离散数学第四章资料

合集下载

离散数学第四章第5讲课件.ppt

离散数学第四章第5讲课件.ppt
以上所给的盖住集定义是立足于集合运算的观点,应用此 等价定义判定偏序关系的盖住集, 不仅有条理, 而且步骤清 晰。
可从以下几步求盖住集:
(1)计算R1 = R - IA
(2)将R1 与其自身复合,得集合R2 ,即 R2 =R1 o R1
(3)计算集合R1 和R2 的差,则盖住集为:COV A =R1 - R2
R2 =R1 o R1 = { < 2 , 8 >} COV A = R1 –R2 = {<2,4><2,6><3,6><4,8>}
例 设集合A = { a , b , c , d , e} , R 是A 上的偏序关系。
R = { < a , a > < a , b > < a , c > < a , d >< a , e > < b , b > < b , c> < b , e > < c , c > <c , e > < d , d > < d , e > < e , e >} ,求 盖住集COV A。
24
36
12 子集B
极大元
{2,3,6,12,24, 24,36
36}
6
{6,12}
12
极小元
2,3
6
最大元 最小元


12
6
{2,3,6}
6
2
3
{6}
6
2,3
6
无66来自61讨论定义:
(1) yB ,B的极大元,极小元,最大元,最小元,若有 的话,必定在B中。

《离散数学》课件-第四章 二元关系

《离散数学》课件-第四章 二元关系
则关系R的各次幂为: R0 =A ={<1,1> , <2,2> , <3,3> , <4,4> , <5,5>} R1=R
R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}

离散数学四省公开课一等奖全国示范课微课金奖PPT课件

离散数学四省公开课一等奖全国示范课微课金奖PPT课件
f : DIn DI , 称 f 为f在I中解释.
(d) 对每一个n元谓词符号FL, 有一个DI上n元谓词常项 ,F 称 F 为F在I中解释. 设公式A, 取个体域DI , 把A中个体常项符号a、函数符
号f、谓词符号F分别替换成它们在I中解释 、a 、f ,F称
所得到公式A为A在I下解释, 或A在I下被解释成A.
比如,x(F(x,y)G(x,z)), x为指导变元,(F(x,y)G(x,z))为 x 辖域,x两次出现均为约束出现,y与 z 均为自由出现
又如, x(F(x,y,z)y(G(x,y)H(x,y,z))), x中x是指导变元, 辖域为(F(x,y,z)y(G(x,y)H(x,y,z))). y中y是指导变元, 辖 域为(G(x,y)H(x,y,z)). x3次出现都是约束出现, y第一次出 现是自由出现, 后2次是约束出现, z2次出现都是自由出现
19
第19页
实例
例7 判断以下公式中,哪些是永真式,哪些是矛盾式? (1) xF(x)(xyG(x,y)xF(x))
重言式 p(qp) 代换实例,故为永真式. (2) (xF(x)yG(y))yG(y)
矛盾式 (pq)q 代换实例,故为永假式. (3) x(F(x)G(x))
解释I1: 个体域N, F(x):x>5, G(x): x>4, 公式为真 解释I2: 个体域N, F(x):x<5, G(x):x<4, 公式为假 结论: 非永真式可满足式
2
第2页
谓词
谓词——表示个体词性质或相互之间关系词 谓词常项 如, F(a):a是人 谓词变项 如, F(x):x含有性质F n(n1)元谓词 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间关系 如, L(x,y):x与 y 相关系 L,L(x,y):xy,… 0元谓词——不含个体变项谓词, 即命题常项 或命题变项

自考离散数学第4章

自考离散数学第4章

例:设集合A={a,b,c,d},在A上定义两个运算*和
,如表所示: 解:b,d是A中关于*运算的左幺元,而a是A中关于运算的右幺元。
a d a a a b a b b b c b c c c d c d c d a b c
* a b c d

a a b c
b b a d
c d c a
定义4.3.7 设<G,*>为群,若在G中存在一个元素a,使得G中的任意元素都由a
例:设A={a,b,c,d},*为A上的二元运算,
* a b c d
a a b c d
b b d a a
c c a b c
d d c b d
可以看出a为单位元。由a*a=a,b*c=a,c*b=a,d*b=a, 故a有逆元a;b有左逆元c,d;c有左逆元b;b有右逆元c;c有右逆元b;d有
定义4.3.2 设<G,*> 为一个群,如果G是有限集合,则称<G,*> 是有限群。G中
元素的个数通常称为有限群的阶数,记为|G|。
定义4.3.3 若群G中,只含有一个元素,即G={e},|G|=1,则称G为平凡群。 例:设G={e,a,b,c},运算*如表所示:
* e a b c
e e a b c
4.2 半群与独异点
4.3 群与子群
定义4.3.1 设<G,*>为一个代数系统,其中G是非空集合,*是G上一个二元运算,
① 如果*是封闭的; ② 运算*是可结合的; ③ 存在幺元e; ④ 对于每一个元素x G,存在它的逆元x-1; 则称<G,*>是一个群。
4.3 群与子群

4.3 群与子群
4.1 代数系统

离散数学-第四章 代数系统

离散数学-第四章 代数系统

(r1 r2 r1r2 ) r3 (r1 r2 r1r2 )r3
r1 r2 r3 r1r2 r1r3 r2 r3 r1r2 r3
r1 (r2 r3 ) r1 (r2 r3 r2r3 )
(r1 r2 r3 r2 r3 ) r1 (r2 r3 r2 r3 ) r1 r2 r3 r2 r3 r1r2 r1r3 r1r2 r3
1 3 5 7
7 5 3 1
1 3 5 7
1 3 5 7 3 3 5 7 5 3 5 7 1 7 3 7
6
三、运算的封闭性
定义在集合A上的运算在A上一定是封闭的. 定义在集合A上的运算在A的子集上是否封闭呢?
例5 定义函数 : N N ,使 (n1 , n2 ) n1 n2
2
令S
(b, a, a), (b, a, b), (b, b, a), (b, b, b)}
2
f : An A ,于是对于 A n 设有集合 A和函数 中的每一个有序 n元组 (a , a ,, a ) ,在 A 中必有 1 2 n 唯一个元素 a与之对应,即 f (a1 , a 2 , , a n ) a
er er el , 令 e el er ,则 e 是 的单位元。 设 e 也是 的单位元, 则 e e e e 因此 e 是 的唯一的单位元。
因此, el
18
2. 零元
是集合A上的二元运算,若存在一元 素 z l A ,使得对于任意的 a A ,有 z l a z l , 则称 z l是A中运算 的左零元;若存在一元素 , 使得对于任意的 , zr a A a,则称 z是A中 zr A r 运算 z r 的右零元,若存在一元素 ,使得对于任 意 z A, a,则称Z是A中运算 z 的零 A z a a z 元。

离散数学(微课版) 第4章

离散数学(微课版) 第4章

离散数学(微课版)第4章1. 引言在离散数学的第4章中,我们将讨论图论的基本概念和应用。

图论是研究图及其在现实生活中的应用的数学分支,它在计算机科学、网络设计、运筹学等领域中具有重要的应用价值。

本章将介绍图的定义、图的表示方法、图的遍历算法等内容。

2. 图的定义图由一组节点和一组节点之间的边构成。

节点通常表示现实世界中的对象,而边则表示对象之间的关系。

图可以用于描述各种问题,如社交网络中的用户关系、城市之间的交通网络等。

2.1 有向图和无向图图可以分为有向图和无向图两种类型。

在有向图中,边具有方向,表示节点之间的单向关系。

而在无向图中,边没有方向,表示节点之间的双向关系。

2.2 顶点和边图由顶点和边组成。

顶点是图的节点,用来表示对象。

边连接两个顶点,表示两个对象之间的关系。

2.3 路径和环路径是指在图中从一个顶点到另一个顶点的连接序列。

环是一条路径,其起点和终点相同。

3. 图的表示方法在计算机中,图可以用不同的数据结构来表示。

常见的表示方法包括:3.1 邻接矩阵邻接矩阵是用二维数组表示图的连接关系。

对于无向图,邻接矩阵是对称的,而对于有向图,则不对称。

A B CA010B101C010上述邻接矩阵表示了一个无向图,其中顶点A与顶点B相连,顶点B与顶点C相连。

3.2 邻接表邻接表是用链表表示图的连接关系。

对于每个顶点,邻接表保存了与其相连的其他顶点的信息。

A ->B -> NULLB -> A ->C -> NULLC -> B -> NULL上述邻接表表示了一个无向图,顶点A与顶点B相连,顶点B与顶点A、C相连,顶点C与顶点B相连。

4. 图的遍历算法图的遍历算法是指按照一定的方式访问图中的所有节点。

常见的图的遍历算法有深度优先搜索和广度优先搜索。

4.1 深度优先搜索深度优先搜索从起点开始,尽可能深地访问尚未访问的节点,直到无法继续深入为止,然后回溯到上一个节点,继续深入其他未访问的节点。

离散数学课件第四章 关系

离散数学课件第四章  关系
Discrete Mathematics
关系的性质
例 2 (1) A上的全域关系EA,恒等关系IA及空关系都是A 上的对称关系;IA和 同时也是A上的反对称关系. (2)设A={1,2,3},则 R1={<1,1>,<2,2>}既是A上的对称关系,也是A上 的反对称关系; R2= {<1,1>,<1,2>,<2,1>}是对称的,但不是反对 称的; R3 ={<1,2>,<1,3>}是反对称的,但不是对称的; R4= {<1,2>,<2,1>,<1,3>}既不是对称的也不是 反对称的.
❖ 二、关系的表达方式 1. 集合表达式:列出关系中的所有有序对。 例 1 设A={1,2,3,4},试列出下列关系R的元素。 (1) R={<x,y> | x是y的倍数} (2) R={<x,y> | (x-y)2 A } (3) R={<x,y> | x/y是素数}
Discrete Mathematics
关系
第四章 二元关系
第一节 有序对与笛卡尔积
❖ 定义 1 由两个元素x和y(允许x=y)按顺序排列成 的二元组叫做一个有序对,记为<x, y>。
❖ 有序对的性质: 1.当 x ≠ y时,<x, y> ≠ <y, x>。 2.<x, y>=<u, v>的充分必要条件是 x=u且y=v。
Discrete Mathematics
笛卡尔积
❖ 定义 2 设A, B是集合。由A中元素作为第一元素,B 中元素作为第二元素组成的所有有序对的集合,称 为集合A与B的笛卡尔积(或直积),记为A×B。 即 A×B={<x,y>|x A y B}

离散数学第四章-二元关系和函数

离散数学第四章-二元关系和函数
注意:(1) 若 A 是 m元集,B是 n 元集, 则 A B为 mn 元集。
(2) 笛卡儿积是集合,有关集合的运算都适合。
(3) 一般,A B B A 。
5
3、笛卡儿积运算对 或 满足分配律
(1) A(B C) (A B) (AC) (2) (B C) A (B A) (C A) (3) A(B C) (A B) (AC) (4) (B C) A (B A) (C A)
解: (A) ,{a},{b}, A ,
R , , ,{a} , ,{b} ,
, A , {a},{a} , {a}, A ,
{b},{b} , {b}, A , A, A
14
4、A 上二元关系的表示法。
集合表示法 有三种 矩阵表示法
图形表示法
15
一般:设 A {x1, x2, , xn}
1、定义:
(1) 若集合R为空集或它的元素都是有序对, 则称 R 为二元关系。 若 x, y R ,则记作 xRy ,
否则,记作 xRy 。 (2) A B的任何一个子集都称作从A到B的一个二元关系。
特别地,当 A B 时,称作 A上的二元关系。
例、 A {a,b} ,B {0,1, 2}
设 R1 a, 0 , b, 0 , b, 2 R2 R3 A B
传递的。
26
例6、判断下图中的关系分别具有哪些性质。
解:R5 既不是自反也不是反自反的,
反对称的,传递的。
27
例6、判断下图中的关系分别具有哪些性质。
解:R6 是反自反的,既不是对称
又不是反对称,不是传递的。
28
例7:设 R1, R2 为 A上的对称关系, 证明R1 R2 也是 A上的对称关系。 证明:对任意 x, y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、定义及关系矩阵,关系图特征由下表给出
( R 为 A上关系)
自反性
定 x A ,都有 义 x, x R
的关 特系
主对角线元素
点 矩 全为1

反自反性
x A ,都有 x, x R
主对角线元素 全为0
的 关 图中每个顶点 特系 点 图 都有环
图中每个顶点 都无环
对称性
反对称性
定 若 x, y R ,若 x, y R且x y, 义 则 y, x R 则 y, x R
(2) 笛卡儿积是集合,有关集合的运算都适合。
(3) 一般,A B B A 。
3、笛卡儿积运算对 U或 I 满足分配律。 (1) A(B UC) (A B) U(AC) (2) (B UC) A (B A) U(C A) (3) A(B I C) (A B) I (AC) (4) (B I C) A (B A) I (C A)
R2
R3 A B
R4 b,1
则 R1, R2 , R3, R4 都是从A到B的关系。
2、A 上不同关系的数目。 若 A 为 n 元集,记 A n, 则 A A n2 , A A的子集共有 2n2个, n 元集 A上不同的关系共有 2n2个。
3、关系 R 的前域 A ,
后域 B

关系 R 的定义域 domR , 值域 ranR和域 fldR。
4、 n 阶(n 2)笛卡儿积。 A1 A2 L An
x1, x2,L , xn | x1 A1 x2 A2 L xn An
特别,当 A1 A2 L An A 时, 记为 An 。 如 A {a,b} ,
A2 a, a , a,b , b, a , b,b
二、二元关系。
2、笛卡儿积。
定义:集合 A和B的笛卡儿积,记作 A B 。
A B x, y | x A y B
例1、 ,A 0,1, B a,b,c
求 A B,B A,A A,A, B。
解:A B 0, a , 0,b , 0, c , 1, a , 1,b , 1,c
B A a,0 , a,1 , b,0 , b,1 , c,0 , c,1
的关 特系 点矩

对称矩阵
若 rij 1且 i j , 则 rji 0
的 关 若两顶点间有 若两顶点间有边,
特 系 边条有向边
传递性
定 义
若 x, y R 且 y, z R,则 x, z R
的关 特系 点矩

的关 特系 点图
若顶点 xi 到 x j 有边,x j 到xk有边, 则 xi 到xk 必有边
第四章 二元关系和函数
第一节 集合的笛卡儿积和二元 关系
内容:有序对,笛卡儿积,二元关系。 重点: (1) 掌握有序对的概念,
(2) 笛卡儿积及性质, (3) 二元关系的定义及三种表示法, (4) 一些特殊的二元关系。 了解:有序 n 元组和 n 阶笛卡儿积。
一、笛卡儿积。
1、有序对,记 x, y 。 特点:(1) x y时, x, y y, x , (2) x, y u,v x u, y v。 有序n 元组(n 3),记 x1, x2,L xn 。
dom R x y x, y R ran R y x x, y R
fld R dom R Uran R
4、特殊的关系。
空关系 ,全域关系 EA ,恒等关系 I A 。 对任意集合 A , 空关系 ,
全域关系 EA x, y | x A y A A A, 恒等关系 IA x, x | x A。
例1、 A {1, 2,3} ,A 上关系 R1, R2 , R3, R4
A A 0,0 , 0,1 , 1,0 , 1,1
A B
例2、设 A {a,b},求 A P(A) 。
解: P(A) ,{a},{b}, A A P(A) a, , a,{a} , a,{b} , a, A ,
b, , b,{a} , b,{b} , b, A
注意:(1) 若 A 是 m元集,B是 n 元集, 则 A B为 mn 元集。
解:LA 2, 2 , 2,3 , 2, 6 , 2,8 , 3,3 , 3, 6 , 3,8 , 6, 6 , 6,8 , 8,8
DA 2, 2 , 2,6 , 2,8 , 3,3 , 3,6 , 6,6 , 8,8
例6、 A {a,b},求 P( A)上的包含关系 R 。
解: P(A) ,{a},{b}, A ,
1、定义
(1) A B的任何子集都称作从 A到 B 的关系, 特别,当 A B 时,称作 A 上关系。 若 x, y R,则记作 xRy , 否则,记作 xRy 。
(2) 若集合R为空集或它的元素都是有序对, 则称 R 为二元关系。
例4、A {a,b} ,B {0,1, 2}
设 R1 a,0 , b,0 , b, 2
求 R的关系矩阵 M R 和关系图。
解: 0 1 1 0 关系图:
MR
1 0
1 0
0 1
0 0
0 0 1 0
一般:设 A {x1, x2 ,L , xn}
MR
(rij )nn
,其中
rij
1 0
xi Rx j xi Rx j
关系图表示
点( n 个顶点) 边(每个有序对对应一条有向弧)
四、关系的五种性质(自反,反自反,对称, 反对称,传递)。
5、常用关系。
(1) 设 A R ,A 上小于等于关系:
LA x, y x, y A x y
(2) 设 B Z ,B 上整除关系:
DB x, y x, y B x | y
(3) 幂集P( A)上的包含关系 R:
R x, y | x, y P(A) x y
例5、A {2,3, 6,8},求 LA ,DA 。
R , , ,{a} , ,{b} ,
,{a,b} , {a},{a} , {a}, A ,
{b},{b} , {b}, A , A, A
三、A 上二元关系的表示法。
集合表示法 有三种 矩阵表示法
图形表示法
例7、已知 A {1, 2,3, 4} ,A上关系
R 1, 2 , 1,3 , 2,1 , 2, 2 , 3,3 , 4,3 ,
相关文档
最新文档