11章 电解池与极化作用

合集下载

10物化-下-第十章电解与极化作用PPT课件

10物化-下-第十章电解与极化作用PPT课件
即电流密度很小时,氢超电势不符合Tafel 公式,而遵守 η=ωj
即η与j成正ห้องสมุดไป่ตู้。
电解时H+在阴极放电机理:(p.125)
对氢超电势研究较多的原因: (p.126)
H+ 进行电极反应的动力学机理:
(1) H3O+从溶液本体扩散到电极附近。 (2) H3O+从电极附近移动到电极上。 (3) H3O+在电极上按以下机理放电:
第十章 电解与极化作用
本章基本要求
1、了解分解电压的意义,要使电解池持续工作需克服哪几种阻力? 2、了解什么是极化作用,什么是超电势?极化作用有哪几种?如何 降低极化作用。 3、什么是极化曲线?电解池与原电池的极化曲线有哪些异同?各有 什么缺点和可利用之处。 4、如何计算H2(g)的超电势?为什么在电解中对H2(g)的超电势研究 较多? 5、了解电解的一般过程及其应用,能判断电解过程中在两个电极上 首先发生反应的物质。 6、了解金属腐蚀的类型及常用的金属防腐的方法。 7、 了解常见化学电源的基本原理、类型及目前的发展概况,特别是 燃料电池的应用前景。
阴极更负,阳极更正
1、浓差极化 电解过程中由于电极附近溶液浓度与本体溶液的浓度之间 的差异而引起的极化称为浓差极化(concentration polarization)。 这种差异主要是因为反应速率大于扩散速率所致。
当把两个银电极插到浓度为m的AgNO3溶液中进行电解, 阴极附近的Ag+沉积到电极上(Ag++e-→Ag),使得该处溶液中 的Ag+浓度不断降低。如果本体溶液中的Ag+扩散到该处进行补 充的速度赶不上沉积速度,则在阴极附近Ag+的浓度比本体溶 液的浓度低。在一定的电流密度下,达稳定状态后,溶液有一 定的浓度梯度,此时电极附近溶液浓度具有一定的稳定值,就 好像是把电极浸入一个浓度较小的溶液中一样。由于这种浓度 差别所引起的极化就是浓差极化。其数值由浓差的大小决定, 而浓差大小与搅拌情况、电流密度等有关。当没有电流通过 时,电极的可逆电势由溶液的浓度(即本体浓度)所决定。

电解与极化作用小结

电解与极化作用小结

(A)都溶解
(B)Fe(s)不溶,Cd(s)溶解
(C)都不溶解
(D)Fe(s)溶解,Cd(s)不溶
答 (B) 设构成电池 Cd(s)|Cd2+||Fe2+|Fe(s)
则 电池反应为 Cd(s) + |Fe2+ = Cd2+ + Fe(s)
E
=
EO

RT 2F
ln
a(Cd 2+ ) a( Fe2+ )
解:
(1)
ϕ Cd 2+/ Cd
+
RT
F
ln
a Cd
2+
= −0.403 +
RT ln 0.01 = −0.4621V 2F
ϕ Cu 2+ / Cu
=ϕO Cu 2+ / Cu
+ RT F
ln
a Cu
2+
= 0.337 +
RT ln 0.02 = 0.2868 V 2F
仍不会有 H2(g)析出,问溶液的 pH 值应控制在多少为好? 已知 H2(g)在 Zn(s)上的超电势为 0.72V,并设此值与溶液浓度无关。 (设 γ±=1)已知: ϕ O (Zn2+/Zn)=-0.7628V .
解: φ(Zn2+/Zn)= ϕ O (Zn2+/Zn) -RT/2F×ln 1/a(Zn2+) = -0.8811 V
例题 12 298K, pO 下,以 Pt 为阴极,电解含 FeCl2(0.01mol·kg-1)和 CuCl2(0.02mol·kg
-1)的水溶液。若电解过程中不断搅拌,并设超电势可略去不计,已知ϕ O (Fe2+/ Fe)

简述极化作用对原电池和电解池的影响

简述极化作用对原电池和电解池的影响

简述极化作用对原电池和电解池的影响第一节分解电压使电能转变成化学能的装置称为电解池.当直流电通过电解质溶液,正离子向阴极迁移,负离子向阳极迁移,并分别在电极上起还原和氧化反应,从而获得还原产物和氧化产物.若外加一电压在一个电池上,逐渐增加电压直至使电池中的化学反应发生逆转,这就是电解.实验表明,对任一电解槽进行电解时,随着外加电压的改变,通过该电解槽的电流亦随之变化.例如,使用两个铂电极电解HCl 溶液时,使用图9.1 的线路装置,改变可变电阻,记录电压表和电流表的读数,则可测量电解槽两端电位差与电流强度的关系曲线.开始时,当外加电压很小时,几乎没有电流通过电解槽;电压增加,电流略有增加;当电流增加到某一点后,电流随电压增大而急剧上升,同时电极上有连续的气泡逸出. 在两电极上的反应可表示如下: 阴极2H+(aH+)+2e →H2(g, p) 阳极 2Cl (aCl -)→Cl2(g, p)+2e 当电极上有气泡逸出时,H2 和Cl2 的压力等于大气压力. 电解过程分析:当开始加外电压时,还没有H2 和Cl2 生成,它们的压力几乎为零, 稍稍增大外压,电极表面上产生了少量的H2 和Cl2,压力虽小,但却构成了一个原电池(自发地进行如下反应) (-) H2(p)→2H+(aH+)+2e- (+) Cl2(g)+2e-→2Cl-(aCl-) 此时,电极上进行反应的方向正好与电解所进行的反应的方向相反.它产生了一个与外加电压方向相反的反电动势Eb.由于电极上的产物扩散到溶液中了,需要通过极微小的电流使电极产物得到补充.继续增大外加电压,电极上就有H2 和Cl2 继续产生并向溶液中扩散,因而电流也有少许增加,相当于图9.2 中I-E 曲线上的1-2 段.此时由于pH2 和pCl2 不断增加,对应于外加电压的反电动势也不断增加,直至气体压力增至等于外界大气压力时,电极上就开始有气泡逸出,此时反电动势Eb 达到最大值Eb, max 将不再继续增加.若继续增加外加电压只增加溶液中的电位降(E 外-Eb, max)=IR,从而使电流剧增,即相当于I-E 曲线中2-3 段的直线部分.将直线部分外延到I=0处所得的电压就是Eb, max,这是使某电解液能连续不断发生电解时所必须的最外加电压,称为电解液的分解电压.从理论上讲Eb, max 应等于原电池的E(可逆),但实际上Eb, max 却大于E(可逆).是由两方面的原因引起的.一是由于电解液,导线和接触点都有一定的电阻,欲使电流通过必须用一部分电压来克服IR 电位降,这相当于把I2R 的电触转化为热.二是由于实际电解时在两个电极上进行的不可逆电极过程所引起,即要使正离子在阴极析出,外加的阴极电势一定要比可逆电极电势更负一些,使负离子在阳极析出,外加的阳极电势一定要比可逆电势更正一些.我们把由于电流通过电极时,电极电势偏离可逆电极电势的现象称为极化现象.实际上I-E 曲线上分解电压的位置不能确定的很精确,且I-E 曲线并没有十分确切的理论意义,所得到的分解电压也常不能重复,但它却很有实用价值.电解质的分解电压与电极反应有关.例如一些酸,碱在光滑铂电极上的分解电压都在1.7 V 左右.它们的分解电压基本上和电解质的种类无关,这是因为这些酸,碱的电解产物均是H2(阴极)和O2(阳极).它们的理论分解电压都是1.23 V,由此可见,即使在铂电极上,H2 和O2 都有相当大的极化作用发生.氢卤酸的电压都较1.7 V 小,而且其数值各不相同,这是因为在两电极上出现的产物是氢卤酸的分解物.电极反应和电解产物不一样,自然,分解电压也就有差异了.小结:我们把使某种电解质开始电解反应时所必须施加的最小电压,称为该电解质的分解电压.理论分解电压也称为可逆分解电压,等于可逆电池电动势.但实际工作中电解以一定速率进行,过程已不可逆.这时的分解电压E(实)>E(理),原因是:当电流通过时,电极有极化作用,电路有电阻.实验表明:电解不同的电解质,如果电极反应相同,分解电压基本相同. 第二节极化作用一,极化现象我们已经知道,无论是对水的电解,或是其它物质的电解,它们的分解电压总是大于计算得到的可逆电动势.这是因为当电流通过电极时,每个电极的平衡都受到破坏,使得电极电位偏离平衡电位值.这种在电流通过电极时,电极电位偏离平衡值的现象,称为电极的极化.极化现象的出现,以及溶液中存在着一定的欧姆电位降,这些都是分解电压大于可逆电动势的原因.实际分解电压可表示为E(分解)=E(可逆)+ E(不可逆)+IR式中,E(可逆)是指相应的原电池的电动势,即理论分解电压;IR 由于电池内溶液,导线和接触点等电阻所引起的电势降; E(不可逆)则是由于电极极化所致, E(不可逆)= η(阴)+ η(阳), η(阴)和η(阳)分别表示阴,阳极上的超电势.当电极上无电流通过时,电极处于平衡状态,此时的电势为φ(平)(平衡电势),随着电极上电流密度(I/S)的增加,电极的不可逆程度愈来愈大,其电势值为φ(平)的偏差也越大,通常可用极化曲线(即描述电流密度与电极电势间关系的曲线)来描述这种偏离程度. 为了明确地表示出电极极化的状况,常把某一电流密度下的φ(不可逆)与φ(平)之间的差值称为超电势.由于超电势的存在,在实际电解时要使正离子在阴极上析出,外加于阴极的电势须更负于可逆电极;要使负离子在阳极析出,外加于阳极电势比可逆电极电势更正一些. 下面我们将讨论引起电极极化的原因. 当电流通过电极时,为什么会发生阳极电势升高,阴极电势降低的电极极化现象呢这是因为当有电流I 过电极时,发生一系列的过程,并以一定的速率进行,而每一步都或多或少地存在着阻力.要克服这些阻力,相应地各需要一定的推动力,表现在电极电势上就出现这样那样的偏离.按照极化产生的不同原因,通常可简单地把极化分为两类:电化学极化和浓差极化.将与之相应的超电势称为电化学超电势(或活化超电势)和浓差超电势.一般说来,可将产生超电势的原因归纳为以下三点: (1)浓差超电势:在电解过程中,由于电极表面附近的离子在电极上发生反应而析出,结果使表面浓度与溶液体相浓度的不同所造成的反电动势叫做浓差超电势. (2)电化学超电势(或活化超电势):由于参加电极反应的某些粒子缺少足够的能量来完成电子的转移,因此需要提高电极电势,这部分提高的电势叫做活化超电势.它与电极反应中某一个最缓慢步骤的反应活化能有关,故有此名. (3)电阻超电势:当电流通过电极时,在电极表面或电极与溶液的界面上往往形成一薄层的高电阻氧化膜或其它物质膜,从而产生表面电阻电位降,这个电位降称为电阻超电势.这种情况不具有普遍意义,因此我们只讨论浓差极化和电化学极化. 二,浓差极化当有电流通过电极时,若在电极—溶液界面处化学反应的速率较快,而离子在溶液中的扩散速率较慢,则在电极表面附近有关离子的浓度将会与远离电极的本体溶液中有所不同. 现以Ag|Ag+为例进行讨论. 将两个银电极插到浓度为c 的AgNO3 溶液中进行电解,阴极附近的Ag+沉积到电极上去(Ag++e-→Ag),使得该处溶液中的Ag+浓度不断地降低.若本体溶液中的Ag+扩散到该处进行补充的速度赶不上沉积的速度,则在阴极附近Ag+的浓度ce 将低于本体溶液浓度c(电极附近是指电极与溶液之间的界面区域,在通常搅拌的情况下其厚度不大于10 3~10 2 cm).在一定的电流密度下,达稳定状态后,溶液有一定的浓度梯度,此时ce 具有一定的稳定值,就好象是电极浸入一个浓度较小的溶液中一样.此浓差极化数值与浓差大小有关,即与搅拌情况,电流密度等有关. 三,电化学极化(或活化极化) 假定溶液已搅拌得非常均匀或者已设法使浓差极化降低至可以忽略不计,同时又假定溶液的内阻以及各部分的接触电阻很小,均不予考虑,则从理论上讲要使电解质溶液进行电解,外加的电压只需略微大于因电解而产生的原电池的电动势就行了.但是实际上有些电解池并不如此.要使这些电解池的电解顺利进行,所加的电压还必须比该电池的反电动势大才行,特别是当电极上发生气体的时候.我们把这部分能使电解顺利进行的额外电压称为电化学超电势(或称为活化超电势).显然,活化超电势是由于电极反应是分若干步进行的,这些步骤中可能有某一步反应速率比较缓慢,需要比较高的活化能导致的.活化超电势的大小是电极活化极化的量度.析出电势和超电势是对个别电极而言的, φ(阳, 析出)=φ(阳, 可逆)+ η(阳) φ(阴, 析出)=φ(阴, 可逆)- η(阴) 分解电压是对整个电解池而言E(分解)=φ(阳, 析出)-φ(阴, 析出)=E(可逆)+ η(阳)+ η(阴) 四,氢超电势研究电化学极化是从研究氢超电势开始的.研究氢超电势不仅对电极过程研究的理论发展起了重要的作用,而且对实际生产也有着十分重要的作用.许多电化学工业都和氢在阴极上的析出有联系,由于氢超电势的存在,直接对工业生产发生了利害关系. 例如在电解水制氢和氧时,由于超电势的存在,增加了电能的消耗.但事物都是分为二的.极谱分析法就是利用氢在汞阴极上有很高的超电势,才实现了对溶液中金属离子的分析测定.又如利用氢在铅上有较高的超电势,才能实现铅蓄电池的充电.因此,我们着重讨论有关氢超电势的一些问题. 1,影响氢超电势的因素根据对很多有关实验数据的分析,发现氢超电势与电流密度,电极材料,电极表面状态,溶液组成,温度等有密切关系.早在1905 年,Tafel 提出了一个经验式,表示氢超电势与电流密度的定量关系,称为Tafel 公式η=a+b ㏑ j 式中j 是电流密度,a,b 是常数.其中,a 是j 等于1 A cm-2(10000 A m-2时的超电势值,它与电极材料,电极表面状态,溶液组成以及实验温度等有关. b 的数值对于大多数的金属来说相差不多,在常温下接近于0.050 V.如用以10 为底的对数,b≈0.116V.意味着,j 增加10 倍,η 约增加0.116V.氢超电势的大小基本上决定于a 的数值,因此a 的数值愈大,氢超电势也愈大,其不可逆程度也愈大.如用η 为纵坐标,㏑j 为横坐标作图,Tafel 关系是一条直线. 若j 很小时,若按Tafel 关系,η→∞,这当然不对.因为当j→0 时,电极的情况接近于可逆电极η=0.j 较低时,η 与j 的关系可表示为η= ωj, ω值与金属电极的性质有关,可表示在指定条件下氢电极的不可逆程度. 2,氢超电势产生的机理关于氢在阴极电解时的机理的研究,从本世纪三十年代开始有了很大的发展,提出了不同的理论,例如迟缓放电理论和复合理论等.在不同的理论中也有一些共同点,如:都提出H+的放电可分为几个步骤进行.有(1) H3O+从本体溶液中扩散到电极附近. (2) H3O+从电极附近的溶液中移到电极上. (3) H3O+在电极上放电. (4) 吸附在电极上的H 原子化合为H2. (5) H2 从电极上扩散到溶液内形成气泡逸出. 其中(1),(5)两步已证明不能影响反应速率,至于(2),(3),(4)三步中,哪一步最慢,意见不一致,迟缓放电理论认为第三步最慢,而复合理论认为第四步最慢,也有人认为在电极上各反应步骤的速率相近,属联合控制.在不同的金属上,氢超电势的大小不同,可设想采用不同的机理来解释.一般说来,对氢超电势较高的金属如Hg、Zn、Pb、Cd 等,迟缓放电理论基本上能概括全部的实验事实.对氢超电势低的金属如Pt、Pd(钯)等则复合理论能解释实验事实.而对于氢超电势居中的金属如Fe、Co、Cu 等,则情况要复杂得多.但无论采用何种机理或理论,最后都应能得到经验的Tafel 关系式. 五,超电势的测定测定超电势实际上就是测定在有电流通过电极时的极化电极电势数值.超电势数值的大小和通过电极的电流密度大小密切相关.因此通常是由实验测得不同电流密度下的电极电势,作出极化曲线,即可求得某电极在指定电流密度下的超电势.测量电极的超电势,一般采用如图9.3 的装置. 电极1:研究电极(或待测电极) 电极2:辅助电极(一般用Pt 片) 甘汞电极:参比电极(通常将电极的支管的尖端拉成直径约1 mm 左右的毛细管,靠近研究电极表面,以减少溶液中的欧姆降IR 值).(参比电极应根据研究溶液的性质而定,常用饱和甘汞电极.电解池中面积已知的待测电极1 和辅助电极2,经一可变电阻与直流电源联成回路,为极化回路,内有电流计A 以测量回路中的电流.改变电阻可调节回路中电流的大小,从而调节通过待测电极的电流密度j.将待测电极与电势较稳定的甘汞电极组成一个原电池,接到电位差计上,组成一测量回路,采用对消法测量该电池电动势. (甘汞)已知,测E 可算出φ1.这种控制电流密度j,使其分别恒定在不同的数值,然后测定相应的电极电势φ 的方法称为恒电流法.把测得的一系列不同电流密度下的电势画成曲线,即得极化曲线.对于电解池,因阳极是正极,阴极是负极,所以阳极电势高于阴极电势,外加电压,即分解电压与电流密度的关系如图9.4(a) E(分解)=E(可逆)+△E(不可逆)=E(可逆)+ η(阳)+ η(阴由图可知,电解池工作时,所通过的电流密度越大,即不可逆程度越高,超电势越大,则外加压也要增大,所消耗的电功也越多.对于原电池,控制其放电电流,同样可以在其放电过程中,分别测定两个电极的极化曲线.因阴极是正极,阳极是负极,所以阴极电势高于阳极电势,随电流密度增大,由于极化作用,负极(阳极)的电极电势比可逆电势值愈来愈大,正极(阴极)的电极电势比可逆电势值愈来愈小,两条曲线有相互靠近的趋势,原电池的电动势逐渐减少,所做电功则逐渐减小.E(不可逆)=E(可逆)- η(阳)- η(阴) 讨论:从能量消耗的角度看,无论原电池还是电解池,极化作用的存在都是不利的.为了使电极的极化减小,必须供给电极以适当的反应物质,由于这种物质比较容易在电极上反应,可以使电极上的极化减少或限制在一定程度内,这种作用称为去极作用.这种外加的物质则叫做去极化剂. 第三节电解时电极上的反应当电解池上的外加电压由小到大逐渐变化时,其阳极电势随之逐渐升高,同时阴极电势逐渐降低.从整个电解池来说,只要外加电压加大到分解电压的数值电解反应即 (a) 电解池中两电极的极化曲线 (b) 原电池中两电池的极化曲线开始进行;从各个电极来说,只要电极电势达到对应离子的"析出电势",则电解的电极反应即开始进行.电解时阴极发生还原反应,阳极发生氧化反应.因此,凡是能在阴极上得到电子在阳极上放出电子的反应,都有可能电解.所以不仅利用电解法可以制备和精炼许多金属,而且还可以制备某些无机和有机化合物.不仅能控制电位以获得较为纯净的产品,而且还能使原来分步完成的反应在某一中间步骤停止,而得到所需要的产品. 一,金属的析出与氢的超电势当电解金属盐类的水溶液时,在阴极可能析出氢气或金属.究竟发生什么反应,则不仅要考虑它们的平衡电极电势(热力学性质),还要考虑在一定电流密度下的超电势(动力学性质),即看其离子析出电势的大小而定. φ(阴,析)=φ(平)-φ(阴) φ(阳,析)=φ(平)+φ(阴) 在实际生产中氢超电势现象十分重要.通常它起着两种不同的作用,一是有利于生产的顺利进行,另一是使生产过程消耗过多的电能.例如食盐电解工业中用汞阴极进行电解,就是利用氢在汞上的超电势较高,因此在阴极上才有可能形成汞齐而不析出H2.在此电解法中,Na+ 在汞阴极上的放电电势是-1.83 V,氢在汞上的超电势为1.35 V,因此H+放电要比Na+困难得多.Na+放电后形成的钠汞齐是金属Na 溶液在汞中所成的液态合金,2Na(Hg)+2H2O → 2NaOH+H2+2Hg 反应产生和汞又回到电解糟中去重新使用.此法所得烧碱纯度高,适用于人造纤维工业.在金属沉积中也常遇到H2 的超电势问题.利用氢在不同金属上的超电势,可以在阴极镀上Zn,Cd,Ni 等而不会有H2 析出. 在化学电源中超电势现象也同样重要.例如,铅蓄电池充电时的阴极反应PbSO4+2e-→Pb+SO42- 阳极反应PbSO4+2H2O→PbO2+4H+ +SO42-+2e- 这两个电极反应的电流效率都很高,也是因为H2 和O2 分别在这两个电极上有较大的超电势,若没有这种超电势现象,则充电过程将完全变成电解水的作用了. 一般说来,在电解过程中,一方面应注意因电解池中溶液浓度的改变所引起的反电动势的改变,同时还要注意控制外加电压不宜过大,以防止H2 也在阴极同时析出. 二,金属离子的分离如果溶液中含有各种不同的金属离子,它们分别具有不同的析出电势,则析出电势越高的离子,越易获得电子而优先还原成金属.所以,在阴极电势逐渐由高变低的过程中,各种离子是按其对应的电极电势由高到底的次序先后析出的.各种金属析出的过电势一般都很小(电流密度较小时),可近似用φR 代替析出电势. 例如电解液中含有浓度各为1 mol kg 1的Ag+,Cu2+和Cd2+离子,则因φ (Ag)>φ (Cu)>φ (Cd),而首先析出Ag,其次析出Cu,最后析出Cd.依据这一道理控制阴极电势,能够将几种金属依次分离.但是,若要分离得完全,相邻两种离子的析出电势必须相差足够的数值,一般至少要差0.2 V 以上,否则分离不完全.在上述溶液中,当阴极电势达到+0.799V 时,Ag 首先开始析出.随着Ag 的析出,阴极电势逐渐下降.当阴极电势降低到第二种金属Cu 开始析出的0.337 V 时,由能斯特方程可以算出,此时Ag+浓度已降至1.5×10-8 mol kg-1,相应E(分解)增大.而当阴极电势降至第三种金属Cd 开始析出的-0.403 V 时,Cu2+的浓度已降至10 25 mol kg-1,可以认为已经分离得非常完全了.不难推断,当两种金属析出电势相同时,调整离子浓度或提高超电势,都可使两种金属在阴极上同时析出.电解法制造合金就是依据这一原理. φ 三,电解还原与氧化的应用电解时阴极上的反应当然并不限于金属离子的析出,任何能从阴极上获得电子的还原反应都可能在阴极上进行;同样,在阳极上也并不限于阴离子的析出或阳极的溶解,任何放出电子的氧化反应都能在阳极上进行.若溶液中含有某些离子,具有比H+较正的还原电势,则H2 就不再逸出,而发生该种物质的还原.通常称这种物质为阴极去极化剂.同理,若要减弱因阳极上析出O2 或C12 等所引起的极化作用,则可加入还原电势较负的某种物质,使基比OH-先在阳极氧化,这种物质称为阳极去极化剂. 例如,用某种电极电解1mol kg-1 的HC1;若在阳极区加入一些FeC13,则由于Fe3+的φ(还原)高于H+的φ(还原),所以Fe3+在阴极区还原为Fe2+,而避免了析出H2 的极化作用;若在阳极区加一些FeC12,则Fe2+在阳极氧化为Fe3+,而避免了生成C12 的极化作用.Fe3+是直接从阴极上取得电子而还原.最简单的去极化剂是具有高低不同价态的离子例如铁和锡的离子.去极化剂的作用相当于一个氧化还原电极,它有较恒定的电极电势,其数值取决于高价和低价离子活度的比值. 另一类去极化作用虽有H+参加,但没有H2 析出,这些反应常是不可逆的,且实际的电极过程也并不十分清楚.例如阴极上硝酸盐及硝基苯还原的反应.去极化剂在电化学工业中应用得很广泛.例如电镀工艺中为了使金属沉积的表面既光滑又均匀,常加入一定的去极化剂,以防止因H2 放出而使表面有孔隙或疏松现象. 电解氧化和还原的应用是十分广泛的,如电解制备,塑料电镀,铝及其合金的电化学氧化和表面着色等. 1,电解制备例如电解食盐水制备C12 和NaOH 的氯碱工业,用电解法提纯金属如电解铜,生产合金如黄铜,电解水以制备纯净的H2 和O2,电解法制双氧水等.有机物的电解制备在近年来也研究得很多.电解制备的主要优点为: (1)产物比较纯净,易于提纯,用电解法进行氧化和还原时不需另外加入氧化剂或还原剂,可以减少污染.(2)适当地选择电极材料,电流密度和溶液的组成,可以扩大电解还原法的适用范围,通过控制反应条件还可以使原来在化学方法中是一步完成的反应,控制在电解的某一中间步骤上停止,有时又可以把多步骤的化学反应在电解槽内一次完成,从而得到所要的产物. 2,塑料电镀为了节约金属,减轻产品重量和降低成本,目前在建筑业,汽车制造业及人们日常生活中越来越多地采用塑料来代替金属.电镀步骤大致为,先使各种塑料(如ABS,尼龙,聚四氟乙烯等)表面去油,粗化及进行各种表面活性处理,然后用化学沉积法使其表面形成很薄的导电层,再把塑料镀件置于电镀槽的阴极,镀上各种所需的金属,电镀后的塑料制品能够导电,导磁,有金属光泽和提高了焊接性能,而且机械性能,热稳定性和防老化能力等都有所提高. 3,铝及其合金的电化学氧化和表面着色金属铝及其合金由于质轻,导电,导热及延展性能好,故在电子工业,机械制造和轻工业等方面有广泛的应用.但是由于铝质软不耐磨,表面氧化膜约4 m,抗蚀性能差,色泽单调,所以它的应用受到极大的限制.铝及其合金的电化学氧化也称阳极氧化,可以改变铝制品的性能.方法为,把铝或其合金置于相应的电解液(硫酸,铬酸,草酸等)中作为阳极,在特定的工作条件和外加电流的作用下,在阳极表面形成一层厚度为5~20 m 的氧化膜,硬质阳极氧化膜厚度可达60~200 m.经阳极氧化处理后的铝及其合金有较高的硬度和耐磨性,有良好的耐热性,绝缘性,抗蚀性和绝热性,使得它在航天,航空,电气,电子工业上有广泛的用途.有关化学电源: 电能是现代生活的必需品,电能是最重要的二次能源,大部分的煤和石油制品作为一次能源用于发电.(注:一次能源——指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭,天然气,地热,水能等.由一次能源经过加工或转换成另一形态的能源产品,如电力,焦炭,汽油,柴油,煤气等属于二次能源.)煤或油在燃烧过程中释放能量,加热蒸汽推动电机发电,它的实质是化学能→机械能→电能的过程,这种过程通常是要靠火力发电厂的汽轮机和发电机来完成.另外一种把化学能直接转化为电能的装置,统称化学电池或化学电源.如收音机,手电筒,照相机上用的干电池,汽车发动机用的蓄电池,钟表上用的钮扣电池等都是小巧玲珑携带方便的日常用品.常见的电池类型: 锌一锰干电池:日常用的收音机,手电筒里使用的都是干电池,其电压一般为1.5 V(它为一次性电池,当电压降至0.8 V,就不能再用了)电音量。

11章电解池与极化作用全解

11章电解池与极化作用全解
第十一章 电解池与极化作用
可逆电池:电极反应是在电流趋于零的平衡条件 下进行的,此时的电极电势为可逆电 极电势或平衡电极电势。
实际上电池对外供电或进行电解时,都有一定的电流 通过电极,使电极反应在偏离平衡态下进行而成为不 可逆过程,导致电极电势也偏离平衡电极电势。现以 电解池为例讨论这种偏离现象产生的原因及在实际中 的意义。
由于化学反应本身的迟缓性而引起的的电极极化。
电极反应总是分若干步进行,若其中一步反应速
率较慢,需要较高的活化能。为了使电极反应顺利进
行所额外施加的电压称为称为活化超电势。
例:2H+ + e– H2
e
v反应 慢,阴极积累电子e- 2H+ + 2e– H2
电化学极化使阴极电势降低,使阳极电势升高
两种极化结果均使 阴极电势降低
7
§11.2 极化作用
1. 电极的极化
定义:电流通过电极时,电极电势偏离其平衡电极 电势的现象称为电极的极化。
阳极极化: E阳 E阳, 平 使 E阳 变大(正) 阴极极化: E阴 E阴, 平 使 E阴 变小(负)
离子扩散速率慢 浓差极化 极化产生的原因:
反应速率慢 电化学极化
8
(1) 浓差极化 由于电极表面附近薄液层的浓度和本体溶液的 浓度的差异所导致的电极极化。
所以标准氢电极中的 铂电极要镀上铂黑。
影响超电势的因素很多,如电极材料、电极表面状态、电
流密度、温度、电解质的性质、浓度及溶液中的杂质等。
14
Tafel 公式(Tafel’s equation)
早在1905年,Tafel 发现,对于一些常见的电 极反应,超电势与电流密度之间在一定范围内存 在如下的定量关系:

物理化学10章_电解与极化作用

物理化学10章_电解与极化作用

对于在阳极、阴极均有多种反应可以发主的情况
下,在电解时,阳极上总是极化电极电势最低的反应
优先进行,阴极上总是极化电极电势最高的反应优先
进行。
阴,1
阳,1
阴,2
阴 = 阴,可逆 – 阴 阳 = 阳 – 阳,可逆
阳,2
故 阴= 阴,可逆– 阴 阳 = 阳,可逆+ 阳
上一内容 下一内容 回主目录
返回
2020/9/6
E(分解) E(可逆) E(不可逆) IR
E(不可逆) (阳) (阴)
显然分解电压的数值会随着通入电流强度的增 加而增加。
上一内容 下一内容 回主目录
返回Biblioteka 2020/9/6§10.2 极化作用
电流通过电极时,电极电势偏离平衡电极电势的
现象称为电极的极化。
超电势
= | –可逆 |
(1)浓差极化
E(理论分解 ) E(可逆)
上一内容 下一内容 回主目录
返回
2020/9/6
§10.2 极化作用
要使电解池顺利地进行连续反应,除了克服作 为原电池时的可逆电动势外,还要克服由于极化在 阴、阳极上产生的超电势(阴) 和(阳) ,以及克服电 池电阻所产生的电势降 IR。这三者的加和就称为实 际分解电压。
上一内容 下一内容 回主目录
返回
2020/9/6
§10.1 分解电压
在大气压力下于l mol·m–3盐酸溶液中放入两个铂 电极,将这两个电极与电源相连接。如图:
氯气
氢气
上一内容 下一内容 回主目录
分解电压
返回
2020/9/6
§10.1 分解电压
理论分解电压 使某电解质溶液能连续不断发生 电解时所必须外加的最小电压,在数值上等于该电 解池作为可逆电池时的可逆电动势:

《物理化学》高等教育出版(第五版)第十一章电 极 极 化

《物理化学》高等教育出版(第五版)第十一章电 极 极 化

第十一章电 极 极 化一、判断题: 1.用Pt 电极电解CuCl 2水溶液,阳极上放出Cl 2 。

2.电化学中用电流密度i 来表示电极反应速率。

3.分解电压就是能够使电解质在两极上持续不断进行分解所需要的最小外加电压。

4.凡是可以阻止局部电池放电,降低腐蚀电流的因素都能使腐蚀加剧。

5.测量阳极过电位用恒电流法。

6.恒电流法采用三电极体系。

7.交换电流密度越大的电极,可逆性越好。

8.用Pt 电极电解CuSO 4水溶液时,溶液的pH 值升高。

9.极化和过电位是同一个概念。

10.双电层方程式不适用有特性吸附的体系。

11.实际电解时,在阴极上首先发生还原作用的是按能斯特方程计算的还原电势最大者。

二、单选题:1.298K ,p ө下,试图电解HCl 溶液(a = 1)制备H 2和Cl 2,若以Pt 作电极,当电极上 有气泡产生时,外加电压与电极电位关系:(A) V (外) = φө(Cl 2/Cl -) -φө(H +/H 2) ;(B) V (外) > φө(Cl 2/Cl -) -φө(H +/H 2) ;(C) V (外)≥φ(Cl 2,析) -φ(H 2,析) ;(D) V (外)≥φ(Cl 2/Cl -) -φ(H +/H 2) 。

2.25℃时,用Pt 作电极电解a (H +) = 1的H 2SO 4溶液,当i = 52 × 10-4A·cm -2时,2H η= 0,2O η= 0.487V . 已知 φө(O 2/H 2O) = 1.229V ,那么分解电压是: (A) 0.742 V ; (B) 1.315 V ;(C) 1.216 V ; (D) 1.716 V 。

3.下列两图的四条极化曲线中分别代表原电池的阴极极化曲线和电解池的阳极极化曲线的是:(A) 1、4;(B) 1、3;(C) 2、3;(D) 2、4。

4.已知反应H 2(g) + ½O 2(g)-→H 2O(l) 的m r G ∆=-237.19 kJ·mol -1,则在25℃时极稀硫酸的分解电压(V)为:(A) V =2.458 ; (B) V =1.229 ;(C) V > 2.458 ; (D) V > 1.229 。

第十一章 电解及库仑分析法..

第十一章 电解及库仑分析法..

it:t时的瞬间电流; i0 :初始电流; ct :t时刻的浓度; c0 :初始浓度;k为常数
4.特点与应用
选择性好;可定量分析,又可分离。表11-2
三、汞阴极电解分离法
特点:
1 、 H 在汞阴极上过电位大,许多金属可以在汞 阴极上析出为金属或汞齐 2、由于多数金属能形成汞齐,使得汞电极上金 属活度减小,析出电位变正,易于被还原。
1.基本装置
三电极系统 自动调节外电压,阴极电位保持恒定。选择性好。
电位计
R′
图11-6 自动控制阴极电位电解装置
2.阴极电位的选择
a.a、b分别为A、B两种金属离子析 出电位。 b. A物质析出完全时,阴极电位未达 到B物质的析出电位(图),电位控制 在d处;控制在c处,B物可电解 c.对于反应离子,浓度降低10倍,阴极 电位降低0.059 /n V。 d.被分离两金属离子均为一价,析出 电位差>0.3 V e. 被分离两金属离子均为二价或三 价,析出电位差分别为0.15 V和0.10 V
Ag的析出电位为: E = E0Ag+,Ag+0.059log[Ag+] =0.80+0.059log0.01 =+0.68V Cu的析出电位为 E = E0Cu2+,Cu + =0.35 + =+0.35V
0.059 2 0.059 log[Cu2+] 2
log1.0
因银的析出电位较铜为正,故银离子先在阴极上析出。
本章小结
1、分解电压、析出电位、极化现象、过电位 2、实际分解电压 U=(Ea-Ec)+(ηa+ηc)+iR 3、控制电流或控制电位电解法基本原理 i-t及c-t关系 4、库伦分析法的基础——法拉第定律

电解与极化作用(小结)汇总

电解与极化作用(小结)汇总
14:03
宁夏大学化学化工学院
2.1.分解电压与电极电势的关系式(1)
适用条件:电解在接近平衡 的条件下进行,即可逆条件 下进行。V外-E反电动 = dV(无限小)。
V理分=
φ R,阳
-
φ R,阴
= E反电动(数值上)(
23
)
宁夏大学化学化工学院
14:03
2.1.分解电压与电极电势的关系式(2)
1.12 支持电解质
1.13 阴极保护· 阳极保护 1.14 缓冲剂保护 1.15 腐蚀电流· 腐蚀电势
1.8 交换电流密度· 极限电流密度
宁夏大学化学化工学院
3
14:03
1.1 电解池.电解.电解现象
将两电极与直流电源连接后,能强迫 电流在其中通过使电能转换为化学能的 装置叫电解池. 直流电通过电解质溶液或熔融化合 物 , 两电极上发生化学反应 , 使电能转 换为化学能储存于电解产物的过程称为 电解。 电解进行时,电解质的阴 . 阳离 子分别向正 ( 阳 ) 、负 ( 阴 ) 两极移动 , 并 在电极上分别发生还原和氧化反应 , 生 成新产物, 这称为电解现向.
负,即等于可逆电势与阴极超电势之差。
φ 阳,析
=
φ
R,阳+
η

(2)
意义:阳极析出产物的电势比可逆电势
更正,即等于可逆电势与阳极超电势之和.
宁夏大学化学化工学院
32
14:03
练 习 题
判断题
计算题
宁夏大学化学化工学院
33
14:03
(一)判断题
1. 电解,电镀, 化学电源和电化腐蚀等都是热力学 不可逆过程。( No ) 2. 测分解电压时,要使用伏特计,目的在于测电解 池两极的端电压—槽电压。 ( Yes ) 3. 用Pt电极电解NaOH稀水溶液时,产物构成的电池是 Pt|H2(P1)∣NaOH(m)|O2(P2)∣Pt ( Yes ) 4. 浓差极化是由于电池或电解池中阴极与阳极电解 质溶液浓度不同所引起的。( No ) 5. 超电势的大小是电极极化程度的量度。( Yes ) 宁夏大学化学化工学院
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 2OH (a OH- ) H 2O
-
1 2
O 2 (p O2 )+2e -
EO (g)/OH- E
2
$ O2 (g)/OH -
RT ln O2 1/2 zF ( pO2 / p )
2 OH
0.05916 0.012 0.401 lg 0.98 V 1/2 2 (100 / 100) = 1.4993 V
由于电极表面附近薄液层的浓度和本体溶液的
浓度的差异所导致的电极极化。
例:Ag+ + e- Ag
v扩 慢,v反应 快
cAg+ (平衡) > cAg+
Ag+
$ Ag /Ag

Ag+ + e– Ag 阴极电势降低; 阳极电势升高。
RT E Ag /Ag E ln cAg 平衡 F RT $ E Ag /Ag E Ag /Ag ln c Ag F
O
J
11
超电势:某一电流密度下电极电势与其平衡电极
电势之差的绝对值称为超电势,以表示。
显然: 阳 = E阳 – E阳,平
电解池与原电池极化的差别
阴 = E阴,平 – E阴
电解池:J,E端,能耗 原电池:J,E端,做电功
12
3. 氢超电势与Tafel 公式
电解质溶液通常用水作溶剂,在电解过程中,氢 离子在阴极会与金属离子竞争还原。

RT 2 ln aOH zF

EAgO(s)/Ag(s) EO (g)/OH 故Ag首先被氧化成Ag2O的反应。 2
23
§11.4 电解的应用
(1)金属离子的分离和沉积:
如果溶液中含有多个析出电势不同的金属离子,可 以控制外加电压的大小,使金属离子分步析出而达
利用氢在电极上的超电势,可以使比氢活泼的金
属先在阴极析出,这在电镀工业上是很重要的。 例如,控制溶液的pH,利用氢气的析出有超电势, 使得镀Zn,Sn,Ni,Cr等工艺成为现实。 金属在电极上析出时超电势很小,通常可忽略不 计。而气体,特别是氢气和氧气,超电势值较大。
13
氢在几种电极上的超电势: (1)氢气在石墨和汞等材料上, 超电势很大; (2)在金属Pt,特别是镀了铂黑 的铂电极上,超电势很小。 所以标准氢电极中的 铂电极要镀上铂黑。 影响超电势的因素很多,如电极材料、电极表面状态、电 流密度、温度、电解质的性质、浓度及溶液中的杂质等。
(2)当H+开始还原析出H2(g)时,阴极的电极电势 至少应该为-1.114 V,Zn2+的活度为
0.05916 1 1.114 V 0.7628 lg 2 Zn2 Zn2+ =1.36 10-12 V
由于氢的超电势较大,才能使活泼金属锌等的电镀才成为可能。
OH RT ln O2 1/2 zF ( pO2 / p )
2
$ EO (g)/OH- EO (g)/OH 2 2
21
例11-2. 298K时在某电流密度下,O2在Ag电极上的超电势
为0.98 V,将Ag电极插入 aOH-= 0.01的NaOH水溶液中,
试问:阳极上首先发生何种反应? 解:阳极上可能发生的反应有:
3
2
1
流,但压力低于大气压,无法逸出。
O
E分解
电压E
所产生的氢气和氯气构成了原电池,外加电压必须克服这
反电动势,继续增加电压,I 有少许增加,如图中1-2段。
原电池: Pt | H2 (g, pH2 ) | OH (OH- ) | O2 (g, pO2 ) | Pt
-
4
(3) V外, E反, V外= E分 , E反 Emax
$ EOH /H
2
(g )
RT H 2O ln zF ( pH 2 / P ) ( pO2 / P )1/2 0.05916 1 lg ]V 1/2 2 (100 / 100) (100 / 100)
6
[0.401 ( 0.8277)] V [ 1.23 V
22
(2) 2Ag(s)+2OH- (aOH ) Ag2O(s) H2O+2e-
a纯固体 1 , aH2O 1
E Ag2O(s)/Ag(s) E
$ Ag2O (s)/Ag(s)
2 0.344 1 / 2 0.05916lg 0.01 V = 0.4623 V
的增加只用于增加溶液的电位降: I R = E外 E反, max
将直线外延至 I=0 处,得 E分解值,这是使电解池不断工作
所必需外加的最小电压,称为分解电压。
5
2. 理论分解电压 理想情况: E理 = E分 (由Nernst方程计算得出)
原电池: Pt | H2 (g, pH2 ) | OH (OH- ) | O2 (g, pO2 ) | Pt
还要考虑 H+ 和 OH- 离子是否可以发生电极反应。
电解时:阳极:极化电极电势低的物质优先被氧化
E阳 E阳,平 阳
阴极:极化电极电势高的物质优先被还原
E阴 E阴,平 阴
17
(1)阴极上的反应:电解时阴极上发生还原反应
发生还原的物质通常有:
(1)金属离子 (2)氢离子(中性水溶液中) 判断在阴极上首先析出何种物质,应把可能发生 还原物质的电极电势计算出来,同时考虑它的超
1 O2 (g) 2
KOH
图11-1 测定分解电压的装置
2
分解电压的测定: 使用Pt电极电解 KOH,实验装置如图所示。
逐渐增加外加电压,由安培计G和伏特计V分别测
定线路中的电流强度I 和电压E,画出I-E曲线。
电 流 I
3
2
KOH
O
1
E分解
电压E
3
图11-1 测定分解电压的装置
图11-2 测定分解电压的电流-电压曲线
解:(1)设 pH2 = 100 kPa, aH+ = 10-7。
H2的析出电势为:
H +e
+ -
1 2
H2
EH /H
2 (g)
1/2 ( p / p ) RT H2 $ EH /H (g) ln H2 2 F H
(100 / 100)1/2 0 0.05916lg 0.70 V 7 10 = - 1.114 V
7
§11.2 极化作用
1. 电极的极化
定义:电流通过电极时,电极电势偏离其平衡电极
电势的现象称为电极的极化。
阳极极化: 阴极极化: E阳 E阳, E阴 E阴,
平 平
使 E阳 变大(正) 使 E阴 变小(负)
极化产生的原因:
离子扩散速率慢 浓差极化
反应速率慢 电化学极化
8
(1) 浓差极化
14
Tafel 公式(Tafel’s equation)
早在1905年,Tafel 发现,对于一些常见的电 极反应,超电势与电流密度之间在一定范围内存 在如下的定量关系:
a b ln j
j : 是电流密度 a:
是单位电流密度时的超电势值 与电极材料、表面状态、溶液组成和温度等因素 有关,是超电势值的决定因素。
当外电压增至2-3段, E反随着 PO2、 PH2的增加而增加,当PO2、PH2 增大 到等于大气压力,呈气泡逸出, E反 反电动势达极大值
V外 = E分 时的电极电势称为析出电势
电 流
I
3
2
1
O
E分解
(4) V外 > E分,V外 ,I
再增加电压,使 I 迅速增加。反电动势已不变;此后E外
电压E
20
(2)阳极上的反应:电解时阳极上发生氧化反应
发生氧化的物质有:(1)阴离子,如Cl-、OH-等 (2)阳极本身发生氧化 判断在阳极上首先发生什么反应,应把可能发 生氧化物质的电极电势计算出来,同时要考虑 它的超电势。电极电势最小的首先在阳极氧化。
EA|Az E
A|A z
RT ln aAz (阳) zF
电势。电极电势最大的首先在阴极析出。
EMz+ |M E EH+ |H
Mz+ |M
RT 1 ln zF aMz+
RT 1 ln H 2 F aH+
18
例11-1. 298K时用锌电极作阴极电解 aZn2+=1 的 ZnSO4
水溶液,若H2析出的超电势为0.70V,
(1)哪种离子首先析出? (2)当第二种离子析出时,求溶液中先析出离子的活度?
第十一章 电解池与极化作用
可逆电池:电极反应是在电流趋于零的平衡条件 下进行的,此时的电极电势为可逆电 极电势或平衡电极电势。
实际上电池对外供电或进行电解时,都有一定的电流
通过电极,使电极反应在偏离平衡态下进行而成为不 可逆过程,导致电极电势也偏离平衡电极电势。现以
电解池为例讨论这种偏离现象产生的原因及在实际中
电化学极化使阴极电势降低,使阳极电势升高
两种极化结果均使
阴极电势降低 阳极电势升高
10
2. 极化曲线的测定
电极电势与电流密度之间的关系曲线称为极化 曲线,极化曲线的形状和变化规律反映了电化
学过程的动力学特征。
+
A
电 极 2 电 极 1
E
阴极 E平
电位计
O
J
甘汞电极
E
阳极
E平
图11-3 极化曲线的测定装置
的意义。
1
§11.1 电解池分解电压
相关文档
最新文档