区域填充算法
实验三 区域填充算法的实现

实验三区域填充算法的实现一、实验目的和要求:1、掌握区域填充算法基本知识2、理解区域的表示和类型,能正确区分四连通和八连通的区域3、了解区域填充的实现原理,利用Microsoft Visual C++ 6.0或win-TC实现区域种子填充的递归算法。
二、实验内容:1、编程完成区域填色2、利用画线函数,在屏幕上定义一个封闭区域。
3、利用以下两种种子填充算法,填充上述步骤中定义的区域(1)边界表示的四连通区域种子填充的实现(2)内点表示的四连通区域种子填充的实现4、将上述算法作部分改动应用于八连通区域,构成八连通区域种子填充算法,并编程实现。
三、实验结果分析四连通图的实现:程序代码:#include<graphics.h>#include <conio.h>#include<math.h>#include<time.h>void BoundaryFill4(int x,int y,int Boundarycolor,int newcolor){if(getpixel(x,y) != newcolor && getpixel(x,y) !=Boundarycolor){putpixel(x,y,newcolor);Sleep(1);BoundaryFill4(x-1,y,Boundarycolor,newcolor);BoundaryFill4(x,y+1,Boundarycolor,newcolor);BoundaryFill4(x+1,y,Boundarycolor,newcolor);BoundaryFill4(x,y-1,Boundarycolor,newcolor);}}void polygon(int x0,int y0,int a,int n,float af){int x,y,i;double dtheta,theta;if(n<3)return;dtheta=6.28318/n;theta=af*0.0174533;moveto(x0,y0);x=x0;y=y0;for(i=1;i<n;i++){x=x+a*cos(theta);y=y+a*sin(theta);lineto(x,y);theta=theta+dtheta;}lineto(x0,y0);}void main(){int x=50,y=75;int a,b,c,d,i,j;int graphdriver=DETECT;int graphmode=0;initgraph(&graphdriver,&graphmode," ");cleardevice();setcolor(RGB(0,255,0));setfillstyle(WHITE);polygon(x,y,60,5,0.);a=100;b=100;c=RGB(0,255,0);d=RGB(255,0,255);BoundaryFill4(a,b,c,d);getch();closegraph();}实验结果八连通的实现程序代码:#include<graphics.h>#include<conio.h>#include<time.h>#include <malloc.h>#include <windows.h>#define MaxSize 100typedef struct{int x;int y;}Seed,ElemType;typedef struct{ElemType data[MaxSize];int top; //栈顶指针} SqStack;void InitStack(SqStack *&s){s=(SqStack *)malloc(sizeof(SqStack));s->top=-1;}int StackEmpty(SqStack *s){return(s->top==-1);}int Push(SqStack *&s,ElemType e){if (s->top==MaxSize-1)return 0;s->top++;s->data[s->top]=e;return 1;}int Pop(SqStack *&s,ElemType &e){if (s->top==-1)return 0;e=s->data[s->top];s->top--;return 1;}void floodfill8(int x,int y,int oldcolor,int newcolor) {if(getpixel(x,y)==oldcolor){putpixel(x,y,newcolor);Sleep(2);floodfill8(x,y+1,oldcolor,newcolor);floodfill8(x,y-1,oldcolor,newcolor);floodfill8(x-1,y,oldcolor,newcolor);floodfill8(x+1,y,oldcolor,newcolor);floodfill8(x+1,y+1,oldcolor,newcolor);floodfill8(x+1,y-1,oldcolor,newcolor);floodfill8(x-1,y+1,oldcolor,newcolor);floodfill8(x-1,y-1,oldcolor,newcolor);}}void main(){int a,b,c,d,i,j;int graphdriver=DETECT;int graphmode=0;initgraph(&graphdriver,&graphmode," "); cleardevice();setfillstyle(RGB(255,255,255));setcolor(GREEN);int points[]={320,200,270,290,370,290}; fillpoly(3,points);rectangle(500,420,100,100);a=RGB(255,255,255);b=RGB(255,0,0);floodfill8(320,240,a,b);c=RGB(0,0,0);d=RGB(0,0,255);floodfill8(320,180,c,d);getch();closegraph();}实验结果:2、结果分析:通过以上各算法运行结果分析与对比可知:1.四连通算法的缺点是有时不能通过狭窄区域,因而不能填满多边形。
c语言多边形区域填充算法

c语言多边形区域填充算法C语言多边形区域填充算法一、介绍多边形区域填充算法是计算机图形学中的一项重要技术,用于将给定的多边形区域进行填充,使其呈现出丰富的颜色或纹理,增强图形的效果和表现力。
本文将介绍一种常用的C语言多边形区域填充算法——扫描线填充算法。
二、扫描线填充算法原理扫描线填充算法是一种基于扫描线的填充方法,其基本思想是将多边形区域按照水平扫描线的顺序,从上到下逐行扫描,通过判断扫描线与多边形边界的交点个数来确定是否进入多边形区域。
具体步骤如下:1. 首先,确定多边形的边界,将其存储为一个边表。
边表中的每个边都包含起点和终点的坐标。
2. 创建一个活性边表(AET),用于存储当前扫描线与多边形边界的交点。
初始时,AET为空。
3. 从上到下逐行扫描多边形区域,对每一条扫描线,从边表中找出与该扫描线相交的边,并将其加入AET中。
4. 对于AET中的每一对交点,按照从左到右的顺序两两配对,形成水平线段,将其填充为指定的颜色或纹理。
5. 在扫描线的下一行,更新AET中的交点的坐标,然后重复步骤4,直到扫描到多边形区域的底部。
三、代码实现下面是一个简单的C语言实现扫描线填充算法的示例代码:```#include <stdio.h>#include <stdlib.h>#include <stdbool.h>typedef struct {int x;int y;} Point;typedef struct {int yMax;float x;float dx;int next;} Edge;void fillPolygon(int n, Point* points, int color) {// 获取多边形的边界int yMin = points[0].y;int yMax = points[0].y;for (int i = 1; i < n; i++) {if (points[i].y < yMin) {yMin = points[i].y;}if (points[i].y > yMax) {yMax = points[i].y;}}// 创建边表Edge* edges = (Edge*)malloc(sizeof(Edge) * n);int k = n - 1;for (int i = 0; i < n; i++) {if (points[i].y < points[k].y) {edges[i].yMax = points[k].y;edges[i].x = points[i].x;edges[i].dx = (float)(points[k].x - points[i].x) / (points[k].y - points[i].y);edges[i].next = k;} else {edges[i].yMax = points[i].y;edges[i].x = points[k].x;edges[i].dx = (float)(points[i].x - points[k].x) / (points[i].y - points[k].y);edges[i].next = i;}k = i;}// 扫描线填充for (int y = yMin; y < yMax; y++) {int xMin = INT_MAX;int xMax = INT_MIN;for (int i = 0; i < n; i++) {if (y >= edges[i].yMax) {continue;}edges[i].x += edges[i].dx;if (edges[i].x < xMin) {xMin = edges[i].x;}if (edges[i].x > xMax) {xMax = edges[i].x;}int j = edges[i].next;while (j != i) {edges[j].x += edges[j].dx; if (edges[j].x < xMin) {xMin = edges[j].x;}if (edges[j].x > xMax) {xMax = edges[j].x;}j = edges[j].next;}}for (int x = xMin; x < xMax; x++) { drawPixel(x, y, color);}}free(edges);}int main() {// 定义多边形的顶点坐标Point points[] = {{100, 100},{200, 200},{300, 150},{250, 100}};// 填充多边形区域为红色fillPolygon(4, points, RED);return 0;}```四、总结通过扫描线填充算法,我们可以实现对多边形区域的填充,从而提升图形的表现效果。
区域填充算法范文

区域填充算法范文
常见的区域填充算法有种子填充算法和扫描线填充算法。
种子填充算法是一种递归算法,从指定的种子点开始,将其颜色设为
目标颜色,并继续填充其相邻的像素点,直到所有相邻的像素点都被填充
为目标颜色。
这个过程可以通过递归或者使用栈进行实现。
种子填充算法
的优点是简单易懂,但对于复杂的区域存在堆栈溢出的风险。
扫描线填充算法利用了图形中连续的扫描线和区域的边界特性。
首先,确定区域的上下边界,然后对每一条扫描线从左往右进行遍历。
当扫描线
与区域的边界相交时,根据交点的颜色决定当前像素点的填充颜色。
该算
法可以通过判断相邻像素点的颜色是否相同来确定区域的边界。
为了提高算法的效率,可以使用填充算法的优化技术。
例如,使用堆
栈数据结构来存储需要填充的像素点,避免了递归过程中的堆栈溢出问题。
另外,可以使用四邻域或八邻域填充算法来决定像素点的相邻关系,减少
算法的时间复杂度。
总之,区域填充算法是图形学和图像处理中的重要算法之一,通过将
指定的区域填充为指定的颜色,实现了各种复杂任务的自动化处理和可视
化展示。
随着计算机技术的发展,区域填充算法的应用前景将会更加广泛,并且不断出现新的算法和优化技术,提高填充效率和质量。
区域填充算法

区域填充算法⼀、区域填充概念区域:指已经表⽰成点阵形式的填充图形,是象素的集合。
区域填充:将区域内的⼀点(常称种⼦点)赋予给定颜⾊,然后将这种颜⾊扩展到整个区域内的过程。
区域填充算法要求区域是连通的,因为只有在连通区域中,才可能将种⼦点的颜⾊扩展到区域内的其它点。
1、区域有两种表⽰形式1. 内点表⽰:枚举出区域内部的所有象素内部所有象素着同⼀个颜⾊边界像素着与内部象素不同的颜⾊。
2. 边界表⽰:枚举出区域外部的所有象素边界上的所有象素着同⼀个颜⾊内部像素着与边界象素不同的颜⾊。
2、区域连通1. 四向连通区域:从区域上⼀点出发可通过上、下、左、右四个⽅向移动的组合,在不越出区域的前提下,到达区域内的任意象素。
2. ⼋向连通区域:从区域上⼀点出发可通过上、下、左、右、左上、右上、左下、右下⼋个⽅向移动的组合,在不越出区域的前提下,到达区域内的任意象素。
3. 四连通与⼋连通区域的区别连通性:四连通可以看作⼋连通的⾃⼰,但是对边界有要求⼆、简单种⼦填充算法1、基本思想给定区域G⼀种⼦点(x, y),⾸先判断该点是否是区域内的⼀点,如果是,则将该点填充为新的颜⾊,然后将该点周围的四个点(四连通)或⼋个点(⼋连通)作为新的种⼦点进⾏同样的处理,通过这种扩散完成对整个区域的填充。
这⾥给出⼀个四连通的种⼦填充算法(区域填充递归算法),使⽤【栈结构】来实现原理算法原理如下:种⼦像素⼊栈,当【栈⾮空】时重复如下三步:2、算法代码这⾥给出⼋连通的种⼦填充算法的代码:void flood_fill_8(int[] pixels, int x, int y, int old_color, int new_color) { if (x < w && x > 0 && y < h && y > 0) {// 如果是旧的颜⾊⽽且还没有给他填充过if (pixels[y * w + x] == old_color) {// 填充为新的颜⾊pixels[y * w + x]== new_color);// 递归flood_fill_8(pixels, x, y + 1, old_color, new_color);flood_fill_8(pixels, x, y - 1, old_color, new_color);flood_fill_8(pixels, x - 1, y, old_color, new_color);flood_fill_8(pixels, x + 1, y, old_color, new_color);flood_fill_8(pixels, x + 1, y + 1, old_color, new_color);flood_fill_8(pixels, x + 1, y - 1, old_color, new_color);flood_fill_8(pixels, x - 1, y + 1, old_color, new_color);flood_fill_8(pixels, x - 1, y - 1, old_color, new_color);}}}3、OpenCV实现import cv2def seed_fill(img):ret, img = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY_INV) label = 100stack_list = []h, w = img.shapefor i in range(1, h-1, 1):for j in range(1, w-1, 1):if (img[i][j] == 255):img[i][j] = labelstack_list.append((i, j))while len(stack_list) != 0:cur_i = stack_list[-1][0]cur_j = stack_list[-1][1]img[cur_i][cur_j] = labelstack_list.remove(stack_list[-1])# 四邻域,可改为⼋邻域if (img[cur_i-1][cur_j] == 255):stack_list.append((cur_i-1, cur_j))if (img[cur_i][cur_j-1] == 255):stack_list.append((cur_i, cur_j-1))if (img[cur_i+1][cur_j] == 255):stack_list.append((cur_i+1, cur_j))if (img[cur_i][cur_j+1] == 255):stack_list.append((cur_i, cur_j+1))cv2.imwrite('./result.jpg', img)cv2.imshow('img', img)cv2.waitKey()if __name__ == '__main__':img = cv2.imread('./test.jpeg', 0)seed_fill(img)4、简单种⼦填充算法的优点和缺点优点:1. 该算法也可以填充有孔区域缺点:1. 有些像素会多次⼊栈,降低算法效率,栈结构占空间2. 递归执⾏,算法简单,但效率不⾼,区域内每⼀像素都要进/出栈,费时费内存3. 改进算法,减少递归次数,提⾼效率三、扫描线种⼦填充算法⽬标:减少递归层次适⽤于边界表⽰的4连通区间1、基本思想在任意不间断区间中只取⼀个种⼦像素(不间断区间指在⼀条扫描线上⼀组相邻元素),填充当前扫描线上的该段区间;然后确定与这⼀区段相邻的上下两条扫描线上位于区域内的区段,并依次把它们保存起来,反复进⾏这个过程,直到所保存的各个区段都填充完毕。
cad 区域填充的算法

cad 区域填充的算法
CAD区域填充是一种用于计算机辅助设计软件中的算法,用于在指定区域内填充颜色。
这个算法基于扫描线填充方法,它从图形的顶部开始
扫描,逐行地将颜色填充到区域中。
具体而言,CAD区域填充算法可以通过以下步骤来实现:
1. 选择一个起始点,并确保该点位于待填充区域内。
2. 在当前扫描线上,从起始点开始向左和向右移动,找到左和右边界。
这可以通过检测不同颜色或图形边界来确定。
3. 填充当前扫描线的像素点,从左边界到右边界之间的像素。
4. 移动到下一行,通过向下移动一行并在新的扫描线上重复步骤2和
步骤3,直到所有行都被处理完毕或者遇到边界。
5. 当遇到边界或结束时,停止填充过程。
需要注意的是,在实际应用中,为了提高效率和减少计算量,可以使
用一些优化策略来加速CAD区域填充算法的执行,例如边界框剪裁和
扫描线段合并。
总之,CAD区域填充算法是一种实现图形填充的重要方法,它可以在计算机辅助设计软件中帮助用户快速填充指定区域并实现更好的可视化
效果。
区域填充算法的实现

区域填充算法的实现实现区域填充算法的一种常见方法是使用递归。
以下是一个使用递归实现的区域填充算法的伪代码:1. 定义函数fillPixel(x, y, targetColor, fillColor):-如果像素点(x,y)的颜色与目标颜色相同,将其颜色修改为填充颜色。
-否则,返回。
2. 定义函数regionFill(x, y, targetColor, fillColor):-如果像素点(x,y)的颜色与目标颜色相同,返回。
- 否则,调用fillPixel(x, y, targetColor, fillColor)。
- 递归调用regionFill(x-1, y, targetColor, fillColor)。
- 递归调用regionFill(x+1, y, targetColor, fillColor)。
- 递归调用regionFill(x, y-1, targetColor, fillColor)。
- 递归调用regionFill(x, y+1, targetColor, fillColor)。
3. 调用regionFill(seedX, seedY, targetColor, fillColor)。
在上述算法中,fillPixel函数用于将特定颜色填充到像素点(x, y)。
regionFill函数使用递归的方式遍历相邻的像素点,并对目标颜色的像素点调用fillPixel函数。
seedX和seedY表示种子像素点的坐标,targetColor表示目标颜色,fillColor表示填充颜色。
实现区域填充算法时还需要考虑以下几个问题:1.像素点的表示:图像可以由二维数组表示,其中每个元素表示一个像素点的颜色。
2.填充颜色选择:填充颜色可以由RGB值表示,或者在预定义的颜色集合中选择。
3.边界处理:对于位于图像边界上的种子像素点,需要特殊处理以防止数组越界错误。
4.递归终止条件:填充算法使用递归,需要定义递归终止的条件,以防止无限递归。
区域填充的扫描线算法

区域填充的扫描线算法区域填充是一种常见的计算机图形学算法,用于将一个封闭区域内的所有像素点填充为指定的颜色。
扫描线算法是区域填充的一种常用方法,本文将介绍扫描线算法的基本原理、实现步骤和一些优化技巧。
扫描线算法的基本原理是利用扫描线从图像的上边界向下扫描,检测每个扫描线与区域的交点。
当遇到一个交点时,根据该交点的左右两侧的交点情况,确定将该交点连接到哪个交点上。
通过不断地扫描和连接交点,最终将整个区域填充为指定的颜色。
下面是扫描线算法的具体实现步骤:1.首先需要确定区域的边界,可以由用户提供或通过其他算法生成。
边界可以用一系列的线段、多边形或曲线表示。
2. 创建一个数据结构来存储每个扫描线与区域的交点。
常用的数据结构是活性边表(Active Edge Table,AET)和扫描线填充表(Scanline Fill Table,SFT)。
AET用于存储当前扫描线与区域边界的交点,SFT用于存储所有扫描线的交点。
3.初始化扫描线的起始位置为图像的上边界,并创建一个空的AET。
4.开始扫描线的循环,直到扫描线到达图像的下边界。
每次循环都进行以下操作:-将扫描线与区域边界进行相交,找出所有与区域相交的线段,并将它们的交点加入到AET中。
-对AET按照交点的x坐标进行排序。
-从AET中取出相邻的两个交点,根据这两个交点之间的像素点是否在区域内来决定是否填充这些像素点。
5.当扫描线到达图像的下边界时,完成填充。
扫描线算法的实现可能会遇到一些边界情况和优化需求。
下面是一些常见的优化技巧:1.边界处理:在AET中存储的交点需要进行边界处理,确保交点处于图像范围内。
2.垂直线段处理:对于垂直线段,可以进行特殊处理,避免在AET中重复存储相同的交点。
3.区域内部边界处理:当区域内部有不连续的边界时,需要对交点进行合并,避免出现多余的像素点填充。
4.使用扫描线填充算法优化:对于大尺寸的区域填充,可以使用扫描线填充算法进行优化。
扫描线区域填充算法

扫描线区域填充算法
扫描线区域填充算法,又称为"扫描线填涂算法",它用于对平面中特定区域填充指定的颜色、灰度或纹理,是计算机图形学中常用的算法之一。
该算法的原理是:给定待填充的区域内的点的有限个边界,从某一顶点开始,以某一规则遍历所有的边界点,形成边界数组,接着顺次扫描边界数组,将包含在边界中的每个合理像素点标记成已填充状态,由此而达到填充区域的目的。
算法步骤如下:
(1)设置起始点A,判断是否存在右方向上有没有边界点,若有,则把下一个边界点B作为起始点;
(2)从起始点A 开始,以扫描线的形式一次扫描边界点,把有效的像素点标记为“已填充”;
(3)把已扫描的点加入边界数组,直到下一个边界点C,且C点不等于起始点A;
(4)重复步骤(2)和(3),直至再回到起始点A,完成一次区域填充;
(5)如果还有未填充的区域,则重复步骤(1)至(4),直至所有区域填充完成。
实际应用中,为了避免停滞,可以采用八方向搜索策略;此外,由于扫描线填充算法中填充空间的范围是由边界点定义的,因此,当边界未经处理的是孤立的点或直线时,将无法实现实际的填充效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
9 9
9
对边界和内点表示的八连通区域的填充,只要将上述算法的对四 个像素点填充改为八个像素点即可。 四连通区域种子填充算法的缺点是有时不能通过狭窄区域区域, 因而不能填满多边形。八连通算法的缺点是有时会填出多边形的 边界。由于填不满比涂出更容易补救,因此四连通算法比八连通 算法用得更多。
(3)扫描线种子填充算法
(2)内点表示的四连通区域种子填充算法
基本思想:从多边形内部任一点(像素)出发,按照“右 上左下”的顺序判断相邻像素,若是区域内的像素,则对 其填充,并重复上述过程,直至所有像素填充完毕。 可以使用栈结构来实现该算法,种子像素入栈,档栈非空, 重复执行下面操作: 1)栈顶像素出栈; 2)将出栈像素置成多边形填充的颜色;
基本思想:从多边形内部任一点(像素)出发,按照 “右上左下”的顺序判断相邻像素,若不是边界像素 且没被填充过,则对其填充,并重复上述过程,直至 所有像素填充完毕。 可以使用栈结构来实现该算法,种子像素入栈,档栈 非空,重复执行下面操作: 1)栈顶像素出栈; 2)将出栈像素置成多边形填充的颜色; 3)按“右上左下”的顺序检查与出栈像素相邻的四个 像素,若其中某个像素不在边界上且未置成多边形色, 则把该像素入栈。
扫描线算法分析(举例分析)
基本思想:在任意不间断的区间中只取一个像素(不 间断区间指一条扫描线上的一组相邻元素),填充当 前扫描线上的该段区间,然后确定与这一段相邻的上 下两条扫描线位于区域内的区段,并依次把它们保存 起来,反复进行这个过程,指导所有保存的每个区段 都填充完毕。
(3)扫描线种子填充算法
种子像素入栈,当栈非空时,重复以下步骤: (1)栈顶像素出栈 (2)沿扫描线对出栈像素的左右像素进行填充, 直到遇到边界像素为止 (3)将上述区间内最左、最右像素记为xl 和xr (4)在区间[xl ,xr]中检查与当前扫描线相邻的上 下两条扫描线是否全为边界像素、或已填充 的像素,若为非边界、未填充的像素,则把 每一区间的最右像素取为种子像素入栈
3)按“右上左下”的顺序检查与出栈像素相邻的四个像素, 若其中某个像素是区域内的像素,则把该像素入栈。
填充算法演示
6 5 4 3
7 S 9 2 8 S
5 3 2 4 7 S 9
4
8 4 7 9
6 8 4 7 9
6 8 4 7 9
7 8 4 7 9 8 4 7 9 9 4 7 9 4 7 9
8
4 7
区域填充
区域填充是指在一个有界区域内填充某些颜色或 图案。 区域填充有:
(1)多边形扫描线填充算法 (2)边缘填充算法 (3)种子填充算法 各算法的前提条件不同
常见的种子填充的连通区域种子填充算法。 2、内点表示的连通区域种子填充算法。 3、扫描线种子填充算法
(1)边界表示的四连通区域种子填充算法