驶距离BC的长为12海里.点评:此题考查了解直角三角形的应用,关键是解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(2010•聊城)如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.(1)若AD=3,BD=4,求边BC的长;(2)取BC的中点E,连接ED,试证明ED与⊙O相切.考点:切线的判定;勾股定理;圆周角定理;相似三角形的判定与性质.专题:代数几何综合题;压轴题;数形结合.分析:(1)根据勾股定理易求AB的长;根据△ABD∽△ACB得比例线段可求BC的长.(2)连接OD,证明DE⊥OD.解答:(1)解:∵AB为直径,∴∠ADB=90°,即BD⊥AC.在RT△ADB中,∵AD=3,BD=4,∴由勾股定理得AB=5.∵∠ABC=90°,BD⊥AC,∴△ABD∽△ACB,∴=,即=,∴BC=;(2)证明:连接OD,∵OD=OB,∴∠ODB=∠OBD;又∵E是BC的中点,BD⊥AC,∴DE=BE,∴∠EDB=∠EBD.∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴DE⊥OD.∴ED与⊙O相切.点评:①直角三角形斜边上的高分得的两个三角形与原三角形相似;②证过圆上一点的直线是切线,常作的辅助线是连接圆心和该点,证直线和半径垂直.23.(2012•沙河口区模拟)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图,根据图象所提供的信息,解答问题:(1)他们在进行5000米的长跑训练,在0<x<15的时间段内,速度较快的人是甲;(2)求甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式,并求当x=15时,两人相距的距离;(3)在15<x<20的时间段内,求两人速度之差.考点:一次函数的应用.分析:(1)先根据图象信息可知,他们在进行5000米的长跑训练,再根据直线倾斜程度即可知甲的速度较快;(2)由甲运动员的图象经过(0,5000),(20,0),先运用待定系数法求出甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式,再将x=15代入,得出甲距终点的路程y,又由图象可知此时乙距终点的路程,两者相减即可;(3)先分别求出在15<x<20的时间段内,两人的速度,再将它们相减即可.解答:解:(1)根据图象信息可知,他们在进行5000米的长跑训练,在0<x<15的时间段内,直线y甲的倾斜程度大于直线y乙的倾斜程度,所以甲的速度较快.故答案为5000,甲;(2)设甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式为:y=kx+b,∵直线y=kx+b经过点(0,5000),(20,0),∴b=5000,20k+b=0,解得k=﹣250,b=5000.∴y=﹣250x+5000,∴当x=15时,甲距终点的路程y=﹣250×15+5000=1250,∵由图象可知此时乙距终点的路程为2000,∴2000﹣1250=750.即当x=15时,两人相距750米;(3)∵当15<x<20时,甲的速度为5000÷20=250,乙的速度为2000÷5=400,又∵400﹣250=150,∴在15<x<20的时间段内,两人速度之差为150米/分.点评:本题考查了一次函数的应用,难度中等.解决此类题目的关键是从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.本题的突破点是认清甲运动员的图象.五.解答题24.(2012•沙河口区模拟)在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,作PE⊥AP,PE交射线DC于点E,射线AE交射线BC于点F,设BP=x,CE=y.(1)如图,当点P在边BC上时(点P与点B、C都不重合),求y关于x的函数解析式,并写出它的定义域;(2)当x=3时,求CF的长;(3)当tan∠PAE=时,求BP的长.考点:相似三角形的判定与性质;矩形的性质;解直角三角形.分析:(1)PC在BC上运动时,要求y关于x的函数解析式,只需要用勾股定理表示PE2=PC2+EC2就可以使问题到解决,而关键是解决PE2,又在Rt△APE中由勾股定理求得,从而解决问题.(2)把x=3的值代入第一问的解析式就可以求出CE的值,再利用三角形相似就可以求出CF的值.(3)由条件可以证明△ABP∽△PCE,可以得到==2,再分情况讨论,从而求出BP的值.解答:解:(1)∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠BCD=∠D=90°,∵BP=x,CE=y,∴PC=5﹣x,DE=4﹣y,∵AP⊥PE,∴∠APE=90°,∠1+∠2=90°,∵∠1+∠3=90°,∴∠2=∠3,∴△ABP∽△PCE,∴,∴,∴y=,自变量的取值范围为:0<x<5;(2)当x=3时,y=,=,即CE=,∴DE=,∵四边形ABCD是矩形,∴AD平行于BF.∴△AED∽△FEC,∴,∴,∴CF=3;(3)根据tan∠PAE=,可得:=2易得:△ABP∽△PCE∴==2于是:==2 ①或==2 ②解得:x=3,y=1.5或x=7,y=3.5.∴BP=3或7.点评:本题考查了相似三角形的判定与性质,矩形的性质,解直角三角形以及勾股定理的运用.25.(2012•沙河口区模拟)如图,正方形ABCD与正方形BEFG有公共顶点B,点G在边BC上,AG的延长线交CE于点H,连接BH.(1)求证:∠BAG=∠BCE;(2)若AB=2BG,求的值;(3)若AB=kBG,直接写出的值(用含k的代数式表示).考点:相似形综合题.分析:(1)由四边形ABCD与BEFG是正方形,可得AB=CB,∠ABC=∠CBE=90°,GB=EB,然后由SAS即可判定△ABG≌△BCE,则可证得:∠BAG=∠BCE;(2)由(1)易得△AHE是直角三角形,△AGB∽△CGH,继而可得△BGH∽△AGC,然后由相似三角形的对应边成比例,可得BH•AG=AC•BG,又由在Rt△AHE和Rt△ABG中,cosHAE==,可得AH•AG=AB•AE,则可求得=,又由AB=2BG,即可求得的值;(3)由(2)可得=,又由AB=kBG,即可求得的值.解答:(1)证明:∵四边形ABCD与BEFG是正方形,∴AB=CB,∠ABC=∠CBE=90°,GB=EB,在△ABG和△BCE中,∵,∴△ABG≌△BCE(SAS),∴∠BAG=∠BCE;(2)连接AC,∵由(1)得:∠BAG=∠BCE,∴∠BAG+∠BEH=∠BCE+∠BEH=180°﹣∠CBE=90°,∴∠AHE=180°﹣(∠BAG+∠BEH)=90°∵∠AGB=∠CGH,∴△AGB∽△CGH,∴,∴,∵∠BGH=∠AGC,∴△BGH∽△AGC,∴,即BH•AG=AC•BG,在Rt△AHE和Rt△ABG中,∵cosHAE==,∴AH•AG=AB•AE,∴=,∴=,∵AB=2BG,∴==;(3)由(2)得:=,∵AB=kBG,∴∴==.点评:此题考查了相似三角形的判定与性质、正方形的性质、全等三角形的判定与性质以及三角函数的定义.此题难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想的应用.26.(2012•沙河口区模拟)如图,二次函数y=ax2+bx+c的图象与x轴、y轴分别交于A(﹣1,0)、B(5,0)、C (0,4)三点,顶点为点D.(1)求二次函数的解析式,并求出顶点坐标;(2)x轴上方的抛物线是否存在异于B、C的点P,过点P作x轴的垂线,垂足为点M,使直线BC平分△PMB的面积?如果存在,请求出点P的坐标;如果不存在,请说明理由;(3)抛物线的对称轴上是否存在点Q,使AQ等于点B到直线AQ的距离?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.考点:二次函数综合题.专题:计算题.分析:(1)根据待定系数法,将A(﹣1,0)、B(5,0)、C(0,4)分别代入解析式,组成三元一次方程组,解答即可;(2)设直线为BC为y=kx+b,利用待定系数法求出其解析式,设点P的坐标为(x,﹣x2+x+4),设PM交BC于G,则点G为根据BC平分△PMB的面积,得到PG=GM,进而得到方程x2﹣6x+5=0,求出x 的值即为P点横坐标,代入解析式即可求出P点纵坐标,从而求出P点坐标;(3)连接AQ、BQ,作BN⊥AQ,垂足为N,设出Q点坐标,利用勾股定理表示出AQ的长,求出AQ的函数表达式,根据点到直线的距离公式,求出BN的表达式,利用△ABQ的面积的不同求法,建立等式,求出m的值,可得Q点的坐标.解答:解:(1)∵二次函数y=ax2+bx+c的图象过A(﹣1,0),B(5,0),C(0,4)三点,∴,解得,∴y=﹣x2+x+4,∴y=﹣x2+x+4=﹣(x﹣2)2+,∴点D的坐标为(2,).(2)设直线为BC为y=kx+b,则,解得,则y=﹣x+4.设点P的坐标为(x,﹣x2+x+4),∵BC平分△PMB的面积,∴PG=GM,∴﹣x2+x+4﹣(﹣x+4)=﹣x+4,∴x2﹣6x+5=0,解得x1=1,x2=5(不合题意,舍),∴点P的坐标为(1,).(3)∵A点坐标为(﹣1,0),B点坐标为(5,0),∴函数对称轴坐标为x=2,设Q点坐标为(2,m),连接AQ、BQ,作BN⊥AQ,垂足为N.设AQ解析式为y=kx+b,将A(﹣1,0),Q(2,m)分别代入解析式得,,解得,函数解析式为y=x+,整理得mx﹣3y+m=0,根据两点间距离公式得BN=,∵AQ=,BN=,且AQ=BN,整理得,m2﹣6m+9=0,m2+6m+9=0,解得m=3或m=﹣3.故Q点坐标为(2,3)或(2,﹣3).点评:本题考查了二次函数综合题,涉及待定系数法求一次函数、二次函数解析式、点到直线的距离公式、勾股定理、三角形面积求法等知识,要注意利用图形.。
2012年苏州中考数学模拟卷(四)含答案

2012年苏州中考数学模拟卷(四)(考试时间:120分钟,满分:130分)一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填入括号内)1.(2011苏州)2×(-12)的结果是 ( ) A .-4 B .-1 C .-14 D .322.下列运算中,正确的是 ( )A .4m -m =3B .-(m -n)=m +nC .(m 2)3=m 6D .m 2÷m 2=m 3.在实数范围内,x 有意义,则x 的取值范围是 ( ) A .x ≥0 B .x ≤0 C .x >0 D .x <04.(2011宁波)不等式x >1在数轴上表示正确的是 ( )5.如图所示的四个立体图形中,左视图是圆的个数是 ( )A .4B .3C .2D .16.反比例函数y =-2k x(k 为常数,k ≠0)的图象位于 ( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 7.(2011烟台)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,则这组数据的中位数和极差分别是 ( )A .2.1,0.6B .1.6,1.2C .1.8 ,1.2D .1.7,1.28.如图,已知⊙O 的半径为12,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于 ( ) A .OM 的长 B .2OM 的长 C .CD 的长 D .2CD 的长9.二次函数y =-2x 2+4x +1的图象如何平移就得到y =-2x 2的图象 ( ) A .向左平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向上平移3个单位 C .向左平移1个单位,再向下平移3个单位 D .向右平移1个单位,再向下平移3个单位10.(2011聊城)如图,用围棋子按一定的规律摆图形,则摆 第n 个图形需要围棋子的枚数是 ( )A .5nB .5n -1C .6n -1D .2n 2+1二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在横线上)11.已知地球上海洋面积约为316000000km 2,316000000这个数用科学记数法可表示为______. 12.分解因式:xy 2-2xy +2y -4=______.13.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元.14.根据如图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为______.15.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1-7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是______. 16.已知点P 的坐标为(1,1),若将点P 绕原点顺时针旋转45°,得到点P 1,则点P 1的坐标为______.17.小刚有一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是______.18.将宽2 cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是______.三、解答题(本大题共有11小题,共76分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题5分)计算:(1)()()12991310.125853-⎛⎫-+-⨯-- ⎪⎝⎭;(2)22242442a a a a a a a -⎛⎫⎛⎫-÷- ⎪ ⎪++++⎝⎭⎝⎭.20.(本题5分)(2011威海)解方程:23311x x x +---=0.21.(本题5分)某市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台. (1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?22.(本题6分)某工厂用A 、B 、C 三台机器加工生产一种产品,对2011年第一季度的生产情况进行统计,图(1)是三台机器的产量统计图,图(2)是三台机器产量的比例分布图.(图中有部分信息未给出) (1)利用图(1)信息,写出B 机器的产量,并估计A 机器的产量;(2)综合图(1)和图(2)信息,求C 机器的产量.23.(本题6分)某校九年级两个班各为某灾区捐款1 800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.24.(本题6分)如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF =45°,连接BO并延长交AC于点G,AB=4,AG=2.(1)求∠A的度数;(2)求⊙O的半径.25.(本题8分)如图,ABCD是正方形.G是BC上的一点,DE⊥AG于E,BF⊥AG于F.(1)求证:△ABF ≌△DAE;(2)求证:DE=EF+FB.26.(本题8分)如图,某剧组在东海拍摄广泛风光片,拍摄基地位于A处,在其正南方向15海里处有一小岛B,在B的正东方向20海里处有一小岛C,小岛D位于AC上,且与小岛A的距离为10海里.(1)求∠A的度数和点D到BC的距离;(2)摄制组甲从A处乘甲船出发,沿A→B→C的方向匀速航行,摄制组乙从D处乘乙船出发,沿南偏西方向匀速直线航行,已知甲船的速度是乙船速度的2倍,若两船同时出发并且在B、C间的F处相遇.问相遇时乙船航行了多少海里?(结果精确到0.1海里)(t a n53°≈43,t a n37°≈0.753)27.(本题8分)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,若从中任意摸出一个球,这个球是白球的概率为25.(1)求口袋中红球的个数;(2)把口袋中的球搅匀后摸出一个球,放回搅匀再摸出第二个球,求摸到的两个球是一红一白的概率.(请结合树状图或列表加以解答)28.(本题9分)如图,四边形OABC是面积为4的正方形,函数y=kx(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC'、NA'B C.设线段MC'、NA,分别与函数y=kx(x>0)的图象交于点E、F,求线段EF所在直线的解析式.29.(本题10分)已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2);直线x=m(m>2)与x轴交于点D.(1)求二次函数的解析式;(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得以E、D、B为顶点的三角形与以A、O、C 为顶点的三角形相似,求E点坐标(用含m的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.参考答案1.B 2.C 3.A 4.C 5.D 6.C 7.D 8.B 9.C 10.C11.3.16×10812.(xy+2)(y-2) 13.96 14.1315.5716.(2,0)17.240πcm218.433cm 19.(1)-2 (2)()12a a+20.x=021.(1)10台方案一:购进甲、乙、丙三种不同型号的电视机分别为40台、58台、10台;方案二:购进甲、乙、丙三种不同型号的电视机分别为44台、53台、11台;方案三:购进甲、乙、丙三种不同型号的电视机分别为48台、48台、12台.22.(1)B机器的产量为150件,A机器的产量约为210件(2)240件.23.略24.(1)90°(2)4325.略26.(1)∠A≈53°D到BC的距离为9海里.(2)相遇时乙船航行了9.7海里27.(1)2个(2)8 2528.(1)4 (2)y=-x+5 29.(1)y=-x2+3x-2 (2)E1(m,22m) E2(m,4-2m) (3)存在m=72四边形ABEF的面积为6。
2012年中考数学模拟试题及答案

2012年中考数学模拟试题一、选择题:(本大题6个小题,每小题3分,共18分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.3的倒数是( )A .-3B .3C .13D .13-2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x 3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法确定 4.使分式24x x -有意义的x 的取值范围是( )A .x =2B .x ≠2C .x =-2D .x ≠-2 5.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20° 6.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是( )A .3B .4C .5D .6二、填空题:(本大题9个小题,每小题3分,共27分)在每小题中,请将答案直接填在题后的横线上. 7.某市某天的最高气温是17℃,最低气温是5℃,那么当天的最大温差是____________℃. 8.分解因式:x 2-4=____________.9. 有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 . 10.如图4,在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,则DE = . 11.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为____________. 12.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为____________立方米.13.如图,已知函数y =ax+b 和y =kx 的图象交于点P, 则根据图象可得,关于y ax by kx =+=⎧⎨⎩的二元一次方程组的解是____________.14.如图所示,A 、B 是4×5网络中的格点,网格中的每个小正方形的边长为1, 请在图中清晰标出使以A、B、C为顶点的三角形 是等腰三角形的所有格点C的位置.15.如图,△ABC 内接于⊙O ,∠A 所对弧的度数为120°.∠ABC 、∠ACB 的角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点F .以下四个结论:①1cos 2BFE ∠=;②BC =BD ;③EF =FD ;④BF =2DF .其中结论一定正确的序号数是____________. 三、解答题:下列各题解答时必须给出必要的演算过程或推理步骤.16.( 8分)计算:12tan 601)--︒++17. (9分)由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD .18.(9分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有____________套,B 型玩具有____________套,C 型玩具有____________套. (2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为____________,每人每小时能组装C 型玩具____________套.19.(9分)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的情况下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号稻谷高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.⑴当Ⅱ号稻谷的国家收购价是多少时,在田间管理、土质和面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷的收益相同? ⑵去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家收购价不变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克? 20.(9分)如图7,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .(1)求∠ABD 的度数; (2)求线段BE 的长.21.(9分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围); (2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.22. (10分)如图9,在平面直角坐标系中,已知A 、B 、C 三点的坐标分别为A (-2,0),B (6,0),C (0,3).(1)求经过A 、B 、C 三点的抛物线的解析式;(2)过C点作CD 平行于x 轴交抛物线于点D ,写出D 点的坐标,并求AD 、BC 的交点E 的坐标; (3)若抛物线的顶点为P,连结PC 、PD ,判断四边形CEDP 的形状,并说明理由.23.(11分) 已知菱形ABCD 的边长为1.∠ADC=60°,等边△AEF 两边分别交边DC 、CB 于点E 、F 。
2012年中考模拟考试数学试卷(含答案)

2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。
2012年最新中考数学模拟试题四
2012年最新中考数学模拟试题四*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.sin30°的值为( ) A .21B .23C .33D .222. △ABC 中,∠A=50°,∠B=60°,则∠C=( )A .50° B.60° C.70° D.80°3.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处. B .两处 C .三处. D .四处. 4.点P (-2,1)关于x 轴对称的点的坐标是( )A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)5. 若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 ( )A .1B . 2C .3D .4 6.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明 掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A.118 B.112 C.19 D.167.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )A .B .C .D . 8.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察2 13局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。
在此案中能肯定的作案对象是( )A .嫌疑犯AB .嫌疑犯BC .嫌疑犯CD .嫌疑犯A 和C二、填空题(每小题3分,共24分)9.据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为______千克.10.用一个半径为6㎝的半圆围成一个圆锥的侧面,则这个圆锥的侧面积为 ㎝2.(结果保留π)11.△ABC 中,AB =6,AC =4,∠A=45°,则△ABC 的面积为 .12.若一次函数的图象经过反比例函数4y x=-图象上的两点(1,m )和(n ,2),则这个一次函数的解析式是 .13. 某品牌的牛奶由于质量问题,在市场上受到严重冲击,该乳业公司为了挽回市场,加大了产品质量的管理力度,并采取了“买二赠一”的促销手段,一袋鲜奶售价1.4元,一箱牛奶18袋,如果要买一箱牛奶,应该付款 元.14.通过平移把点A(2,-3)移到点A’(4,-2),按同样的平移方式,点B(3,1)移到点B′, 则点B′的坐标是 ________15.如图,在甲、乙两地之间修一条笔直的公路, 从甲地测得公路的走向是北偏东48°。
2012年广东省中考数学模拟试卷(四)
2012年广东省中考数学模拟试卷(四)一、选择题(本大题共5小题,每小题4分,共20分).2.(4分)(2013•北碚区模拟)函数的自变量取值范围是()3.(4分)(2009•襄阳)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20 000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示4.(4分)(2009•东营)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE 等于()5.(4分)(2012•兰州)一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在横线上.6.(4分)(2009•内江)分解因式:﹣x3﹣2x2﹣x=_________.3次.测量结果统计如下表:_________℃.8.(4分)(2009•怀化)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是_________(写出一个即可).9.(4分)(2009•荆州)计算:=_________.10.(4分)(2009•武汉)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第6个图形有_________个圆.三、解答题(本大题共5小题,每小题6分,共30分)11.(6分)已知二次函数,求其顶点坐标及它与y轴的交点坐标.12.(6分)(2012•浙江二模)请你先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值.()÷.13.(6分)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,求∠BAD的度数.14.(6分)一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n.若把m,n作为点A的横、纵坐标,那么点A(m,n)在函数y=x的图象上的概率是多少?15.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.四、解答题(本大题共4小题.每小题7分.共28分)16.(7分)(2009•江苏)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:132(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.17.(7分)2010年我国终于走出了金融危机的阴影,经济形势逐步好转,老百姓的投资热情高涨.王先生以每股5元的价格买入“工商银行”股票1000股,已知在沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)18.(7分)(2009•北京)如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.19.(7分)已知,如图,A、B、C三个村庄在一条东西走向的公路沿线上,AB=12千米,在B村的正北方向有一个D村,测得∠DAB=45°,∠DCB=28°,今将△ACD区域进行规划,除其中面积为0.5平方千米的水塘外,准备把剩余的一半作为绿化用地.(1)求BC的长.(2)求绿化地的面积.(结果精确到0.1,sin28°=0.4695,sin62°=0.8829,tan28°=0.5317,tan62°=1.8808)五、解答题(本大题共3小题,每小题9分,共27分)20.(9分)(2009•泰安)如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.21.(9分)如图,利用一面墙(墙的长度不超过45m),用79m长的篱笆围一个矩形场地,并且与墙相对留有1米宽建造一扇门方便出入(用其他材料).(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?分析:这是一道形积问题.解答这样的问题并不难,只要利用矩形面积公式就能列出方程.本题要注意墙长的作用对方程解的限制性.因为墙的长度只有45米,所以对于矩形的边长(对着墙的一边)就不能超过45米,否则无法利用墙围成矩形篱笆.22.(9分)(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.2012年广东省中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共5小题,每小题4分,共20分).2.(4分)(2013•北碚区模拟)函数的自变量取值范围是()3.(4分)(2009•襄阳)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20 000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示4.(4分)(2009•东营)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE 等于()5.(4分)(2012•兰州)一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在横线上.6.(4分)(2009•内江)分解因式:﹣x3﹣2x2﹣x=﹣x(x+1)2.3次.测量结果统计如下表:36.4℃.8.(4分)(2009•怀化)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是AC=AE 或∠C=∠E或∠B=∠D(写出一个即可).9.(4分)(2009•荆州)计算:=3.+210.(4分)(2009•武汉)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第6个图形有46个圆.三、解答题(本大题共5小题,每小题6分,共30分)11.(6分)已知二次函数,求其顶点坐标及它与y轴的交点坐标.=(()12.(6分)(2012•浙江二模)请你先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值.()÷.13.(6分)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,求∠BAD的度数.14.(6分)一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n.若把m,n作为点A的横、纵坐标,那么点A(m,n)在函数y=x的图象上的概率是多少?的图象上的概率是:=15.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.四、解答题(本大题共4小题.每小题7分.共28分)16.(7分)(2009•江苏)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:80132(注:等第A、B、C、D分别代表优秀、良好、合格、不合格)(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.×17.(7分)2010年我国终于走出了金融危机的阴影,经济形势逐步好转,老百姓的投资热情高涨.王先生以每股5元的价格买入“工商银行”股票1000股,已知在沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)≥18.(7分)(2009•北京)如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.求出(.19.(7分)已知,如图,A、B、C三个村庄在一条东西走向的公路沿线上,AB=12千米,在B村的正北方向有一个D村,测得∠DAB=45°,∠DCB=28°,今将△ACD区域进行规划,除其中面积为0.5平方千米的水塘外,准备把剩余的一半作为绿化用地.(1)求BC的长.(2)求绿化地的面积.(结果精确到0.1,sin28°=0.4695,sin62°=0.8829,tan28°=0.5317,tan62°=1.8808)[(池塘BDC==[([×五、解答题(本大题共3小题,每小题9分,共27分)20.(9分)(2009•泰安)如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.21.(9分)如图,利用一面墙(墙的长度不超过45m),用79m长的篱笆围一个矩形场地,并且与墙相对留有1米宽建造一扇门方便出入(用其他材料).(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?分析:这是一道形积问题.解答这样的问题并不难,只要利用矩形面积公式就能列出方程.本题要注意墙长的作用对方程解的限制性.因为墙的长度只有45米,所以对于矩形的边长(对着墙的一边)就不能超过45米,否则无法利用墙围成矩形篱笆.为(米,即米.x时,=)不能.因为由22.(9分)(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.,。
2012年中考模拟数学试题及答案
初三检测卷(数学)试卷Ⅰ(选择题,共40分)一、选择题(本大题有10小题,每小题4分,共40分。
请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.-4的绝对值是( ▲ )A .-4B .4C .±4D .41-2.2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔 下窄,又被称为“伦敦碗”,预计可容纳8万人,分为两层,上层是55000个临时座位.将55000用科学记数法表示为 ( ▲ )A . 55×103B . 0.55×105C . 5.5×104D . 5.5×103 3.下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x +=4.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是 ( ▲ )5.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表: 则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )A .7,7 B .5,5 C .7,5D .5,76.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕 着点A 逆时针旋转得到△AC B '',则sin ∠B '的值为( ▲ ) A .31 B .1010 C . 10103 D . 3 7.如图,某种牙膏上部圆的直径为3cm ,下部底边的长度为4.8cm,现要 制作长方体牙膏盒,牙膏盒的上面是正方形,以下列数据作为正方形边 长制作牙膏盒,既节省材料又方便取放的是( ▲ ) (取1.4 )每天使用零花钱(单位:元)3 5 7 10 20 人数25431(第4题)A .B .C .D .A . 2.4cmB . 3cmC . 3.6cm D. 4.8cm 8.如图,在直角坐标系中,⊙O 的半径为1,则直线y=﹣x+与⊙O的位置关系是( ▲ )A .相切B .相交C .相离D .以上三种情形都有可能9.如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B (4,2),一次函数1y kx =-的图象平分它的面积,则k 的值为( ▲ )A .1B .21 C .-1 D .210.如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且30CDE ∠=︒.设AD=x , BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ▲ )试卷Ⅱ(非选择题,共110分)二、填空题(本大题有6小题,每小题5分, 共30分。
最新2012-2013年数学中考冲刺预测模拟试卷(4)
最新2012-2013年中考冲刺预测模拟试卷(4)数学试题(总分120分考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4.考试时,不允许使用科学计算器.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣2012的相反数是()A.﹣2012 B. 2012 C.D.2.某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为(故选C )3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.直角三角形两直角边和为7,面积为6,则斜边长为()A. 5B. C. 7D.5.已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()A.55°B.100°C.110°D.125°F DE CBA6.东营市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()ABCD FOG HE图7BOA C O ACBA .5500(1+x )2=4000B .5500(1﹣x )2=4000 C .4000(1﹣x )2=5500 D .4000(1+x )2=55007.如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论正确的是( ) ①.弦AB 的长等于圆内接正六边形的边长 ②.弦AC 的长等于圆内接正十二边形的边长 ③.弧AC=弧AB④.∠BAC =30°A .①②④B .①③④C .②③④D .①②③8.使代数式x x --87有意义的自变量x 的取值范围是 ( )A.7≥xB. 87≠>x x 且C. 87≠≥x x 且D. 7>x9.关于x 、y 的方程组3,x y m x my n -=⎧⎨+=⎩的解是1,1,x y =⎧⎨=⎩则m n -的值是( )故选D .10.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( )A .6B .8C .9.6D .1011.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( )12.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中正确结论的个数为( ) ①OH =21BF ; ②∠CHF =45°; ③GH =41BC ;④DH2=HE ·HBA. 1个B. 2个C. 3个D. 4个stO A stOB stO C stOD 图4A G BHC FDE第10题数学试题第Ⅱ卷(非选择题共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.地球的表面积约为5.1亿Km2,其中陆地面积约为地球表面积的0.29,则地球上陆地面积约为14.分解因式:a2b-2ab2+b3=.15.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为.16.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是cm.17在x轴正半轴上,斜边AC上的中线BD的反向延长线交y轴负半轴于点E,双曲线xy=(x>0)的图像经过点A,若8=∆EBCS则k=_____________三、解答题:本大题共7小题,共64得分评卷人18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫⎝⎛--;(2)(本小题满分4分)解不等式组:3265212x x x x -<+⎧⎪⎨-+>⎪⎩,并把解集在数轴上表示出来.得 分 评 卷 人19. (本题满分9分)某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.(1)每摸一次球所获购物卷金额的平均值是多少?(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?得 分评 卷 人20. (本题满分9分)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.得 分评 卷 人(第20题图)A D NEC OM得分评卷人21.(本题满分9分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).得分评卷人22.(本题满分9分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图7所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=50米,若灰太狼以5m/s的速度从城堡底部D处出发,懒羊羊以3m/s沿DB延长线方向逃跑,灰太狼几秒钟后能抓到懒羊羊?B23.(本题满分10分)如图(1),在直角梯形OABC中,BC∥OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=35.(1)写出顶点A、B、C的坐标;(2)如图(2),点P为AB边上的动点(P与A、B不重合),PM⊥OA,PN⊥OC,垂足分别为M,N.设PM =x,四边形OMPN的面积为y.①求出y与x之间的函数关系式,并写出自变量x的取值范围;②是否存在一点P,使得四边形OMPN的面积恰好等于梯形OABC的面积的一半?如果存在,求出点P 的坐标;如果不存在,说明理由.得分评卷人24.(本题满分11分)如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.(第24题图1)参考答案: 一、选择题BCCACDDCCBB二、二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13.28105.1km ⨯14. b(a-b)215.1016. 20 cm . 17.16三、解答题: (2)解:由(1)得:4<x得 分 评 卷 人…… 1′由(2)得:0>x不等式组的解为:40<<x 在数轴上表示为:19.解:(1) ∵P(摸到红球)= 202 , P(摸到兰球)= 203,P(摸到黄球) = 205 , P(摸到白球)= 2010,∴每摸一次球所获购物卷金额的平均值为:80×202+30×203+10×205=15(元)(2)∵15>10,∴两种方式中我会选择摸球这种方式,此时较合算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A CDEF G H2012年中考数学模拟试题4考生须知:1. 本试卷满分120分,考试时间100分钟。
2. 答题前,在答题纸上写姓名和准考证号。
3. 必须在答题纸的对应答题位置上答题,写在其它地方无效。
答题方式详见答题纸上的说明。
4. 考试结束后,试题卷和答题纸一并上交。
试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列各式中,正确的是 ( )A. 9132-=- B. ()9132-=--C. 9312=⎪⎭⎫⎝⎛- D. 9312-=⎪⎭⎫⎝⎛--2. 下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( ) A .1 B .12 C .34 D .144. 如图,是由若干个大小相同且边长为1的小正方体堆砌而成的几何 体,那么其三种视图的面积之和是( )(2010•宜宾改编) A. 11 B. 12 C. 13 D. 145. 已知⊙O 1、⊙O 2的半径分别是︒=30tan 31r 、0231r π=+,若两圆相交,则圆心距O 1O 2可能取的值是( ).(2010长沙改编) A. 2 B. 4 C. 6 D. 86. 有一圆内接正八边形ABCDEFGH ,若△ADE 的面积为10,则正八边 形ABCDEFGH 的面积为何?A. 40B. 50C. 60D. 80B CE7. 如图,半圆AOB 绕着A 点逆时针旋转一个角度,点B 旋转到点C ,若图中阴影部分的面积恰好等于半圆AOB 的面积,问旋转的这个角度等于多少度 ( )(2010•临沂改编)(A) 30° (B) 45° (C) 60° (D) 75°8. 以数轴上的原点O 为圆心,3为半径的扇形中,圆心角90AOB ∠=,另一个扇形是以点P 为圆心,5为半径,圆心角60CPD ∠=,点P 在数轴上表示实数a ,如果两个扇形的圆弧部分(AB 和CD )相交,那么实数a 的取值范围是( ). (2011•福州改编) A .-4≤x ≤-2 B .-5≤x ≤-2C .-3≤x ≤-2D .x ≤-49. 用min{a,b,c}表示a,b,c 三个数中的最小值,例如min{0,2}=0,min{12,9,8}=8设y =min{x²,x+2,10-x}(x≥0)则函数y 的最大值是( ) (初高中衔接改编)A. 4B. 5C. 6D. 710. 如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论: ①△AED ≌△DFB ; ②S四边形 B C D G=43 CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论有( ) A. 只有①②. B. 只有①③. C. 只有②③. D. ①②③.二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 ________.12. 目前,杭州市区已先后建成了7个PM2.5监测点位。
PM2.5,指的是直径小于或等于2.5微米的颗粒物总和。
那么2.5微米用科学技术法可表示为______________米13. 若代数式226x x b -+可化为22()1x a --,则a b +的值是 .14. 如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60(第16题)l6 cm ,DE =2 cm ,则BC =____________.15.在直角坐标系中,有如图所示的t ,R ABO AB x ∆⊥轴于点B ,OB=5,AD=3反比例函数(0)ky x x=>的图像经过AO 的中点C ,且与AB 交于点D ,则sin ∠AOB 的值为 .(2011•衢州改编) 16. 如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) ▲ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤。
如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
17. (本小题满分6分)(2011•芜湖改编)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求正六边形的面积.18. (本小题满分6分)如图, 已知线段AB,(1)线段AB 为腰作一个..黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法); (友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形) (2)若AB=2,求出你所作的黄金三角形的周长.19. (本小题满分6分)如图,△ABC 、△DEF 都是等边三角形,点D 为AB 的中点,E 在BC 上运动,DFEDA和EF 分别交AC 于G 、H 两点,BC=2,问E 在何处时CH 的长度最大?20. (本小题满分8分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍. (1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率. 21.(本小题满分8分)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:(1)共抽取了 名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均数是 ,众数是 ;女生体育成绩的中位数是 .(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少? 22. (本小题满分10分)已知:如图,在直角梯形ABCD 中,AD ∥BC ,90ABC ∠=︒.点E 是DC 的中点,过点E 作DC 的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足AD CF =,M F M A =.(1)若120=∠MFC ,求证:MB AM 2=; (2)求证:FCM MPB ∠-=∠2190.246810121416男生人数女生人数23人数 02 4 6 12 8 10 14 2224252627282930分数23. (本小题满分10分)已知关于x 的方程2(3)40x m x m --+-=. (1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.24. (本小题满分12分)(2011江苏盐城考前预测题 改编)如图,⊙O 的半径为3,正三角形ABC 的顶点B 的坐标为(2,0),顶点A 在⊙O 上运动.(1)当点A 在x 轴上时,求点C 的坐标;(2)点A 在运动过程中,是否存在直线AB 与⊙O 相切的位置关系,若存在,请求出点C 的坐标;(3)设点A 的横坐标为x ,△ABC 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值;参考答案及评分标准一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案CCBCBABACD(备图)二、填空题:11. 2 12. 2.5⨯106- 13. 4.5 14. 6+15. 5 16. +3)π 三、解答题:17、解:由已知得,正五边形周长为5(217x +)cm ,正六边形周长为6(22x x +)cm.…2分因为正五边形和正六边形的周长相等,所以22517=2x x x ++()6().整理得212850x x +-=, 配方得2+6=121x (),解得12=5=x x ,-17(舍去).………4分故正六边形的面积为237554362=⨯⨯(2cm ). …………………………………………5分 答:正六边形的面积为22375cm . ……………………………………………6分 18、(1)可分为两种情况:腰与底之比为黄金比及底与腰之比均为黄金比的等腰三角形均可(图略) (2)当腰与底之比为黄金比时,周长为55+,当底与腰之比为黄金比时35+. 19、设EC=x,则BE=2-x,设CH 为y. ∵△ABC 、△DEF 都是等边三角形, ∴∠B=∠DEF=60°, ∵∠B+∠BDE=∠DEF +∠HEC. ∴∠BDE=∠HEC. ∴△BED ∽△CEH. 得:xy x -=21,x x y 22+-=,()112+--=x y . 即 当x=1时,y 最大。
此时,E 在BC 中点。
20、解(1)因为1393705803620x y x y n ++++++++++=++=(n 为正整数)又因为0909,x y ≤≤,≤≤所以0,x y +≤≤18所以3636,x y ++≤≤54即3620,n ≤≤54所以,2n =,所以4x y +=(2)因为4x y +=,且0909,x y ≤≤,≤≤所以有 0,4;1,3;2,2;3,1;4,0x y x y x y x y x y ==========①②③④⑤,这5种情况,因此,一次拨对小陈手机号的概率为0.221、﹙1﹚80; …………………………………………………………………………………3分 ﹙2﹚26.4, 27, 27; ……………………………………………………﹙每空1分﹚6分﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. ……………………………………9分22、证明:(1)连结MD . ······················· (1分)∵点E 是DC 的中点,ME DC ⊥,∴MD MC =. ··········· (2分) 又∵AD CF =,M F M A =,∴AMD ∆≌FMC ∆. ··········· (3分) ∴MAD MFC ∠=∠120=︒. ····················· (4分) ∵AD ∥BC ,90ABC ∠=︒.∴90BAD ∠=︒,∴30MAB ∠=︒. ·················· (5分) 在Rt AM B ∆中,30MAB ∠=︒, ∴12BM AM =,即2AM BM =. ·················· (6分) (2)∵AMD ∆≌FMC ∆,∴ADM FCM ∠=∠.∵AD ∥BC ,∴ADM CMD ∠=∠.∴CMD FCM ∠=∠. ······················· (7分) ∵MD MC =,ME DC ⊥,∴DME CME ∠=∠12CMD =∠. ······ (8分) ∴12CME FCM ∠=∠. ······················ (9分) 在Rt M BP ∆中,190902MPB CME FCM ∠=︒-∠=︒-∠. (10分) 23、(1)证明:△=b 2-4ac=(m-3)2-4(m-4)=m 2-10m+25=(m-5)2≥0, 所以方程总有两个实数根.(2)解:由(1)△=(m-5)2,根据求根公式可知, 方程的两根为: 即:x 1=1,x 2=m-4,由题意,有4<m-4<8,即8<m <12. 答:m 的取值范围是8<m <12.(3)解:易知,抛物线y=x 2-(m-3)x+m-4与y 轴交点为M (0,m-4), 由(2)可知抛物线与x 轴的交点为(1,0)和(m-4,0), 它们关于直线y=-x 的对称点分别为(0,-1)和(0,4-m ), 由题意,可得:-1=m-4或4-m=m-4, 即m=3或m=4, 答:m 的值是3或4.24.(1)解:(1)当点A 的坐标为(3,0)时,点C 的坐标为(2332,232-+); 当点A 的坐标为(-3,0)时,点C 的坐标为(232,2332+-);(2),连接OA, 当A 点在x 轴上方时,∵ 直线AB 与⊙O 相切, ∴ OA ⊥AB ,∴∠OMB=90°,OB=2,OA=3 ∴sin ∠OBA=23, ∴∠OBA=60°,∴∠CBx=60°,∴点C 的坐标⎪⎪⎭⎫ ⎝⎛23,23 当A 点在x 轴下方时,∵∠OBA=60°,∴C 点在x 轴上,∴点C 的坐标为(0,32-)(3)过点A 作AE ⊥OB 于点E 在Rt △OAE 中,AE 2=OA 2-OE 2=3-x 2,在Rt △BAE 中,AB 2= AE 2+BE 2=(3-x 2)+( 2-x )2=7-4x ∴S=2AB 43= )47(43x -=4373+-x 其中3-≤x ≤3,当x=3-时,S 的最大值为4373+, 当x=3时,S 的最小值为4373+-.。