超声波测距课程设计

超声波测距课程设计
超声波测距课程设计

目录

1.前言 (1)

2. 总体方案设计 (2)

2.1 电源模块选择 (2)

2.2 显示模块选择 (2)

2.3 报警模块选择 (3)

2.4 测距模块选择 (3)

2.5 主控芯片选择 (3)

2.6系统总方框图 (4)

3.各模块电路设计 (5)

3.1 HC-SR04超声波模块设计 (5)

3.2单片机最小系统模块设计 (6)

3.3电源模块设计 (7)

3.4声光报警模块设计 (7)

3.5液晶显示模块设计 (8)

4.系统软件设计 (9)

4.1 keil uvision4介绍 (9)

4.2 程序流程图 (10)

5.设计总结 (11)

6.参考文献 (12)

附录一:系统总图 (13)

附录二:相关程序 (14)

1.前言

超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。超声波测距的原理是利用超声波在空气中的传播速度为已知,如果温度变化不大,则可认为声速是基本不变的,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。测距的公式表示为:L=C×T。

本文基于51单片机和HC-SR04超声波传感器设计出了一套测量和现实距离系统,运用超声波测距系统原理,将采集到的距离信息通过1602液晶显示,并设置有声光报警功能,当测量距离小于设定的门限值时,单片机会驱动无源蜂鸣器和LED进行报警,单片机会根据距离改变驱动方式,距离越近,蜂鸣器发声频率会越高,LED也会越亮。

2. 总体方案设计

2.1 电源模块选择

方案一:采用两节五号的干电池作为主控芯片的供电电源。此方案简单易行,但是此系统是处于长期工作状态对电量的消耗比较大。

方案二:采用汽车自带的汽车电瓶12V电源降压后供电。此方案较好的利用汽车自身能源,避免单独电源给防撞系统供电,可使系统长期安全不掉电工作。

方案三:采用集成稳压芯片7805,输出稳定的5V对整个系统供电。

确定方案:综合考虑成本和系统的稳定性,决定选择方案三的供电方法。

2.2 显示模块选择

方案一: LCD1602液晶也叫LCD1602字符型液晶,它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形。1602LCD是指显示的内容为16X2,即可以显示两行,每行16个字符液晶模块(显示字符和数字)。

方案二:LCD12864液晶,能显示汉字,字符,数字等,但是体积较为庞大,所占空间较大。

方案三:诺基亚5110液晶,该模块具有以下特点:

84x48 的点阵LCD,可以显示4 行汉字,采用串行接口与主处理器进行通信,接口信号线数量大幅度减少,包括电源和地在内的信号线仅有9 条。支持多种串行通信协议(如AVR 单片机的SPI、MCU51的串口模式0等),传输速率高达4Mbps,可全速写入显示数据,无等待时间。

方案四:数码管,显示较为稳定,抗干扰较强,但是显示能力单一,显示内容会受到一定限制。

确定方案:为了平衡作品体积和显示功能需求之间的矛盾,故选择LCD1602液晶作为显示模块。

2.3 报警模块选择

方案一:ISD4004,功能强大,能自如的录音和放音,且录放音时间持续很长,储存能力较好,还能进行短时间音乐的播放。但是炒作较为复杂,同时价格也较为昂贵。

方案二:ISD1760,功能较为强大,能建议的进行录音和放音,能持续一段时间的录放音,但时间不长。操作复杂性不高,价格适中。

方案三:采用无源蜂鸣器进行报警,利用单片机发出频率可变的方波,可以驱动蜂鸣器发出频率不同的声音,达到报警的目的,并且声音频率还可以和测量距离相结合,蜂鸣器价格较为便宜,安装也较为方便。

确定方案:从实际需求的角度出发,摒弃一味追求难度的不良思维,鉴于本设计对放音时长的需求不大,故确定选择无源蜂鸣器进行报警,结合LED进行光信号报警,单片机发出占空比不同的PWM波,可以驱动LED发出不同的亮度,结合测量距离,反馈出不同的光信号报警效果。

2.4 测距模块选择

方案一:光栅传感器模块:接触型测量,距离近,精度非常高,能进行较为微小的距离测量主要用于高精度切割等;

方案二:超声波传感器模块:非接触型测量,距离一般,最多几十米,精度厘米级,操作简单,价格较为低廉,但对被测物体面积有要求。

方案三:红外测距传感器模块:非接触型测量,非可见光,距离短,精度不高,同时易受干扰,红外感应器使用较多。

方案四:激光测距传感器模块:非接触型测量,可见光,距离全能,有远也有近,精度有MM级、也有厘米级等,但造价比较昂贵,应用多为高精度高性能领域。

确定方案:从价格和实际的实用性方面和应用领域等各个方面综合考虑,决定选择超声波传感器模块。

2.5 主控芯片选择

方案一:STC89C52系列单片机,此系列单片机比较常用、价格便宜、操作简单、独立的I/O口数量较多,方便购买。但计算能力一般。

方案二:ARM系列单片机,ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。ARM架构是面向低预算市场设计的第一款RISC微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置生产。

方案三:FPGA系列芯片,FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB

(Configurable Logic Block)、输出输入模块IOB (Input Output Block)和内部连线(Interconnect)三个部分。用户可对FPGA内部的逻辑模块和I/O 模块重新配置,以实现用户的逻辑

综合考虑,51单片机虽然计算能力较弱,但是已经完全能够满足温度测量显示的要求,ARM系列单片机价格较贵,FPGA系列芯片价格也比较昂贵,并且不能进行浮点预算,综合考虑决定选择方案一。

2.6系统总方框图

超声波测距系统设计系统框图如图1所示:

51单片机最小系统

超声波测距模块蜂鸣器报警模块

LED 光信号模块

LCD1602液晶显示模块

电源模块

图1

3.各模块电路设计

3.1 HC-SR04超声波模块设计

HC-SR04超声波测距模块可提供2cm-4cm 的非接触式距离感测功能,测距精

度可高达3mm ;模块包括超声波发射器,接收器与控制电路。气接线简单,只需要和单片机连接发射和接收管脚就能进行使用,模块电路如图2.

图2

3.2单片机最小系统模块设计

本设计采用了51单片机作为主控芯片,该单片机最小系统包含几个单元:复位单元,晶振单元,上拉电阻单元等,具体电路如图3。

图3

3.3电源模块设计

本系统使用的是7805线性稳压芯片作为电源模块,该模块输出电压稳定,结构简单可靠,具体电路如图4所示。

图4

3.4声光报警模块设计

本设计采用无源蜂鸣器和LED进行声光报警。无源蜂鸣器是蜂鸣器的一种,区别于有源蜂鸣器,无源蜂鸣器是内部不带振荡源的蜂鸣器,是一体化结构的电子讯响器,在电路中的图形符号位H或者HA。无源蜂鸣器是靠压电效应的原理来发声的,压电材料,一般常见的是各种压电陶瓷. 这种材料的特别之处在于,当电压作用于压电材料时,就会随电压和频率的变化产生机械变形.另一方面,当振动压电陶瓷时,则会产生电荷.就是说这种材料能把机械变形和电荷相互转化,压电式蜂鸣器里面的起振片,就是一种压电陶瓷.如上所述,要让它振动,除了压电陶瓷本身,还需要适当大小和频率变化的电压作用于压电陶瓷.压电式(有源)蜂鸣器内部带有多谐振荡器,可以产生 1.5—2.5kHZ 的电压信号. 由此压电式蜂鸣器才能发声。

因此,只要单片机产生不同频率的方波来驱动无源蜂鸣器,就能实现不同频率的发声效果,而如果单片机产生不同占空比的PWM波驱动LED,LED就会发出不同强度的光,结合超声波测量的距离,距离越近时蜂鸣器发生频率越高,LED

也越亮,实现不同的声光报警效果。蜂鸣器驱动电路如图5,LED驱动电路如图6。

图5

图6

3.5液晶显示模块设计

本设计采用的是LCD1602液晶显示,该模块接线方便,可以直接连接单片机进行驱动,模块电路如图7。

图7

4.系统软件设计

4.1 keil uvision4介绍

Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。Keil提供了包括C编译器、宏汇编、链接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μVision)将这些部分组合在一起。运行Keil软件需要WIN98、NT、WIN2000、WINXP等操作系统。

Keil公司是一家业界领先的微控制器(MCU)软件开发工具的独立供应商。Keil公司由两家私人公司联合运营,分别是德国慕尼黑的Keil Elektronik GmbH 和美国德克萨斯的Keil Software Inc。Keil公司制造和销售种类广泛的开发工具,包括ANSI C编译器、宏汇编程序、调试器、连接器、库管理器、固件和实时操作系统核心(real-time kernel)。有超过10万名微控制器开发人员在使用这种得到业界认可的解决方案。其Keil C51编译器自1988年引入市场以来成为事实上的行业标准,并支持超过500种8051变种。

4.2 程序流程图

开始

单片机初始化

LCD初始化

开外部中断

开定时器中断

读取超声波反

馈的距离

距离是否超限

是否

将距离换算成

频率和占空比

驱动LED驱动蜂鸣器

LCD显示距离

5.设计总结

本设计基于51单片机和超声波测距模块,将测量的距离通过LCD1602进行显示,并设置了门限值5CM,当测量距离大于5厘米时,液晶正常显示,当距离小于5厘米时,液晶显示报警信号,与此同时,蜂鸣器和LED进行声光报警,距离越近,蜂鸣器报警频率就会越高,LED也会越亮,当测量距离大于5里米时才会退出报警模式。本设计综合了测量显示和报警模块,形成了一个完整的测量系统,并巧妙运用了无源蜂鸣器和LED的特点,使用单片机发出不同频率和占空比的脉冲,充分利用了51单片机的内部资源,科学地形成了一个整体,具有较强的可行性和实用性。

6.参考文献

[1] 杨天怡主编,微型计算机控制技术,重庆:重庆大学出版社;

[2] 涂时亮编,单片微机控制技术,上海:复旦大学出版社;

[3] 黄胜军编,微机控制应用实验与实例,北京:清华大学出版社;

[4] 陈理壁.步进电机及其应用[M],上海: 上海科学技术出版社;

[5] 刘国荣.单片微型计算机技术,北京:机械工业出版社;

[6] 王福瑞编,单片微机测控系统设计大全,北京:北京航空航天大学出版社;

[7] 潘新民编,单片微型计算机实用系统设计,北京: 人民邮电出版社;

[8] 李伯成编,IBM - PC 微机应用系统设计,西安:西安电子科技大学;

[9] 微机控制技术及其应用方面的教材、期刊、杂志。

附录一:系统总图

附录二:相关程序

/*============================================

//HC-SRO4 超声波测距模块DEMO 程序

============================================*/

#include //器件配置文件

#include

#define RX P2_7

#define TX P2_6

#define LCM_RW P3_4 //定义LCD引脚

#define LCM_RS P3_3

#define LCM_E P3_5

#define LCM_Data P1

#define Key_Data P2_0 //定义Keyboard引脚

#define Key_CLK P3_2

#define Busy 0x80 //用于检测LCM状态字中的Busy标识

void LCMInit(void);

void DisplayOneChar(unsigned char X, unsigned char Y, unsigned char DData);

void DisplayListChar(unsigned char X, unsigned char Y, unsigned char code *DData); void Delay5Ms(void);

void Delay400Ms(void);

void Decode(unsigned char ScanCode);

void WriteDataLCM(unsigned char WDLCM);

void WriteCommandLCM(unsigned char WCLCM,BuysC);

unsigned char ReadDataLCM(void);

unsigned char ReadStatusLCM(void);

unsigned char code mcustudio[] ={"https://www.360docs.net/doc/6b9764085.html,"};

unsigned char code email[] = {"fhwxaoo@https://www.360docs.net/doc/6b9764085.html, "};

unsigned char code Cls[] = {" "};

unsigned char code ASCII[15] = {'0','1','2','3','4','5','6','7','8','9','.','-','M'};

static unsigned char DisNum = 0; //显示用指针

unsigned int time=0;

unsigned long S=0;

bit flag =0;

unsigned char disbuff[4] ={ 0,0,0,0,};

//写数据

void WriteDataLCM(unsigned char WDLCM)

{

ReadStatusLCM(); //检测忙

LCM_Data = WDLCM;

LCM_RS = 1;

LCM_RW = 0;

LCM_E = 0; //若晶振速度太高可以在这后加小的延时

LCM_E = 0; //延时

LCM_E = 1;

}

//写指令

void WriteCommandLCM(unsigned char WCLCM,BuysC) //BuysC为0时忽略忙检测{

if (BuysC) ReadStatusLCM(); //根据需要检测忙

LCM_Data = WCLCM;

LCM_RS = 0;

LCM_RW = 0;

LCM_E = 0;

LCM_E = 0;

LCM_E = 1;

}

//读数据

unsigned char ReadDataLCM(void)

{

LCM_RS = 1;

LCM_RW = 1;

LCM_E = 0;

LCM_E = 0;

LCM_E = 1;

return(LCM_Data);

}

//读状态

unsigned char ReadStatusLCM(void)

{

LCM_Data = 0xFF;

LCM_RS = 0;

LCM_RW = 1;

LCM_E = 0;

LCM_E = 0;

LCM_E = 1;

while (LCM_Data & Busy); //检测忙信号

return(LCM_Data);

}

void LCMInit(void) //LCM初始化

{

LCM_Data = 0;

WriteCommandLCM(0x38,0); //三次显示模式设置,不检测忙信号Delay5Ms();

WriteCommandLCM(0x38,0);

Delay5Ms();

WriteCommandLCM(0x38,0);

Delay5Ms();

WriteCommandLCM(0x38,1); //显示模式设置,开始要求每次检测忙信号

WriteCommandLCM(0x08,1); //关闭显示

WriteCommandLCM(0x01,1); //显示清屏

WriteCommandLCM(0x06,1); // 显示光标移动设置

WriteCommandLCM(0x0F,1); // 显示开及光标设置

}

//按指定位置显示一个字符

void DisplayOneChar(unsigned char X, unsigned char Y, unsigned char DData)

{

Y &= 0x1;

X &= 0xF; //限制X不能大于15,Y不能大于1

if (Y) X |= 0x40; //当要显示第二行时地址码+0x40;

X |= 0x80; //算出指令码

WriteCommandLCM(X, 1); //发命令字

WriteDataLCM(DData); //发数据

}

//按指定位置显示一串字符

void DisplayListChar(unsigned char X, unsigned char Y, unsigned char code *DData) {

unsigned char ListLength;

ListLength = 0;

Y &= 0x1;

X &= 0xF; //限制X不能大于15,Y不能大于1

while (DData[ListLength]>0x19) //若到达字串尾则退出

{

if (X <= 0xF) //X坐标应小于0xF

{

DisplayOneChar(X, Y, DData[ListLength]); //显示单个字符

ListLength++;

X++;

}

}

}

//5ms延时

void Delay5Ms(void)

{

unsigned int TempCyc = 5552;

while(TempCyc--);

}

//400ms延时

void Delay400Ms(void)

{

unsigned char TempCycA = 5;

unsigned int TempCycB;

while(TempCycA--)

{

TempCycB=7269;

while(TempCycB--);

};

}

/********************************************************/ void Conut(void)

{

time=TH0*256+TL0;

TH0=0;

TL0=0;

S=(time*1.7)/100; //算出来是CM

if((S>=700)||flag==1) //超出测量范围显示“-”

{

flag=0;

DisplayOneChar(0, 1, ASCII[11]);

DisplayOneChar(1, 1, ASCII[10]); //显示点

DisplayOneChar(2, 1, ASCII[11]);

DisplayOneChar(3, 1, ASCII[11]);

DisplayOneChar(4, 1, ASCII[12]); //显示M

}

else

{

disbuff[0]=S%1000/100;

disbuff[1]=S%1000%100/10;

disbuff[2]=S%1000%10 %10;

DisplayOneChar(0, 1, ASCII[disbuff[0]]);

DisplayOneChar(1, 1, ASCII[10]); //显示点

DisplayOneChar(2, 1, ASCII[disbuff[1]]);

DisplayOneChar(3, 1, ASCII[disbuff[2]]);

DisplayOneChar(4, 1, ASCII[12]); //显示M

}

}

/********************************************************/ void zd0() interrupt 1 //T0中断用来计数器溢出,超过测距范围{

超声波测距仪硬件电路的设计

超声波测距仪电路设计实验报告 轮机系楼宇071 周钰泉2007212117 实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。 实验设备及器材:电烙铁,锡线,电路元件 实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试 超声波测距程序: #include unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30, 0x30,0x30}; unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x 39}; unsigned char dispbuf[8]={10,10,10,10,10,10,0,0}; unsigned char dispcount; unsigned char getdata; unsigned int temp; unsigned int temp1;

unsigned char i; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^4; sbit CLK=P3^5; sbit M1=P3^6; sbit M2=P3^7; sbit SPK=P2^6; sbit LA=P3^3; sbit LB=P3^2; sbit LC=P2^7; sbit K1=P2^4; sbit K2=P2^5; bit wd; bit yw; bit shuid; bit shuig; unsigned int cnta; unsigned int cntb; bit alarmflag; void delay10ms(void) { unsigned char i,j; for(i=20;i>0;i--) for(j=248;j>0;j--); } void main(void) { M1=0; M2=0; yw=1; wd=0; SPK=0; ST=0; OE=0; TMOD=0x12; TH0=0x216; TL0=0x216; TH1=(65536-500)/256; TL1=(65536-500)%256; TR1=1; TR0=1; ET0=1; ET1=1; EA=1; ST=1; ST=0; while(1) { if(K1==0) { delay10ms(); if(K1==0) { yw=1; wd=0; } } else if(K2==0) { delay10ms(); if(K2==0) { wd=1; yw=0; } } else if(LC==1) { delay10ms(); if(LC==1) { M1=0; M2=1; temp1=13; shuid=0; shuig=1; LB=0; } } else if((LC==0) && (LB==1)) { delay10ms(); if((LC==0) && (LB==1)) { M1=0; M2=0; temp1=12; shuig=0; shuid=0; LB=0; }

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

电子实习报告智能循迹小车

电子实习报告智能循迹 小车 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

电子实习报告 学院:电气学院 专业班级: 学生姓名: 指导教师: 完成时间: 2014/8/29 成绩:

目录 一、设计要求及注意事项 (2) 二、设计的作用、目的 (2) 三、设计的具体实现 (2) 1.系统概述 (2) 2.单元电路设计(或仿真)与分析 (3) (1)电源模 块 (3) (2)电机驱动模块 (4) (3)简易控制模 块 (6) (4)红外循迹模 块 (7) 3.电路的安装与调试 (8) (1)安装 (8)

(2)调 试 (10) 四、心得体会,存在的问题和进一步改进的意见 (11) 五、附录 (11) 1.元件说明 (11) (1)电 阻 (11) (2)电解电 容 (11) (3)LED................................................. ..12 (4)芯 片 (12)

电子实习报告 一、设计要求及注意事项 1.能独立完成设计内容并完全掌握其内部结构、工作原理和安装调试过程。 2.要求在设计过程中能熟练掌握其元器件的计算、焊接技术和电路故障的判别方法。 3.焊接顺序,先贴片后插件。 4.要求焊接的电路板调试时正常且安装好小车后能正常运行。 5.进入实习基地后按指定的实验台就位,未经许可,不得擅自挪换仪器设备。 6.要爱护仪器设备及其它公物,凡违反操作规程,不听从教师指导而损坏者,按规定赔偿。 7.未经指导教师许可,不得做规定以外的实验项目。 8.要保持实习室的整洁和安静,不准大声喧哗,不准随地吐痰,不准乱丢纸屑及杂物。 9. 必须严格按设备操作书的要求去使用设备,注意人身及设备安全,不要盲目操作。 二、设计的作用、目的 1.利用所学过的基础知识,通过本次电子实习培养独立解决实际问题的能力; 2.巩固本课程所学的理论知识和实验技能;

基于单片机的超声波测距系统设计实验报告 - 重

指导教师评定成绩: 审定成绩: 自动化学院 计算机控制技术课程设计报告设计题目:基于单片机的超声波测距系统设计 单位(二级学院): 学生姓名: 专业: 班级: 学号: 指导教师: 负责项目: 设计时间:二〇一四年五月 自动化学院制

目录 一、设计题目 (1) 基于51单片机的超声波测距系统设计 (1) 设计要求 (1) 摘要 (2) 二、设计报告正文 (3) 2.1 超声波测距原理 (3) 2.2系统总体方案设计 (4) 2.3主要元件选型及其结构 (5) 2.4硬件实现及单元电路设计 (9) 2.5系统的软件设计 (13) 三、设计总结 (17) 四、参考文献 (17) 五、附录 (18) 附录一:总体电路图 (18) 附录二:系统源代码 (18)

一、设计题目 基于51单片机的超声波测距系统设计 设计要求 1、以51系列单片机为核心,控制超声波测距系统; 2、测量范围为:2cm~4m,测量精度:1cm; 3、通过键盘电路设置报警距离,测出的距离通过显示电路显示出来; 4、当所测距离小于报警距离时,声光报警装置报警加以提示; 5、设计出相应的电子电路和控制软件流程及源代码,并制作实物。

摘要 超声波具有传播距离远、能量耗散少、指向性强等特点,在实际应用中常利用这些特点进行距离测量。超声波测距具有非接触式、测量快速、计算简单、应用性强的特点,在汽车倒车雷达系统、液位测量等方面应用广泛。本次课设利用超声波传播中距离与时间的关系为基本原理,以STC89C52单片机为核心进行控制及数据处理,通过外围电源、显示、键盘、声光报警等电路实现系统供电、测距显示、报警值设置及报警提示的功能。软件部分采用了模块化的设计,由系统主程序及各功能部分的子程序组成。超声波回波信号输入单片机,经单片机综合分析处理后实现其预定功能。 关键词:STC89C52单片机; HC-SR04;超声波测距

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

E+H实习报告

E+H实习报告 摘要:通过本次毕业实习我们了解了世界先进的检测仪表技术,并结合我们在传感器、检测仪表课程上所学的原理,对于这些知识的实际应用有了感性的了解。经过为期两天的实习,我们对于物位、流量、分析、压力、温度等检测技术有了更深层次的掌握,同时也使我们对现代化企业的运作、生产工艺流程、质量保证体系等有了系统的认识。 关键词:E+H,检测,仪表,传感器 1、引言 E+H公司,由瑞士工程师Georg H. Endress和德国银行家Ludwig Hauser 创建于1953年,是一家世界著名的国际性自动化仪表集团公司。总部位于瑞士, 地处德国、瑞士和法国的交界处,先后在德国、瑞士、法国、美国、日本、中国等世界工业国成立了规模庞大的生产中心,全球雇员达到 6,077名,拥有70个独立的子公司分布在全球,其严格的品质管理和完整的质保体系均已达到ISO9001国际标准。2006年,全球销售额达到了10亿欧元。 Endress+Hauser测量及自动化仪表广泛应用于世界各地的各种工业领域。为了帮助用户获取最佳的过程控制结果,Endress+Hauser开发和制造了各种高技术水准的测量和控制仪表,改善和提高了化工、石油及天然气、制药、能源、源水和污水、食品、散料处理、纸浆及造纸、造船和海上运输等领域的过程效益。同时可提供适用于在危险区域,卫生型场合,过溢保护和其他特殊应用场合使用的认证证书。 2、E+H物位测量仪表简介 2.1雷达物位计 2.1.1调频连续波雷达物位计 调频连续波雷达物位计在测量过程中应用了按照线性变化的高频信号,雷达物位计的信号从天线发出,在被测量平面反射,回波被天线接收。雷达物位计信号的发出与回波接收的频率差被用于进一步的信号处理,频率差对应于测量距离。一个大的频率差应对于一个较大的测量距离。通过FFT频率差被转化为频谱差,进而换算出测量距离。物位与测量距离的差别取决于空罐的高度。 雷达物位计探头同时进行雷达波的发射和接受,由于回波信号频率的滞后,使得反射频率与发射信号频率之间的差频,而该频差与雷达物位计测量的距离H呈正比关系,即H越大频差也越大。因此,通过对锯齿波的频差的检测即可得到一个高精度的物位信号。 2.1.2脉冲雷达物位计 脉冲雷达采用高频、窄脉冲对微波源信号进行调制,以波束的形式发射固定频率(即载波频率)的脉冲波,在介质表面反射后由接收器接收,脉冲的时间行

简易超声波测距仪的设计

摘要 超声波具有指向性强,能量消耗缓慢,传播距离较远等优点,所以,在利用传感器技术和自动控制技术相结合的测距方案中,超声波测距是目前应用最普遍的一种,它广泛应用于防盗、倒车雷达、水位测量、建筑施工工地以及一些工业现场。 本课题详细介绍了超声波传感器的原理和特性,以及Atmel公司的AT89C51单片机的性能和特点,并在分析了超声波测距的原理的基础上,指出了设计测距系统的思路和所需考虑的问题,给出了以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。整个电路采用模块化设计,由主程序、预置子程序、发射子程序、接收子程序、显示子程序等模块组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。 经实验证明,这套系统软硬件设计合理、抗干扰能力强、实时性良好,经过系统扩展和升级,可以有效地解决汽车倒车、建筑施工工地以及一些工业现场的位置监控。 关键词AT89C51;超声波;测距

Abstract Ultrasonic wave has strong pointing to nature ,slowly energy consumption ,propagating distance farther ,so, in utilizing the scheme of distance finding that sensor technology and automatic control technology combine together ,ultrasonic wave finds range to use the most general one at present ,it applies to guard against theft , move backward the radar , water level measuring,building construction site and some industrial scenes extensively. This subject has introduced principle and characteristic of the ultrasonic sensor in detail ,and the performance and characteristic of one-chip computer AT89C51 of Atmel Company ,and on the basis of analyzing principle that ultrasonic wave finds range ,the systematic thinking and questions needed to consider that have pointed out that designs and finds range ,provide low cost , the hardware circuit of high accuracy , ultrasonic range finder of miniature digital display and software design method taking AT89C51 as the core. Modular design of the whole circuit from the main program, pre subroutine fired subroutine receive subroutine. display subroutine modules form. SCM comprehensive analysis of the probe signal processing, and the ultrasonic range finder function. On the basis of the overall system design, hardware and software by the end of each module. The research has led to the discovery that the software and hardware designing is justified, the anti-disturbance competence is powerful and the real-time capability is satisfactory and by extension and upgrade, this system can resolve the problem of the car availably, building construction the position of the workplace and some industries spot supervision. Key words AT89C51; Ultrasonic Wave; Measure Distance

基于51单片机的超声波测距仪设计

自动化技术综合实训报告 实训题目: 院 专 班 姓 学 指导教师: 实训地点: 开课时间:

序号 评价内容 分数 序 号 评价内容 分数 1 出勤(10 分) 3 实训任务完成情况(50 分) 2 课题难度分值(10 分) 4 实训总结报告(30 分) 实训总成绩: 94 分 学生姓名: 魏*星 实训评分 指导教师评语: 指导教师(签名): 年 月

目录 第 1章绪论 1.1实训的目和要求 1.2实训课题设计功能描述……………………………………………………… 1.3应解决的问题………………………………………………………………第 2章整体设计方案 2.1设计原理 2.2整体系统设计………………………………………………………………第 3章硬件电路设计 3.1电路原理图 3.2元件清单…………………………………………………………………… 3.3重要电路介绍 3.3.1复位与晶振电路…………………………………………………… 3.3.2超声波发射电路…………………………………………………… 3.3.3超声波接收检测电路……………………………………………… 3.3.4显示电路 第 4章软件设计 4.1系统软件设计 4.2程序流程图 4.3程序设计与调试 第 5章制板焊接调试 5.1仿真结果与 PCB图 5.2焊制电路板、实物运行调试 5.3误差分析与校正讨论 总结与体会 谢词 参考文献 附录

第1章绪论 1.1实训的目的和要求 生产实训是自动化专业本科生在校期间必须进行的主要实践环节之一,是培养学生工程实践能力、提高学生工程素质的一个重要组成部分。作为一名工科学生,将来从事自动化及相关工作,为了让我们能尽早的认识社会实践,了解工业生产,提高自己的动手意识,强化个人素质,增强理论联系实际的观念,学校给我们安排了为期两周的专业实训,让我们学到的理论知识和实践联系到一起,为我们以后的走向社会打下一个坚实的基础。 这次实训的主要目的是让大家进一步了解 AT89 系列单片机的引脚、功能,晶振电路、显示电路和信号输入输出电路的设计,熟悉使用 keil 软件和用汇编语言编程完成各种处理和控制,同时学习使用软件对电路进行设计,对项目进行仿真、调试,以及 PCB 板的制作等,最主要的是了解一个小型项目的研发过程,从项目的提出到项目实现需要怎样一步步来完成,项目完成事应该大概掌握以上要求。 1.2实训课题设计功能描述 我们小组选择的课题是基于 AT89C51 单片机的超声波测距仪设计。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离较远,因而超声波被广泛用于距离的测量。利用超声波检测往往比较迅速、方便,计算简单易于做到实时控制,并且在测量精度方面能达到工业实用的要求,测量时与被测物体无直接接触的特点,使得其具有很大的使用价值。 我们最熟悉的超声波测距的应用是声纳系统,是超声波测距在军事上的终极使用,研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。 除了军事,日常生活和工业上也广泛应用,如:倒车雷达,建筑施工工地以及一些工业现场在液位测量、井深测量、管道长度测量等场合的使用。 1.3设计研究的要求及主要内容应解决的问题 本项目需要通过学习和查阅资料,了解和掌握如下知识: 1. +5V电源原理及设计 2.单片机复位电路工作原理及设计 3.单片机晶振电路工作原理及设计 4.七段 LED显示原理及设计 5.超声波传感器的应用及设计 6.电路的接线 7.AAT89C51单片机的引脚 8.单片机汇编语言及设计

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

超声波测距课程设计样本

目录 前言 1课题设计目及意义----------------------------------------------- 1 1.1设计目----------------------------------------------------- 1 1.2设计意义----------------------------------------------------- 1 1.3课题设计任务和规定------------------------------------------- 1 正文 1 课程方案设计------------------------------------------------- 2 1.1系统整体方案--------------------------------------------------- 2 1.2系统整体方案论证-------------------------------------------- 2 2系统硬件构造设计------------------------------------- 2 2.1 51系列单片机功能特点及测距原理------------------------------ 3 2.1.1 51系列单片机功能特点------------------------------------- 3 2.1.2 单片机实现测距原理 ----------------------------------------- 3 2.2 超声波电路构造------------------------------------------------ 4 2.3 超声波测距系统硬件电路设计---------------------------------- 4 2.4 PCB版图设计---------------------------------------------------- 5 3 系统软件设计----------------------------------------- 6 3.1 超声波测距仪算法设计---------------------------------------- 7 3.2 主程序流程图--------------------------------------------------- 7 3.3单片机某些C语言程序-------------------------------------------- 8 3.4超声波测距某些C语言程序-------------------------------------- 11

PCB设计与制作实训报告

成都航空职业技术学院 《PCB设计与制作》 课程实训报告 设计题目:超声波测距电路设计 系别:航空电子工程系专业:电子工艺与管理班级:学生姓名: 任课教师:

目录 第一章PCB设计流程 1.1设计目的(3) 1.2设计内容(3) 第二章电路分析 2.1电源电路(4) 2.2单片机系统及显示电路(5) 2.3超声波发射电路(6) 2.4超声波(检测)接收电路(7)第三章集成库构建 3.1创建集成库原理图(8) 3.2创建集成库PCB(8)第四章PCB工程构建 4.1创建电路原理图(9) 4.2创建电路PCB(9)总结 (10)

第一章PCB设计流程 1.1设计目的 超声波测距电路是通过单片机产生超声波经功率放大发送出去,接收到的超声波经CX20106产生中断让单片机计算距离,再通过LCD显示距离,本测距仪还有可调的报警距离设定功能、即将进入盲区提示功能、即将超出量程提示功能、开机显示各种预设画面功能。其中,进入报警距离调整状态时还有对应按键功能提示的功能。 1.2设计内容 如图:

第二章电路分析 2.1电源电路 电源电路如附1图所示,输出交流VD1~VD4桥式整流及平滑电容C1滤波后得到不稳定的8~12V直流电压,经过稳压模块7805后稳定的5V直流电压,供电路使用。 附1: 2.2单片机系统及显示电路 单片机系统及显示电路如附2、附3所示,单片机采用AT89S52,用12MHZ 高精度的晶振,以获得较稳定的时钟频率,减少测量误差。 单片机用P1.0端口输出超声波换能器所需的40KHz的方波信号,经反相器后来控制超声波的发送;单片机利用外中断0口检测超声波接收电路输出的返回信号,它不断检测INT0引脚的情况,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计时器所计的数据就是超声波发射、接收所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。 显示器采用4位数码管,数码管位选信号用PNP三极管8550驱动。 附2:

超声波测距器课程设计

《微机原理及应用》课程设计 超声波测距器的设计 学生姓名郝强 学号20110611113 学院名称机电工程学院 专业名称机械电子工程 指导教师王前 2013年12月27日

摘要 随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。 关键词:超声波;传感器;测量距离;控制

目录 摘要 (2) 目录 (3) 1.设计目的 (4) 2.总体方案 (4) 3.硬件设计 (5) 3.1 超声波测距器硬件电路设计 (5) 3.2.1单片机芯片的选择 (6) 3.2.2AT89C51定时计数应用电路 (6) 3.3超声波发射电路设计 (6) 3.3.1选择超声波发生器类型 (6) 3.3.2 超声波发射电路设计 (7) 3.4超声波接收电路设计 (8) 3.5超声波显示电路设计 (9) 4.软件设计 (9) 4.1波测距器的算法设计 (10) 4.2系统的主控制程序设计 (11) 4.3发生子程序设计 (12) 4.4接收中断程序设计 (13) 4.5显示程序设计 (14) 4.6距离计算程序 (15) 5.结论 (17) 参考文献 (18)

超声波智能小车(邹威)

机器人技术实训 学院(系):计算机学院 专业: 计算机控制技术姓名:邹威 指导老师:赵鹏举 完成时间: 2013-11-20

目录 一、实训任务?错误!未定义书签。 二、整体设计方案?错误!未定义书签。 三、硬件部分?错误!未定义书签。 1、硬件部分的整体框架图......................................................................错误!未定义书签。 2、电机驱动模块..............................................................................错误!未定义书签。 3、超声波模块?错误!未定义书签。 四、软件部分?错误!未定义书签。 (1)、程序流程图?错误!未定义书签。 (2)、程序内容 ................................................................................错误!未定义书签。 五、结果分析与调试(附图)?错误!未定义书签。 六、体会与心得?错误!未定义书签。

一、实训任务 经过一学期的《机器人技术》的学习,我们打算做一个简易的超声波小车。这个超声波小车要能够躲避障碍物,或者能够按照程序的控制来完成相应的任务。在硬件部分,要求按照电路板焊接完成电机驱动电路,以及用万用板搭出单片机最小系统。软件部分,要求能够熟练的使用kei l软件进行C 编程,然后通过单片机开发板把程序下载到我们的单片机上面,反复调试,使之能够按照我们的程序完成相应的动作。 二、整体设计方案 系统整体框架: 单片机系统(运算 处理)传感器信 号采集执行器命令解释执行 图一 系统的大致工作原理就是:传感器把外部信号,转换为电信号,然后被单片机识别,当单片机识别出信号之后,会对信号进行运算处理,然后会得出判断,再吧判断的结果传给执行器,让执行器去驱动电机完成我们要实现的动作。

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计 1总体设计方案介绍 1.1超声波测距原理 发射器发出的超声波以速度υ在空气中传播,在到达被测物体时被反射返回,由接收器接收,其往返时间为t,由s=vt/2即可算出被测物体的距离。由于超声波也是一种声波,其声速v 与温度有关,下表列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。 表1-1 超声波波速与温度的关系表 表1-1 1.2超声波测距仪原理框图如下图 单片机发出40kHZ的信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为t,再由软件进行判别、计算,得出距离数并送LED

显示。 图1-1 超声波测距仪原理框图 2 系统的硬件结构设计 硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用AT89C51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管8550驱动。 2.1 51系列单片机的功能特点及测距原理 2.1.1 51系列单片机的功能特点 5l系列单片机中典型芯片(AT89C51)采用40引脚双列直插封装(DIP)形式,内部由CPU,4kB的ROM,256 B的RAM,2个16b的定时/计数器TO和T1,4个8 b的工/O端I:IP0,

基于单片机的超声波测距报警系统设计

综合性课程设计报告基于proteus仿真软件的超声波测距报警控制器设计 院系:计算机与通信工程学院 专业:电子信息工程 学号: 姓名: 指导教师: 设计时间:2012/6/27 综合课程设计任务书

专业:电子信息工程班级:4091603: 设计题目:基于proteus仿真软件的超声波测距报警控制器设计 一、设计实验条件 keil C和proteus仿真软件 二、设计任务 1)总体功能设计 2)硬件电路设计 3)软件设计 4)工作总结 三、设计说明书的容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.主体设计部分(各部分设计容、总结分析、结论等) 4.结束语 5.参考文献 (答辩时间18周星期日晚7:30,地点:综合楼1313室) 四、设计时间与设计时间安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、实验、收集资料:2 天 设计计算、绘制技术图纸:5 天 编写课程设计说明书:2 天 答辩:1 天 目录

一、设计题目 (2) 二、设计任务及要求 (3) 三、设计容 (3) 1.绪论 (3) 2.总体方案 (4) 2.1 总体设计方案 (4) 2.2超声波测距框图 (4) 3.系统硬件设计 (5) 3.1 硬件设计方案 (5) 3.2 各主要模块的硬件设计 (6) 4.系统软件设计 (10) 4.1 程序设计 (10) 4.2 程序流程图 (10) 四、结束语 (13) 五、参考文献 (13) 附录A 系统仿真图 (14) 附录B程序代码 (15) 一、设计题目 基于proteus仿真软件的超声波测距报警控制器设计

电子实习报告智能循迹小车

电子实习报告智能循迹小车

电子实习报告 学院:电气学院专业班级: 学生姓名: 指导教师: 完成时间:2014/8/29 成绩:

目录 一、设计要求及注意事项 (2) 二、设计的作用、目的 (2) 三、设计的具体实现 (2) 1.系统概述 (2) 2.单元电路设计(或仿真)与分析 (3) (1)电源模块..................................... (3) (2)电机驱动模块........................................ (4) (3)简易控制模块 (6) (4)红外循迹模块..................................... (7) 3.电路的安装与调试........................................ .. (8) (1)安装 (8) (2)调试 (10) 四、心得体会,存在的问题和进一步改进的意见 (11)

五、附录 (11) 1.元件说明 (11) (1)电 阻 (11) (2)电解电容 (11) (3)LED (1) 2 (4)芯片 (12)

电子实习报告 一、设计要求及注意事项 1.能独立完成设计内容并完全掌握其内部结构、工作原理和安装调试过程。 2.要求在设计过程中能熟练掌握其元器件的计算、焊接技术和电路故障的判别方法。 3.焊接顺序,先贴片后插件。 4.要求焊接的电路板调试时正常且安装好小车后能正常运行。 5.进入实习基地后按指定的实验台就位,未经许可,不得擅自挪换仪器设备。 6.要爱护仪器设备及其它公物,凡违反操作规程,不听从教师指导而损坏者,按规定赔偿。 7.未经指导教师许可,不得做规定以外的实验项目。 8.要保持实习室的整洁和安静,不准大声喧哗,不准随地吐痰,不准乱丢纸屑及杂物。 9. 必须严格按设备操作书的要求去使用设备,注意人身及设备安全,不要盲目操作。 二、设计的作用、目的 1.利用所学过的基础知识,通过本次电子实习培养独立解决实际问题的能力;2.巩固本课程所学的理论知识和实验技能; 3.掌握常用电子电路的一般设计方法,提高设计能力和实验、动手能力,为今后从事电子电路的设计、研制电子产品打下基础。 4.熟练掌握焊接机能、电子元器件的识别。 5.了解智能循迹小车构成的设计方法。 6.培养团队的协作和沟通能力。 三、设计的具体实现 1.系统概述 智能移动机器人平台以双电机轮式小车为底层移动平台,单片机为控制核心,通过红外探测模块实现对行车路线的感知,电机驱动模块实现对直流电机的驱动控制,从而完成自动行驶的功能。 如图:

单片机课程设计超声波测距离

湖南工程学院 课程设计任务书 课程名称单片机原理与应用 课题超声波测距系统设计 专业班级自动化0901班 学生姓名段志勤 学号 200901020130 指导老师李晓秀 审批 任务书下达日期 2012 年 5 月 30 日任务完成日期2012 年 6 月 13 日

目录 序言 (6) 第一章、总体设计原理 (6) 1.1、超声波测距原理 (6) 1.2、超声波测距系统框图 (8) 1.3、程序流程图 (10) 第二章、系统硬件设计 (11) 2.1、超声波模块电路 (11) 2.2、数码管显示电路 (12) 2.3、单片机最小电路 (12) 2.4、键盘连接 (13) 第三章、系统软件设计 (14) 3.1、主程序流程图 (14) 3.2、子程序设计 (15) 第4章、调试结果 (21) 实验总结 (23) 参考文献 (24) 附录 A、整体电路图 (25) 附录B、程序清单 (26)

序言 由于超生波测距是一种非接触检测技术,不受光线、被测对象颜色限制,较其他仪器更卫生,更耐潮湿、粉尘、高温、腐蚀等恶劣环境,具有少维护,不污染,高可靠,长寿命等特点。因此,超声波测距有着广泛的应用领域。利用超声波检测往往比较迅速,简单,计算方便,易于实现实时控制,并且在测量精度方面能达到工业使用要求。超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如:液位、井深、管道长度等场合。 第一章、总体设计原理 本章主要介绍单片机超声波测距的主要原理,包括超声波测距的原理和STC89C52单片机的原理 1.1、超声波测距原理 谐振频率高于20kHz的声波被称为超声波。超声波为直线传播频率越高、绕射能力越弱、但反射能力越强。利用超声波的这种性能就可制成超声传感器、或称为超声换能器、它是一种既可以把电能转化为机械能、又可以把机械能转化为电能的器件或装置。换能器在电脉冲激励下可将电能转换为机械能、向外发送超声波、反之,当换能器处在接收状态时它可将声能(机械能)转换为电能。 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超 声波发生器内部结构如图1-1所示,它有两个压电晶片和一个共振板。

相关文档
最新文档