小学六年级数学上册知识点总结

合集下载

六年级数学上册知识点总结(优秀11篇)

六年级数学上册知识点总结(优秀11篇)

六年级数学上册知识点总结(优秀11篇)六年级数学上册知识点总结篇一1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

小学六年级上数学重点知识点归纳

小学六年级上数学重点知识点归纳

一、整数运算
1.整数的概念和表示法
2.整数的相反数和绝对值
3.整数的加减法运算
4.整数的乘法运算
5.整数的除法运算
二、小数和分数
1.小数的概念和表示法
2.小数的加减法运算
3.小数的乘法运算
4.小数的除法运算
5.分数的概念和表示法
6.分数的加减法运算
7.分数的乘法运算
8.分数的除法运算
三、平方根
1.平方根的概念
2.平方根的求法和性质
四、面积与体积
1.平面图形的面积计算(矩形、正方形、三角形、梯形)
2.立体图形的体积计算(长方体、正方体、棱柱)
五、比和比例
1.比的概念和表示法
2.比的相等性质和比的大小性质
3.比例的概念和表示法
4.比例的等比性质和比例的大小性质
5.解比例问题的方法
六、图形的相似
1.相似图形的概念和性质
2.相似三角形的性质
3.两个图形是否相似的判断方法
七、统计与概率
1.数据的收集和整理方法
2.数据的图表表示
3.数据的统计指标(平均数、中位数、众数)
4.概率的概念和计算方法
总结:以上是小学六年级上数学重点知识点的归纳。

掌握这些知识点可以帮助学生在数学学习中打下坚实的基础,并为进一步学习中学阶段的数学知识做好准备。

六年级上册数学的知识点总结

六年级上册数学的知识点总结

六年级上册数学的知识点总结
一、分数乘法
1. 分数乘法的意义:乘法是求几个相同加数的和的简便运算,分数乘法也具有同样的意义。

2. 分数乘法的计算方法:分子相乘,分母相乘。

3. 分数乘法的应用:分数乘法可以应用于生活中的各种问题,如计算面积、计算体积等。

二、分数除法
1. 分数除法的意义:除法是已知两个因数的积和其中一个因数,求另一个因数的运算。

分数除法也有类似的意义。

2. 分数除法的计算方法:转化为乘法进行计算,即除以一个数等于乘以这个数的倒数。

3. 分数除法的应用:分数除法可以应用于生活中的各种问题,如计算速度、计算价格等。

三、比和比例
1. 比的概念:比是表示两个量之间的相对大小关系的,它是一个无单位的相对值。

2. 比例的概念:比例是表示两个比之间的关系的,它是一个有单位的数值。

3. 比例的性质:比例的基本性质是交叉相乘,即a:b=c:d时,ad=bc。

四、圆
1. 圆的概念:圆是一个平面图形,它的定义是所有到定点(圆心)的距离等于定长(半径)的点的集合。

2. 圆的性质:圆具有对称性、圆心到圆上任一点的距离相等、经过圆心的直径将圆分成两个相等的部分等性质。

3. 圆的周长和面积:圆的周长公式为C=2πr,其中r为半径;圆的面积公式为S=πr²。

五、百分数
1. 百分数的概念:百分数是以100为基数的特殊形式的分数,通常表示为“百分之多少”。

2. 百分数的计算:百分数的计算与普通分数的计算类似,只是需要将结果乘以100。

3. 百分数的应用:百分数在生活中的应用非常广泛,如统计、金融、销售等。

六年级数学上册知识点总结

六年级数学上册知识点总结

六年级数学上册知识点总结六年级数学上册主要涵盖了数与代数、空间与图形、数据与概率三个大的知识点。

其中,数与代数包括整数运算、小数运算、分数运算、百分数运算、数的比较和数的表达等内容;空间与图形包括几何图形的认识、图形的性质和图形的变换等内容;数据与概率包括数据的收集整理和数据的呈现、概率与统计等内容。

下面将对这些知识点进行总结。

一、数与代数1. 整数运算六年级上册主要学习整数的加法、减法、乘法、除法以及运算性质和运算法则。

需要注意的是,整数运算中的符号规则和运算顺序,还有绝对值的求法和运算规律。

2. 小数运算六年级数学上册将小数运算落实到数的四则运算中,主要学习小数的加法、减法、乘法和除法。

此外,还会接触到小数与整数之间的运算和关系。

3. 分数运算分数运算是六年级上册数学中的重要知识点,主要学习分数的加法、减法、乘法和除法。

此外,还需要掌握分数的化简和比较大小。

4. 百分数运算百分数是表示数和比例的常见形式,六年级上册会介绍百分数的基本概念和表示法,并学习百分数的转化、运算以及与分数和小数的关系。

5. 数的比较在数与代数部分,还会学习数的比较大小,比如使用大于、小于、等于等符号进行数字的比较,并掌握不等式的性质和解不等式的方法。

6. 数的表达数的表达主要指的是将一些实际问题中的信息用数表示出来,并能够根据数的表达来解决实际问题。

这部分内容主要锻炼学生的应用能力和问题解决能力。

二、空间与图形1. 几何图形的认识六年级上册将介绍和学习一些几何图形的基本概念和性质,如点、线、线段、射线、角、三角形、四边形等。

2. 图形的性质在认识几何图形的基础上,还需要学习图形的性质,包括几何图形的边数、顶点数、对称性、直线对称和中心对称等。

3. 图形的变换图形的变换是六年级上册数学的重要内容,包括平移、旋转、翻转和对称等。

学生需要学习图形变换的定义、性质以及变换规则,并能够灵活运用图形变换进行解题。

三、数据与概率1. 数据的收集整理数据的收集整理是指学生需要学习如何收集和整理数据,包括用表格、图表和图像等形式记录数据,并通过统计和分析数据来解决实际问题。

小学六年级上册数学知识点总结

小学六年级上册数学知识点总结

小学六年级上册数学知识点总结一、整数运算1. 整数的认识和表示整数包括正整数、负整数及零,用数轴表示可以很直观地理解整数。

正整数向右延伸,负整数向左延伸,零位于中间。

2. 整数的加法和减法整数的加法和减法遵循以下规则:- 正数加正数,结果为正数;- 负数加负数,结果为负数; - 正数加负数,结果的符号取决于数的绝对值,绝对值较大的数的符号为结果的符号。

3. 整数的乘法和除法整数的乘法和除法遵循以下规则: - 两个正数相乘或相除,结果为正数; - 两个负数相乘或相除,结果为正数; - 正数和负数相乘或相除,结果为负数; - 零乘以任何数都得零; - 非零数除以零是没有意义的。

4. 混合运算整数的加减乘除可以进行混合运算,按照运算顺序先乘除后加减,也可以使用括号改变运算顺序。

二、分数运算1. 分数的认识和表示分数由分子和分母组成,分子表示被分割成的份数,分母表示总份数。

通过分数,可以表示整数之间的数。

分数可以转换为小数,相应地,小数也可以转换为分数。

2. 分数的加法和减法分数的加法和减法需要先找到两个分数的公共分母,然后按照公共分母进行计算。

3. 分数的乘法和除法分数的乘法只需将两个分数的分子相乘,分母相乘;分数的除法只需将除数的分子乘以被除数的分母,分母乘以除数的分子。

在进行乘法和除法计算时,可以先约分,然后进行运算。

三、三角形和四边形1. 三角形三角形是由三条边组成的图形,常见的三角形有等边三角形、等腰三角形和普通三角形。

根据三角形的性质,可以求解三角形的周长和面积。

2. 四边形四边形是由四条边组成的图形,常见的四边形有正方形、长方形、平行四边形和梯形。

根据四边形的性质,可以求解四边形的周长和面积。

四、数据统计1. 数据的收集和整理收集数据时要关注数据的来源和真实性,并使用表格或图表对数据进行整理和展示。

2. 数据的分析和描述对收集到的数据进行分析和描述,比如计算均值、中位数、众数等。

3. 数据的预测和推断根据已有数据的趋势和规律,对未来的数据进行预测和推断。

六年级上册数学知识点总结

六年级上册数学知识点总结

六上数学知识点总结一、数的认识1.1 整数1.理解整数的概念,掌握整数的分类:自然数、整数、负整数。

2.掌握整数的性质:加法、减法、乘法、除法。

3.掌握整数的运算规律:结合律、交换律、分配律。

1.2 小数1.理解小数的概念,掌握小数的构成:整数部分、小数点、小数部分。

2.掌握小数的性质:小数的末尾添上“0”或去掉“0”小数的大小不变。

3.掌握小数的运算规律:加法、减法、乘法、除法。

1.3 分数1.理解分数的概念,掌握分数的构成:分子、分母、分数线。

2.掌握分数的性质:分数的基本性质、分数与除法的关系。

3.掌握分数的运算规律:加法、减法、乘法、除法。

二、数的运算2.1 加减法1.理解加减法的概念,掌握加减法的运算规律。

2.掌握加减法的运算顺序:同级运算从左到右,有括号的先算括号里面的。

2.2 乘除法1.理解乘除法的概念,掌握乘除法的运算规律。

2.掌握乘除法的运算顺序:两级运算先算乘除,同级运算从左到右,有括号的先算括号里面的。

2.3 混合运算1.理解混合运算的概念,掌握混合运算的运算顺序。

2.能够正确计算混合运算,注意运算符号和括号的使用。

三、几何初步3.1 平面图形的认识1.理解平面图形的概念,掌握常见平面图形的特征:三角形、四边形、五边形、六边形。

2.掌握平面图形的分类:三角形、四边形、五边形、六边形。

3.2 平面图形的面积1.理解平面图形面积的概念,掌握平面图形面积的计算方法。

2.掌握三角形的面积计算公式:底×高÷2。

3.掌握四边形的面积计算公式:底×高。

3.3 立体图形的认识1.理解立体图形的概念,掌握常见立体图形的特征:正方体、长方体、圆柱、圆锥。

2.掌握立体图形的分类:正方体、长方体、圆柱、圆锥。

3.4 立体图形的体积1.理解立体图形体积的概念,掌握立体图形体积的计算方法。

2.掌握正方体体积计算公式:棱长×棱长×棱长。

3.掌握长方体体积计算公式:长×宽×高。

六年级上册数学知识点总结

六年级上册数学知识点总结六年级上册数学知识点总结篇一1、一单元分数乘法分数乘整数的意义:就是求几个相同加数和的简便运算。

2、计算法则:分数乘整数,用分数的分子和整数的积做分子,分母不变。

3、一个数乘分数的意义:可以看做是求这个数的几分之几。

4、计算法则:一个数乘分数,用分子×的积做分子,分母相乘的做分母,为了计算的简便可以先约分。

5、整数乘法的交换律,结合律,分配率,对分数同样适用。

6、乘积是一的两个数互为倒数。

7、2单元位置与方向用坐标确定位置:前面的数表示列,后面的表示行上北下南左西右东3单元分数除法分数除法的意义:分数与整数的意义相同。

8、单位1:1.甲是乙的几分之几?甲÷乙2.甲比乙多几分之几?(甲-乙)÷乙3.甲比乙少几分之几?(乙-甲)÷乙路程=速度×时间速度=路程÷时间时间=路程÷速度工作总量=效率×时间工作效率=总量÷时间工作时间=总量÷效率4单元比比的意义:两数相除就叫做两个数的`比比的前项相当于被除数,后项相当于除数,比值相当于商。

9、前项相当于分子,后项相当于分母,比值相当于分数的值。

10、5单元圆圆是一种平面曲线图形。

11、圆中心的点叫圆心,连接圆心和圆上的任意一点叫半径,通过圆心并且两端都在圆上的线段叫直径直径=半径×2圆的周长公式:面积公式:C=πd或C=2πr S=πr的平方6单元百分数便是一个数是另一个数的百分之几的数叫百分数。

12、百分数也叫百分率和百分比。

13、百分数表示的是数量,不能带单位;百分数是分母是100的分数,分母是100的不一定是百分数。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改成分母是100的,能约分的要约成最简分数。

15、7单元扇形统计图统计图有:扇形统计图,条形统计图和折线统计图。

六年级上册数学知识点总结

六年级上册数学知识点总结小学六年级上册数学知识点总结篇一1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7、比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8、组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11、正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。

六年级上册数学知识点总结

六年级上册数学知识点总结一、数与代数1. 分数的基本概念- 理解分数的意义,分子、分母和分数线的表示。

- 掌握分数的读法和写法。

- 了解真分数、假分数和带分数的区别。

2. 分数的四则运算- 分数的加法和减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先找公共分母,再进行计算。

- 分数的乘法:分子乘分子,分母乘分母,结果化简为最简分数。

- 分数的除法:除以一个分数等于乘以这个分数的倒数。

- 混合运算:按照先乘除后加减的顺序进行计算,括号内的运算优先。

3. 小数的基本概念- 理解小数的意义,小数点的表示。

- 掌握小数的读法和写法。

4. 小数的四则运算- 小数的加法和减法:对齐小数点进行加减。

- 小数的乘法:按整数乘法规则计算,然后根据小数位数确定小数点位置。

- 小数的除法:除数变为倒数,按分数除法规则进行计算。

5. 比例与百分数- 理解比例的概念,掌握比例的表示方法。

- 学会解比例,即根据已知比例关系求解未知数。

- 理解百分数的意义,掌握百分数的读法和写法。

- 学会将百分数转换为分数或小数。

6. 代数初步- 理解用字母表示数的概念。

- 学会列代数式,如 a+b、2a 等。

- 掌握等式的基本性质,如等式两边同时加减同一个数或同一个代数式,等式仍然成立。

二、几何1. 平面图形的认识- 认识正方形、长方形、三角形、圆等基本图形。

- 理解图形的对称性,能够识别轴对称图形。

2. 面积的计算- 掌握长方形和正方形的面积公式:面积 = 长× 宽。

- 学会计算三角形的面积:面积 = 底× 高÷ 2。

- 了解圆的面积公式:面积= π × 半径²。

3. 体积的计算- 掌握长方体和正方体的体积公式:体积 = 长× 宽× 高。

- 了解圆柱体的体积公式:体积 = 底面积× 高。

4. 角度的初步认识- 理解角的概念,学会用量角器测量和作图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学上册知识点总结每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。

下面是作者为大家整理的关于小学六年级数学上册知识点,期望对您有所帮助!▼目录▼◆◆◆◆◆◆◆◆六年级数学上册知识点1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的运算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把本来的分子做分母,本来的分母做分子。

则是4/3。

3/4是4/3的倒数,也能够说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把本来的分子做分母,本来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把本来的分子做分母,本来的分母做分子。

则是4/19.用1运算法:也能够用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,由于乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

六年级数学上册知识点归纳一、分数乘法(一)分数乘法的运算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了运算简便,能约分的要先约分,再运算。

注意:当带分数进行乘法运算时,要先把带分数化成假分数再进行运算。

(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)分数混合运算的运算顺序和整数的运算顺序相同。

(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×。

3、写数量关系式技能:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们相互依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。

(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)求带分数的倒数:把带分数化为假分数,再求倒数。

(4)求小数的倒数:把小数化为分数,再求倒数。

3、由于1×1=1,1的倒数是1;由于找不到与0相乘得1的数0没有倒数。

4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

(二)分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的运算法则:除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、“[ ] ”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

(三)分数除法解决问题(详细见重难点分解)(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。

)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为x,用方程解答。

(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就用一个数÷另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数– 1②求少几分之几: 1 - 小数÷大数或①求多几分之几(大数-小数)÷小数②求少几分之几:(大数-小数)÷大数(四)比和比的运用1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也能够用小数或整数表示)。

例如15 : 10 = 15÷10=1.5∶∶∶∶前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。

也能够表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、区分比和比值比:表示两个数的关系,可以写成比的情势,也能够用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也能够是小数。

5、根据分数与除法的关系,两个数的比也能够写成分数情势。

6、比和除法、分数的联系:7、比和除法、分数的区分:除法是一种运算,分数是一个数,比表示两个数的关系。

六年级数学上册知识点精选1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

一样先看横的数字,再看竖的数字,注意中间是逗号2.分数乘法的意义:一个数×分数分数×一个数3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数4.除以一个不等于0的数,等于乘这个数的倒数5.两个数相除又叫做两个数的比。

比值通常用分数表示,也能够用分数或整数6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.148.有关圆的公式:C= 兀d = 2兀r S =兀r 2d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2圆环的面积S = 兀 R 2-兀 r 29.原价×折扣=现价营业额×税率=应纳税额本金×利率×时间=利息10.条形统计图:可以清楚的看出数据的多少折线统计图:可以清楚的看出数据的增减变化趋势扇形统计图:可以清楚的看出各部分同总数之间的关系六年级数学下册知识点一、比例1、比例的基本性质是在比例里两内项积等于两外项积。

2、用x 和 y表示两种相干联的量,用k表示它们的比值(一定),那么正比例关系表示为:Y : x = k(一定)3、用x 和 y表示两种相干联的量,用k表示它们的乘积(一定),那么反比例关系表示为:Xy=k(一定)二、数与代数(复习)1、自然数和0都是整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位:计数单位依照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。

倍数和因数是相互依存的。

由于35能被7整除,所以35是7的倍数,7是35的因数。

7、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。

例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

8、一个数的倍数的个数是无穷的,其中最小的倍数是它本身。

3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

9、能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2 整除的特点可分为奇数和偶数。

10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100之内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

12、1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

13、每个合数都可以写成几个质数相乘的情势。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

14、几个数公有的因数,叫做这几个数的公因数。

其中的一个,叫做这几个数的公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公因数,6是它们的公因数。

15、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情形:16、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

17、如果两个数是互质数,它们的公因数就是1。

18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

相关文档
最新文档