斐波那契与斐波那契数列
Fibonacci数列(斐波那契数列)PPT课件

指数形式。不妨设为 f n n 进行尝试。将
n 代入差分方程:
fn2 fn1fn
得到 n2 n1 n
-
11
3.Fibonacci数列的通项公式
消去因子有 2 1
解得
1
1
2
5
2
1 2
5
由此可知这两个都是差分方程的解。
-
12
3.Fibonacci数列的通项公式
-
6
2.观察Fabonacci数列
如何求它的通项呢?(粗略地求) 拟合法
利用excel拟合 先绘制散点图 利用拟合方法拟合
-
7
2.观察Fabonacci数列
利用matlab拟合
直接拟合有点难!
把数列的前20个数取对数,然后再绘散点图, 看看有什么规律?
取对数后散点图 为直线,可以利 用线性回归知识 拟合直线了!
-
2
1. 提出问题
-
3
1. 提出问题
越往后就越复杂,最后归纳得
数列{Fn}称为Fibonacci数列.直到1634年, 才有数学家奇拉特发现此数列具有非常简单的 递推关系:
F1=F2=1, Fn=Fn-2+Fn-1.
由于这一发现,此问题引起了人们的极大兴趣, 后来又发现了该数列的更多性质
2an 8
-
26
-
21
4.自然界中的斐波那契数列
医学研究已表明,秋季是人的免疫力最佳的 黄金季节。因为7月至8月时人体血液中淋巴 细胞最多,能生成大量的抵抗各种微生物的 淋巴因子,此时人的免疫力强.
-
22
4.自然界中的斐波那契数列
在我们的生活环境中,就随处可见了,如建 处门窗、橱柜、书桌;我们常接触的书本、 报纸、杂志;现代的电影银幕。电视屏幕, 以及许多家用器物都是近似这个数比关系构 成的。它特别表现艺术中,在美术史上曾经 把它作为经典法则来应用。有许多美术家运 用它创造了不少不朽列
周期数列的五种常见形式

周期数列的五种常见形式周期数列指的是数列中出现的元素具有一定的规律性,按照一定的模式循环出现。
常见的周期数列有以下五种形式:1.等差数列:等差数列是指数列中的相邻元素之间的差值是常数。
即每项与前一项的差值相等。
例如:1,4,7,10,13,...这个数列的公差是3,每一项与前一项之间的差是32.等比数列:等比数列是指数列中的相邻元素之间的比值是常数。
即每项与前一项的比值相等。
例如:2,4,8,16,32,...这个数列的公比是2,每一项与前一项之间的比值是23.斐波那契数列:斐波那契数列是指数列中的每一项等于其前两项之和。
即从第三项开始,每一项等于前两项的和。
例如:1,1,2,3,5,8,...这个数列的特点是,从第三项开始,每一项等于前两项的和。
4.周期为两个数的和:这种数列的每一项等于其前两项之和。
但是相比斐波那契数列,前两项可以不是1,1,而可以是任意两个正整数。
例如:3,5,8,13,21,...这个数列的特点是,从第三项开始,每一项等于前两项的和。
5.等差等比数列交替:这种数列是由等差数列和等比数列交替组成。
即相邻两个数列的元素分别满足等差和等比的规律。
例如:1,2,4,7,11,16,22,...这个数列的特点是,前两个元素满足等差规律(每一项与前一项之间的差是1),后两个元素满足等比规律(每一项与前一项之间的比是2)。
这些是周期数列的五种常见形式。
每个数列都有自己的特点和规律,通过观察数列中元素之间的关系,可以找到数列的规律并预测后续的元素。
周期数列的应用非常广泛,不仅在数学中有重要的地位,还在其他领域如物理、经济等中有着重要的应用价值。
斐波那契数列研究

斐波那契数列研究一、斐波那契生平斐波那契(1175年-1250年),意大利数学家,西方第一个研究斐波那契数,并将现代书写数和乘数的位值表示法系统引入欧洲。
有感使用阿拉伯数字比罗马数字更有效,斐波那契前往地中海一带向当时著名的阿拉伯数学家学习,约于1200年回国。
1202年, 27岁的他将其所学写进计算之书。
这本书通过在记帐、重量计算、利息、汇率和其他的应用,显示了新的数字系统的实用价值。
这本书大大影响了欧洲人的思想,可是在三世纪后印制术发明之前,十进制数字并不流行。
欧洲数学在希腊文明衰落之后长期处于停滞状态,直到12世纪才有复苏的迹象。
这种复苏开始是受了翻译、传播希腊、阿拉伯著作的刺激。
对希腊与东方古典数学成就的发掘、探讨,最终导致了文艺复兴时期(15~16世纪)欧洲数学的高涨。
文艺复兴的前哨意大利,由于其特殊地理位置与贸易联系而成为东西方文化的熔炉。
意大利学者早在12~13世纪就开始翻译、介绍希腊与阿拉伯的数学文献。
欧洲,黑暗时代以后第一位有影响的数学家斐波那契,其拉丁文代表著作《算经》、《几何实践》等也是根据阿拉伯文与希腊文材料编译而成的,斐波那契,早年随父在北非从师阿拉伯人习算,后又游历地中海沿岸诸国,回意大利后即写成《算经》。
《算经》最大的功绩是系统介绍印度记数法,影响并改变了欧洲数学的面貌。
现传《算经》是1228年的修订版,其中还引进了著名的“斐波那契数列”。
《几何实践》则着重叙述希腊几何与三角术。
斐波那契其他数学著作还有《平方数书》、《花朵》等,前者专论二次丢番图方程,后者内容多为菲德里克二世宫廷数学竞赛问题,斐波那契论证其根不能用尺规作出,他还未加说明地给出了该方程的近似解。
微积分的创立与解析几何的发明一起,标志着文艺复兴后欧洲近代数学的兴起。
微积分的思想根源部分(尤其是积分学)可以追溯到古代希腊、中国和印度人的著作。
在牛顿和莱布尼茨最终制定微积分以前,又经过了近一个世纪的酝酿。
二、《算盘原理》《算盘原理》中的“算盘”并非仅仅指罗马算盘或某种计算工具。
《斐波那契数列》课件

特征方程
特征方程
对于斐波那契数列,其特征方程为x^2=x+1。通过解这个方程,可以得到斐波 那契数列的通项公式。
通项公式
斐波那契数列的通项公式为F(n)=((φ^n)-(-φ)^-n))/√5,其中φ=(1+√5)/2是黄 金分割比。这个公式可以用来快速计算斐波那契数列中的任意数字。
03
斐波那契数列的数学模型
在生物学中的应用
遗传学研究
在遗传学中,斐波那契数列可以用于 描述DNA的碱基排列规律,有助于深 入理解遗传信息的传递和表达。
生物生长规律
许多生物体的生长和繁殖规律可以用 斐波那契数列来描述,如植物的花序 、动物的繁殖数量等。
在计算机图形学中的应用
图像处理
在图像处理中,斐波那契数列可以用于生成复杂的图案和纹理,增加图像的艺术感和视觉效果。
斐波那契数列的递归算法
F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
03
递归算法的时间复杂度
O(2^n),因为递归过程中存在大量的重复计算。
迭代算法
迭代算法的基本思想
迭代算法的时间复杂度
从问题的初始状态出发,通过一系列 的迭代步骤,逐步逼近问题的解。
O(n),因为迭代过程中没有重复计算 。
实际应用价值
斐波那契数列在计算机科指导 意义。
对未来研究的展望
深入探索斐波那契数列的性质
01
随着数学研究的深入,可以进一步探索斐波那契数列的性质和
规律,揭示其更深层次的数学原理。
跨学科应用研究
02
未来可以将斐波那契数列与其他学科领域相结合,如生物学、
表示方法
通常用F(n)表示第n个斐波那契数 ,例如F(0)=0,F(1)=1,F(2)=1 ,F(3)=2,以此类推。
斐波那契数列

斐波那契数列百科名片“斐波那契数列”是意大利数学家列昂纳多·斐波那契首先研究的一种递归数列,它的每一项都等于前两项之和。
此数列的前几项为1,1,2,3,5等等。
在生物数学中,许多生物现象都会呈现出斐波那契数列的规律。
斐波那契数列相邻两项的比值趋近于黄金分割数。
此外,斐波那契数也以密码的方式出现在诸如《达芬奇密码》的影视书籍中。
目录[隐藏]【奇妙的属性】【影视链接】【相关的数学问题】【斐波那契数列别名】斐波那契数列公式的推导【C语言程序】【C#语言程序】【Java语言程序】【奇妙的属性】【影视链接】【相关的数学问题】【斐波那契数列别名】斐波那契数列公式的推导【C语言程序】【C#语言程序】【Java语言程序】∙【JavaScript语言程序】∙【Pascal语言程序】∙【PL/SQL程序】∙【数列与矩阵】∙【数列值的另一种求法】∙【数列的前若干项】∙【斐波那契数列的应用】“斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leo nardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《珠算原理》(Liber Abaci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列通项公式斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。
它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。
)有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
[编辑本段]【奇妙的属性】随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.61803 39887……从第二项开始,每个奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1。
斐 波 那 契 数 列 _ 数 据 结 构 与 算 法

多种方法实现Fibonacci(斐波那契)数列的生成斐波那契(Fibonacci)数列问题,是一个非常经典的问题。
1、What is Fibonacci sequence?斐波那契数列(Fibonacci sequence),又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
【摘选自百度百科】2、How to create Fibonacci sequence?———————————-华丽丽的分割线———————————-此方法是博主在一次java作业期间想到的,当时作业是一个运用斐波那契数列、黄金分割率做文章的题目。
期间,博主还运用了BigDecimal、BigInteger两个java类来实现任意精度下的斐波那契数列、黄金分割率。
详细java代码见博主GitHub-**代码实现(由于int类型的承载的范围有限,因此我们通过此种方法穷举出int类型范围内的所有斐波那契数列项)**- Three f = new Three(1);while (f.getTwo() 0) {f = new Three(i);System.out.println(f.getOne());System.out.println("现有条件(int)下能够存储的所有斐波那契数列见上");-**Three.java**-public class Three {private int one = 0;private int two = 1;public Three(int i) {for (int j = 1; j i; j++) {forward();public void forward() {this.one = this.two;this.two = this.three;this.three = this.one + this.two;public int getOne() {return this.one;public int getTwo() {return this.two;public int getThree() {return this.three;方法二:(当然是传统的递归调用啦^_^)--由于递归方法的时间消耗比较大,所以这里只递归到40项(再往后程序将会一直卡住,许久才会出结果)for(int i = 1;i = 40;i++){System.out.print(fibonacci(i)+" ");void fibonacci(int n){return 0;return 1;return fibonacci(n) + fibonacci(n-1);方法三:(其他方法^_^)其实大多数方法都是通过改良递法而产生的,我们能够明显的看出递归法时间成本较高的原因是因为没有存储。
斐波那契数列求和公式

斐波那契数列求和公式
斐波那契数列求和公式:
1. 什么是斐波那契数列:斐波那契数列是一种数学分支,由意大利数学家莱昂纳多·斐波那契(Leonarda Fibonacci)于 1202 年提出。
它描述的是一个递推关系,即下一个数是前两个数之和,这样形成一列数字:1、1、2、3、5、8、13、21、34、55、...... 每一个数字都是它前面两个数字之和,普遍存在于自然界的很多现象,如螺旋状排列的花瓣、植物叶的轮廓等。
2. 斐波那契数列求和:斐波那契数列求和是一种计算前 n 个斐波那契数列序列(形如 1、1、2、3、5、8、13、21、34)求和的技术。
一般情况下,求和的公式有这么几种:
(1)递推公式:f(n)=f(n-1)+f(n-2)
(2)简单的求和公式:S=1/√5*((1+√5)^n-(1-√5)^n)
(3)二项式定理:S1=Cn+2-1/√5*{(1+√5)^n-(1-√5)^n)
(4)数论性质:S2=3/2(f(n+1)-1)
(5) Lucas定理:L(m,n)=截取集合{m+r-1-r*n|r=0,1,2,...,n}中最大的那个数。
S3=L(2,n)
可见,求和斐波那契数列比较复杂,要实现它,我们应该根据不同的场景来使用不同的方法。
比如,当n很大时,可以使用简单的求和公式;当 n 很小时,可以使用递推公式;当 n 比较大或者末尾和首尾都要求时,可以使用 Lucas 定理。
总之,斐波那契数列求和涉及到数论性质、Lucas 定理和递推公式等,理解其原理及应用经验,就能很好地使用这些求和方法,实现斐波那契数列之和。
神奇的斐波那契数列

神奇的斐波那契数列⼀、斐波那契数列中世纪最有才华的数学家斐波那契(1175年~1259年)出⽣在意⼤利⽐萨市的⼀个商⼈家庭。
因⽗亲在阿尔及利亚经商,因此幼年在阿尔及利亚学习,学到不少时尚未流传到欧洲的阿拉伯数学。
成年以后,他继承⽗业从事商业,⾛遍了埃及、希腊、叙利亚、印度、法国和意⼤利的西西⾥岛。
斐波那契是⼀位很有才能的⼈,并且特别擅长于数学研究。
他发现当时阿拉伯数学要⽐欧洲⼤陆发达,因此有利于推动欧洲⼤数学的发展。
他在其他国家和地区经商的同时,特别注意搜集当地的算术、代数和⼏何的资料。
回国后,便将这些资料加以研究和整理,编成《算经》(1202年,或叫《算盘书》)。
《算经》的出版,使他成为⼀个闻名欧洲的数学家。
继《算经》之后,他⼜完成了《⼏何实习》(1220年)和《四艺经》(1225年)两部著作。
《算经》在当时的影响是相当巨⼤的。
这是⼀部由阿拉伯⽂和希腊⽂的材料编译成拉丁⽂的数学著作,当时被认为是欧洲⼈写的⼀部伟⼤的数学著作,在两个多世纪中⼀直被奉为经典著作。
在⾥⾯,记载着⼤量的代数问题及其解答,对于各种解法都进⾏了严格的证明。
斐波那契发现了⼀组对世界产⽣深远影响的神奇数字。
这组数字为0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,......这组数字存在着许多神奇⽽有趣的规律,其中的规律直到今天还在被源源不断地挖掘出来。
1、从第三个数字开始,后⼀个数字都等于前两个数字之和。
如2+3=5,3+5=8,34+55=89……2、随着数列项数的增加,每⼀个数字与后⼀个数字的⽐值⽆限接近于0.618。
如2/3=0.666,5/8=0.625,21/34=0.6176,34/55=0.6181,55/89=0.6179……⼆、黄⾦分割在各领域的⼴泛运⽤由斐波那契数列引发的0.618是个神奇的数字,它具有严格的⽐例性、艺术性、和谐性,蕴藏着很深的美学价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斐波那契与斐波那契数列(初一、初二、初三)
(519015)广东省珠海市第四中学陈湘平斐波那契(Leonardo Fibonacci,约1170-约1250),12、13世纪欧洲数学界的代表人物,生于比萨的列奥纳多家族,是一位意大利海关设在南部非洲布吉亚的官员的儿子。
早年在北非受教育,由于他父亲的工作,成年后曾到埃及、叙利亚、希腊西西里、法国等地游学,并拜访过各地著名的学者,也熟悉了各国在商业上的所用的算术体系,掌握了印度-阿拉伯的十进制系统,该系统具有位置值并使用了零的符号。
斐波那契看到了这种美丽的印度-阿拉伯数字的价值,并积极提倡使用它们。
1202年他写了《算盘书》一书(注:“算盘”指的是当时欧洲人用来计算的沙盘,而非中国的算盘),这是一本广博的工具书,其中说明了怎样应用印度-阿拉伯数字,以及如何用它们进行加、减、乘、除计算和解题。
此外还对代数和几何进行了进一步的探讨。
此外他还出版了《几何实习》等书,书中首次引用了阿拉伯数字,这对当时盛行的罗马数字来讲也是一种挑战。
后来人们通过对阿拉伯数字的不断接触,加上斐波那契和其他数学家的工作,终于使印度-阿拉伯数字系统被慢慢地接受,并得以推广。
很有意思的是,斐波那契在今天的出名,是缘于一个数列,而这个数列则来自于他的《算盘书》中一道并不出名的问题。
他当时写这道题只是考虑作为一个智力练习。
然而,到了19世纪,法国数学家E.
卢卡斯出版了一部四卷本的有关娱乐数学方面的著作时,才把斐波那契的名字,加到该问题的解答和所出现的数列上去。
《算盘书》中“兔子问题”,题目假定一对大兔子(一雌一雄)每一个月可以生一对小兔子(一雌一雄),而小兔子出生后两个月就有生育能力,问从一对小兔子开始,一年后能繁殖成多少对兔子?”由此引出了一个重要的数列――“斐波那契数列”:1,1,2,3,5,8,13,21,…,其规律是每一项(从第3项起)都是前两项的和。
斐波那契用顺推的办法解算如下:
第一个月:只有一对小兔。
第二个月:小兔尚未成熟,仍然是一对兔子。
第三个月:这对兔子生了一对小兔,这时共有兔子两对。
第四个月:原来的兔子又生了一对小兔,但上月出生的小兔仍未成熟,这样小兔共有三对。
…………
如此分析下去,可以得到一年后的兔子数为144对。
上面顺推的办法着实有点笨,下面我们换一种思路推推看,我们容易发现:
从第三个月起兔子可以分为两类:一类是上个月的兔子,一类是当月新生的兔子,而这些兔子的对数恰好等于前两个月时的兔子对数,因为那个月份的的兔子在该月均能生小兔,这就是说:从第三个月起每月兔子数均为前两个月(上月和上上月)的兔子对数之和。
这样一、二、三……诸月兔子数依次为:
1,1,2(=1+1),3(=1+2),5(=2+3),8(=3+5),13(=5+8),21(=8+13),……
如此一来,我们不仅能算得一年后的兔子数,还可以算出若干年后的兔子数。
斐波那契数列1,1,2,3,5,……有许多有趣的性质(详见:《斐波那契数列》,吴振奎编著,辽宁教育出版社,1987)比如:
(1)从第三项开始,每一项都是它前面两项的和:
13=5+8,34=13+21,……
(2)数列相邻两项的比越来越接近0.618……
21=0.5,32=0.67,53=0.6,85=0.625,13
8=0.615,…… (3)数列的通项公式为
f n =])251()251[(5
1n n --+ 这里是用无理数表示有理数的典例(意外的结果!)。
斐波那契数列在许多方面有着广泛的应用,这数列不仅与后来的“优选法”有密切关系,而且还应用在生物、物理、化学上。
为了研究这种数列的性质,1960年起美国还出版了专门研究它的杂志《斐波那契季刊》。
比如它在金融分析中就有重要应用。
1934年美国经济学家艾略特在通过大量资料分析研究发现股票指数增减的微妙规律,并提出了颇有影响的“波浪理论”。
该理论认为:股指波动的一个完整过程(周期)是由波形图(股指变化的图象)上的5(或8)个波组成,其中3上2下(或5上3 下)。
(注意这里的2、3、5、8都是斐波那契数列中的项!)同时,每次股指的增长幅度都应循斐波那契数列中数字规
律完成。
比如:如果某日股指上升8点,则股指下一次攀升点数为13;若股指回调,其幅度应该在5点左右(注意这里的5、8、13是斐波那契数列中相邻三项!)。
更有趣的是自然界也存在许多与斐波那契数列有关的现象。
在20世纪80年代以前人们普遍认为固态物质仅存在于两种形态:晶体和玻璃体结构形式。
玻璃内的粒子间排布是杂乱无序的,而晶体粒子间是以格架形式规则地排布着,而自然界不存在介于二者之间的形式的物质。
直到1984年美国科学家Shechman借助电子显微镜发现了介于晶体与玻璃体之间的物质——准晶体,这才打破了上面的观点,他发现了这种准晶体粒子的排布与斐波那契数列有着密切的联系。
人们还发现斐波那契数列出现在为数众多的领域——包括松果、菠萝,叶子的排列、某些花瓣数,与黄金均值的联系、拟黄金矩形、等角螺线等等,比如说有很多花草的花瓣数都是斐波那契数列中的项,如延龄草叶子、野玫瑰、大波斯菊的花瓣数就分别是3、5、8。
如果我们广为寻找,那么斐波那契数列还会出现在特殊的对象中,比如说一台钢琴,在一个音阶中白色键数为8,黑色键数为5。
等等这些是巧合呢,还是斐波那契当时就早已心有灵犀呢?这就不得而知了。
(作者E-mail:cxp_97@)。