安徽省2019中考数学模拟试题③

合集下载

(完整版)2019年安徽中考数学模拟试题及答案

(完整版)2019年安徽中考数学模拟试题及答案

2019年安徽中考数学模拟试题及答案一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)(2008•淄博)的相反数是()A.﹣3 B.3C.D.2.(3分)(2001•安徽)下列运算正确的()A.a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|3.(3分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是()A.众数是3 B.极差是7 C.平均数是5 D.中位数是44.(3分)(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°5.(3分)(2014•沙湾区模拟)如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图D.主视图6.(3分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9B.±3 C.3D.57.(3分)(2013•上城区一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则sinC等于()A.B.C.D.8.(3分)(2011•金华)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)9.(3分)(2013•上城区一模)在平面直角坐标系中,经过二、三、四象限的直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)都在直线l上,则下列判断正确的是()A.a=﹣3 B.b>﹣2 C.c<﹣3 D.d=﹣210.(3分)(2014•江阴市二模)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2013•上城区一模)如图,△ABC中,,若△AEF的面积为1,则四边形EBCF的面积为_________.12.(4分)(2013•上城区一模)在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣1,0,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为_________.13.(4分)(2013•上城区一模)已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为_________.14.(4分)(2014•沙湾区模拟)某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=_________.15.(4分)(2012•南通)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于_________.16.(4分)(2013•上城区一模)如图,▱ABCD中,AC⊥AB.AB=6cm,BC=10cm,E是CD上的点,DE=2CE.点P从D点出发,以1cm/s的速度沿DA→AB→BC运动至C点停止.则当△EDP为等腰三角形时,运动时间为_________s.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(6分)(2014•沙湾区模拟)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为_________,第n个方程为_________;(2)直接写出第n个方程的解,并检验此解是否正确.18.(8分)(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.(1)请在图中画出△COD;(2)求点A旋转过程中所经过的路程(精确到0.1);(3)求直线BC的解析式.19.(8分)(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.20.(10分)(2013•上城区一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有_________人,男生最喜欢“乒乓球”项目的有_________人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.(10分)(2013•上城区一模)在直角梯形ABCD中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E,F分别为AB,AD的中点,连结EF,EC,BF,CF.(1)求证△CBE≌△CFE;(2)若CD=a,求四边形BCFE的面积.22.(12分)(2014•沙湾区模拟)如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.23.(12分)(2013•上城区一模)如图,已知一次函数y=kx+b的图象与x轴相交于点A,与反比例函数的图象相交于B(﹣1,5),C(,d)两点.(1)求k,b的值;(2)设点P(m,n)是一次函数y=kx+b的图象上的动点.①当点P在线段AB(不与A,B重合)上运动时,过点P作x轴的平行线与函数的图象相交于点D,求出△PAD面积的最大值.②若在两个实数m与n之间(不包括m和n)有且只有一个整数,直接写出实数m的取值范围.2019年安徽中考数学模拟试题及答案参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)(2008•淄博)的相反数是()A.﹣3 B.3C.D.考点:相反数.分析:求一个数的相反数,即在这个数的前面加负号.解答:解:根据相反数的定义,得的相反数是.故选D.点评:本题考查的是相反数的求法.2.(3分)(2001•安徽)下列运算正确的()A.a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|考点:幂的乘方与积的乘方;绝对值.专题:计算题.分析:相反数的平方相等,相反数的立方互为相反数,负数的绝对值等于它的相反数,a3的符号与它本身相同.解答:解:A、相反数的平方相等,故本选项正确;B、相反数的立方互为相反数,a3=﹣(﹣a)3,故本选项错误;C、负数的绝对值等于它的相反数,﹣a2=﹣|﹣a2|,故本选项错误;D、a3的符号与它本身相同,正负情况不能确定,而|a3|是非负数,故本选项错误.故选A.点评:幂运算时,指数的奇偶,直接影响结果的符号.3.(3分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是()A.众数是3 B.极差是7 C.平均数是5 D.中位数是4考点:极差;算术平均数;中位数;众数.分析:根据众数、极差、平均数及中位数的定义,结合数据进行判断即可.解答:解:A、众数为3,说法正确,故本选项错误;B、极差=9﹣2=7,说法正确,故本选项错误;C、平均数==5,说法正确,故本选项错误;D、中位数为4.5,说法错误,故本选项正确.故选D.点评:本题考查了极差、中位数、众数及平均数的知识,属于基础题,注意掌握各部分的定义是关键.4.(3分)(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°考点:反证法.分析:用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.解答:解:用反证法证明命题“∠A,∠B中至少有一个角不大于45°”时,应先假设∠A>45°,∠B>45°.故选:A.点评:此题主要考查了反证法,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.5.(3分)(2014•沙湾区模拟)如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图D.主视图考点:简单组合体的三视图;轴对称图形;中心对称图形.分析:首先把此几何体的三视图画出来,然后根据轴对称图形和中心对称图形的定义矩形判断即可.解答:解:该几何体的主视图为既不是轴对称图形又不是中心对称图形;该几何体的左视图为是轴对称图形不是中心对称图形;该几何体的俯视图为既是轴对称图形又是中心对称图形;故选B.点评:此题主要考查了三视图的几何知识,考查了学生的空间思维想象能力.6.(3分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9B.±3 C.3D.5考点:二次根式的化简求值.专题:计算题.分析:原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.解答:解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选C.点评:本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.7.(3分)(2013•上城区一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则sinC等于()A.B.C.D.考点:三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义.专题:压轴题.分析:连接BD,根据中位线的性质得出EF∥BD,且等于BD,进而利用勾股定理的逆定理得出△BDC是直角三角形,求解即可.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,且等于BD,∴BD=8,∵BD=8,BC=10,CD=6,∴△BDC是直角三角形,∴sinC===,故选D.点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.8.(3分)(2011•金华)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)考点:切线的性质;坐标与图形性质;勾股定理;垂径定理.专题:压轴题;网格型.分析:根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可.解答:解:连接AC,作AC的垂直平分线BO′,交格点于点O′,则点O′就是所在圆的圆心,∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.点评:此题主要考查了切线的性质以及垂径定理和坐标与图形的性质,得出△BOD≌△FBE时,EF=BD=2,即得出F点的坐标是解决问题的关键.9.(3分)(2013•上城区一模)在平面直角坐标系中,经过二、三、四象限的直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)都在直线l上,则下列判断正确的是()A.a=﹣3 B.b>﹣2 C.c<﹣3 D.d=﹣2考点:一次函数图象上点的坐标特征.专题:存在型.分析:设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)得出斜率k的表达式,再根据经过二、三、四象限判断出k的符号,由此即可得出结论.解答:解:设一次函数的解析式为y=kx+b(k≠0),∵直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1),∴斜率k====,即k=a+2===,∵l经过二、三、四象限,∴k<0,∴a<﹣2,b<﹣2,c<﹣3,d<﹣3.故选C.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.10.(3分)(2014•江阴市二模)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB 为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④考点:二次函数综合题.专题:代数几何综合题.分析:根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.解答:解:∵点A,B的坐标分别为(﹣2,3)和(1,3),∴线段AB与y轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≤3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<﹣2时,y随x的增大而增大,因此,当x<﹣3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点C的横坐标最小值为﹣2﹣4=﹣6,故③错误;根据顶点坐标公式,=3,令y=0,则ax2+bx+c=0,CD2=(﹣)2﹣4×=,根据顶点坐标公式,=3,∴=﹣12,∴CD2=×(﹣12)=,∵四边形ACDB为平行四边形,∴CD=AB=1﹣(﹣2)=3,∴=32=9,解得a=﹣,故④正确;综上所述,正确的结论有②④.故选A.点评:本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,①要注意顶点在y轴上的情况.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2013•上城区一模)如图,△ABC中,,若△AEF的面积为1,则四边形EBCF的面积为8.考点:相似三角形的判定与性质.分析:求出==,根据∠A=∠A推出△AEF∽△ABC,得出==,求出△ABC的面积是9,即可求出四边形EBCF的面积.解答:解:∵,∴==,∵∠A=∠A,∴△AEF∽△ABC,∴==,∵△AEF的面积为1,∴△ABC的面积是9,∴四边形EBCF的面积是9﹣1=8,故答案为:8.点评:本题考查了相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.12.(4分)(2013•上城区一模)在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣1,0,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为.考点:列表法与树状图法.专题:图表型.分析:画出树状图,然后根据概率公式列式计算即可得解.解答:解:根据题意,画出树状图如下:一共有9种情况,和是正数的有5种,所以,P(和是正数)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比,要注意0既不是正数也不是负数,这也是本题最容易出错的地方.13.(4分)(2013•上城区一模)已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为5.考点:一元二次方程的解.分析:方程的解是使方程左右两边成立的未知数的值.同时注意根据分式的基本性质化简分式.解答:解:∵x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,∴a﹣b﹣10=0,∴a﹣b=10.∵a≠﹣b,∴a+b≠0,∴====5,故答案是:5.点评:本题考查了一元二次方程的定义,得到a﹣b的值,首先把所求的分式进行化简,并且本题利用了整体代入思想.14.(4分)(2014•沙湾区模拟)某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=150.考点:一元一次方程的应用.分析:根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元,根据等量关系列出方程,解出a的值即可.解答:解:由题意得:0.5a+0.6(200﹣a)=105,解得:a=150,故答案为:150.点评:此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.15.(4分)(2012•南通)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于16.考点:一次函数图象上点的坐标特征.专题:压轴题;探究型.分析:先令a=0,则P(﹣1,﹣3);再令a=1,则P(0,﹣1),由于a不论为何值此点均在直线l上,设此直线的解析式为y=kx+b(k≠0),把两点代入即可得出其解析式,再把Q(m,n)代入即可得出2m﹣n的值,进而可得出结论.解答:解:∵令a=0,则P(﹣1,﹣3);再令a=1,则P(0,﹣1),由于a不论为何值此点均在直线l上,∴设此直线的解析式为y=kx+b(k≠0),∴,解得,∴此直线的解析式为:y=2x﹣1,∵Q(m,n)是直线l上的点,∴2m﹣1=n,即2m﹣n=1,∴原式=(1+3)2=16.故答案为:16.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式.16.(4分)(2013•上城区一模)如图,▱ABCD中,AC⊥AB.AB=6cm,BC=10cm,E是CD上的点,DE=2CE.点P从D点出发,以1cm/s的速度沿DA→AB→BC运动至C点停止.则当△EDP为等腰三角形时,运动时间为或4或4.8或(27.2﹣)s.考点:平行四边形的性质;等腰三角形的性质;勾股定理.专题:动点型.分析:先求出DE、CE的长,再分①点P在AD上时,PD=DE,列式求解即可;PD=PE时,根据等腰三角形三线合一的性质,过点P作PF⊥CD于F,根据AC⊥AB可得AC⊥CD,然后求出△ACD和△PFD相似,根据相似三角形对应边成比例列式求出PD,从而得解;②点P在BC上时,利用勾股定理求出AC的长,过点A作AF⊥BC于F,过点E作EG⊥BC的延长线于G,根据三角形的面积求出AF的长,再利用勾股定理列式求出BF的长,然后求出△ABF和△ECG相似,根据相似三角形对应边成比例列式求出EG、CG,利用勾股定理列式求出PG,然后求出CP,再求出点P运动的路程,然后求出时间即可.解答:解:在▱ABCD中,∵AB=6cm,∴CD=AB=6cm,∵DE=2CE,∴DE=4cm,CE=2cm,①点P在AD上时,若PD=DE,则t=4,若PD=PE,如图1,过点P作PF⊥CD于F,∵AC⊥AB,∴AC⊥CD,∴△ACD∽△PFD,∴=,即=,解得PD=,若EP=ED=4,通过相似和三角形的三线合一可以解出当PD=4.8时候,△EPD是以EP和ED为等腰的一个等腰三角形.则t=4.8.②点P在BC上时PE=DE=4,∵AC⊥AB,AB=6cm,BC=10cm,∴AC===8,过点A作AF⊥BC于F,过点E作EG⊥BC的延长线于G,S△ABC=×6×8=×10AF,解得AF=4.8,根据勾股定理,BF===3.6,∵平行四边形ABCD的边AB∥CD,∴∠B=∠ECG,又∵∠AFB=∠EGC=90°,∴△ABF∽△ECG,∴==,即==,解得EG=1.6,CG=1.2,根据勾股定理,PG===,∴PC=PG﹣CG=﹣1.2,点P运动的路程为10+6+10﹣(﹣1.2)=27.2﹣,∵点P的速度为1cm/s,∴点P运动的时间为秒或4秒或27.2﹣秒.故答案为:或4或4.8或27.2﹣.点评:本题考查了平行四边形的性质,等腰三角形的性质,勾股定理的应用,相似三角形的判定与性质,综合题,难点在于要分情况讨论.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(6分)(2014•沙湾区模拟)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为x+=9,第n个方程为x+=2n+1;(2)直接写出第n个方程的解,并检验此解是否正确.考点:分式方程的解.专题:规律型.分析:(1)观察一系列等式左边分子为连续两个整数的积,右边为从3开始的连续奇数,即可写出第4个方程及第n个方程;(2)归纳总结即可得到第n个方程的解为n与n+1,代入检验即可.解答:解:(1)x+=x+=9,x+=2n+1;(2)x+=2n+1,观察得:x1=n,x2=n+1,将x=n代入方程左边得:n+n+1=2n+1;右边为2n+1,左边=右边,即x=n是方程的解;将n+1代入方程左边得:n+1+n=2n+1;右边为2n+1,左边=右边,即x=n+1是方程的解,则经检验都为原分式方程的解.故答案为:x+=9;x+=2n+1.点评:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.18.(8分)(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.(1)请在图中画出△COD;(2)求点A旋转过程中所经过的路程(精确到0.1);(3)求直线BC的解析式.考点:弧长的计算;待定系数法求一次函数解析式;作图-旋转变换.分析:(1)将OA、OB分别旋转60度,(2)点A旋转过程中所经过的路程既是点A划过的弧长,(3)求出点C 作标,用待定系数法解答.解答:解:(1)见图(2分)(2)旋转时以OA为半径,60度角为圆心角,则=2π≈6.3;(5分)(3)过C作CE⊥x轴于E,则OE=3,CE=3,∴C(﹣3,3),(7分)设直线BC的解析式为y=kx+b,则;∴解得:(9分)∴解析式为y=﹣x+.(10分)点评:本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键,然后才是依据图形计算.19.(8分)(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.考点:确定圆的条件;圆心角、弧、弦的关系.专题:证明题;探究型.分析:(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.解答:(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∠4=∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)点评:本题主要考查等弧对等弦,及确定一个圆的条件.20.(10分)(2013•上城区一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有10人,男生最喜欢“乒乓球”项目的有20人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)总数减去喜欢跳绳、乒乓球、羽毛球、其他的人数,即可得出喜欢“踢毽子”项目的人数,先求出男生喜欢乒乓球的人数所占的百分比,继而可得出男生最喜欢“乒乓球”项目的人数;(2)由(1)的答案可补全统计图;(3)根据男生、女生喜欢乒乓球人数所占的百分比,即可得出计该校喜欢“羽毛球”项目的学生总人数.解答:解:(1)女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10人,男生最喜欢“乒乓球”项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=20人;(2)补充条形统计图如右图:.(3)400×28%+450×=193,答:该校喜欢“羽毛球”项目的学生总人数为193人.点评:本题考查了扇形统计图及条形统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2013•上城区一模)在直角梯形ABCD中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E,F分别为AB,AD的中点,连结EF,EC,BF,CF.(1)求证△CBE≌△CFE;(2)若CD=a,求四边形BCFE的面积.考点:直角梯形;全等三角形的判定与性质.分析:连接DE,求出CD=BE,得出矩形BEDC,推出∠DEB=90°,根据直角三角形斜边上中线性质得出FE=AF,得出等边三角形EFA,求出EF=AE=BE,∠EFA=60°,求出∠DFC=30°,求出∠CFE=90°,根据HL证出直角三角形全等即可;(2)根据勾股定理求出DE,BC,求出△CBE面积,即可求出答案.解答:(1)证明:连接DE,∵E为AB的中点,∴AB=2AE=2BE,∵AB=2DC,∴CD=BE,∵CD∥AB,∠CBA=90°,∴四边形CBED是矩形,∵F为AD中点,∠DEA=90°,∴EF=AF,∵∠A=60°,∴△AEF是正三角形,∴AE=EF=AF,∠EFA=60°,∵AE=BE,DF=AF∴BE=EF=AF,CD=DF,∴∠CFE=90°=∠CBE,∵CD∥AB,∴∠CDF=180°﹣∠A=120°,∴∠DFC=30°,∴∠CFE=90°=∠CBE,∵在Rt△CBE和Rt△CFE中∴Rt△CBE≌Rt△CFE(HL);(2)解:∵CD=a,∴AE=BE=a,∵∠A=60°,∴,∴,∴S四边形BCFE=2S△BCE=a2.点评:本题考查了梯形性质,矩形的性质和判定,等边三角形的性质和判定,平行线的性质,三角形的内角和定理,等腰三角形的性质,勾股定理等知识点的应用,主要考查学生综合运用性质进行推理的能力,题目综合性比较强,难度偏大.22.(12分)(2014•沙湾区模拟)如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.考点:相似三角形的判定与性质.分析:(1)由于∠MCA=∠BDO=Rt∠,所以△AMC和△BOD相似时分两种情况:①△AMC∽△BOD;②△AMC∽△OBD.则两种情况都可以根据相似三角形对应边的比相等及tan∠EOF=2列出关于AC的方程,解方程即可求出AC的长度;(2)先由MC∥BD,得出△AMC∽△ABD,根据相似三角形对应边的比相等及三角形中位线的性质求出BD=2MC=8,OD=4,CD=8,AC=CD=8,再利用SAS证明△AMC≌△BOD,得到∠CAM=∠DBO,根据平行线的性质及三角形内角和定理求出∠ABO=90°,进而得出△ABO为直角三角形;(3)设OD=a,根据tan∠EOF=2得出BD=2a,由三角形的面积公式求出S△AMC=2AC,S△BOC=12a,根据S△AMC=S△BOC,得到AC=6a.由△AMC∽△ABD,根据相似三角形对应边的比相等列出关于a的方程,解方程求出a的值,进而得出AC的长.解答:解:(1)∵∠MCA=∠BDO=Rt∠,∴△AMC和△BOD中,C与D是对应点,∴△AMC和△BOD相似时分两种情况:①当△AMC∽△BOD时,=tan∠EOF=2,∵MC=4,∴=2,解得AC=8;②当△AMC∽△OBD时,=tan∠EOF=2,∵MC=4,∴=2,解得AC=2.故当AC的长度为2或8时,△AMC和△BOD相似;(2)△ABO为直角三角形.理由如下:∵MC∥BD,∴△AMC∽△ABD,∴,∠AMC=∠ABD,∵M为AB中点,∴C为AD中点,BD=2MC=8.∵tan∠EOF=2,∴OD=4,∴CD=OC﹣OD=8,∴AC=CD=8.在△AMC与△BOD中,,∴△AMC≌△BOD(SAS),∴∠CAM=∠DBO,∴∠ABO=∠ABD+∠DBO=∠AMC+∠CAM=90°,∴△ABO为直角三角形;(3)连结BC,设OD=a,则BD=2a.∵S△AMC=S△BOC,S△AMC=•AC•MC=2AC,S△BOC=•OC•BD=12a,∴2AC=12a,∴AC=6a.∵△AMC∽△ABD,∴,即,解得a1=3,a2=﹣(舍去),∴AC=6×3=18.点评:本题主要考查了相似三角形的判定与性质,锐角三角函数的定义,三角形的面积,三角形中位线定理,综合性较强,有一定难度.进行分类讨论是解决第一问的关键.23.(12分)(2013•上城区一模)如图,已知一次函数y=kx+b的图象与x轴相交于点A,与反比例函数的图象相交于B(﹣1,5),C(,d)两点.(1)求k,b的值;(2)设点P(m,n)是一次函数y=kx+b的图象上的动点.①当点P在线段AB(不与A,B重合)上运动时,过点P作x轴的平行线与函数的图象相交于点D,求出△PAD面积的最大值.②若在两个实数m与n之间(不包括m和n)有且只有一个整数,直接写出实数m的取值范围.考点:反比例函数综合题.专题:综合题.分析:(1)先把B点坐标代入y=可确定反比例函数解析式为y=﹣,再把点C(,d)代入y=﹣可计算出d,然后利用待定系数法确定一次函数的解析式,即求出k、b的值;(2)先确定A点坐标为(,0),再用n 表示P点坐标得到P(,n),由DP∥x轴得到D点坐标为(﹣,n),根据三角形面积公式得S△PAD=×(+)×n,配成顶点式得y=﹣(n﹣)2+,由于点P在线段AB(不与A,B重合)上的面积。

2019年安徽省中考数学试卷(后附参考答案与试题解析)

2019年安徽省中考数学试卷(后附参考答案与试题解析)

密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题2019年安徽省中考数学试卷(后附参考答案与试题解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是( ) A .﹣2B .﹣1C .0D .12.(4分)计算a 3•(﹣a )的结果是( ) A .a 2B .﹣a 2C .a 4D .﹣a 43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是( )A .B .C .D .4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为( ) A .1.61×109B .1.61×1010C .1.61×1011D .1.61×10125.(4分)已知点A (1,﹣3)关于x 轴的对称点A '在反比例函数y =的图象上,则实数k 的值为( ) A .3B .C .﹣3D .﹣6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km /h )为( )A .60B .50C .40D .157.(4分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =12,点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF 交AB 于点G .若EF =EG ,则CD 的长为( )A .3.6B .4C .4.8D .58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( ) A .2019年B .2020年C .2021年D .2022年9.(4分)已知三个实数a ,b ,c 满足a ﹣2b +c =0,a +2b +c <0,则( ) A .b >0,b 2﹣ac ≤0 B .b <0,b 2﹣ac ≤0 C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥010.(4分)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题A .0B .4C .6D .8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是 .12.(5分)命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为 . 13.(5分)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为 .14.(5分)在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x ﹣a +1和y =x 2﹣2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是 .三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解方程:(x ﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB .(1)将线段AB 向右平移5个单位,再向上平移3个单位得到线段CD ,请画出线段CD .(2)以线段CD 为一边,作一个菱形CDEF ,且点E ,F 也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式: 第1个等式:=+, 第2个等式:=+, 第3个等式:=+, 第4个等式:=+, 第5个等式:=+,……按照以上规律,解决下列问题: (1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明. 五、(本大题共2小题,每小题10分,满分20分)密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB 长为6米,∠OAB =41.3°,若点C 为运行轨道的最高点(C ,O 的连线垂直于AB ),求点C 到弦AB 所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ;(2)设▱ABCD 的面积为S ,四边形AEDF 的面积为T ,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格: 编号① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮尺寸8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b(cm )按照生产标准,产品等次规定如下:尺寸(单位:cm ) 产品等次 8.97≤x ≤9.03 特等品 8.95≤x ≤9.05 优等品 8.90≤x ≤9.10 合格品 x <8.90或x >9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm . (i )求a 的值;(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率. 七、(本题满分12分)22.(12分)一次函数y =kx +4与二次函数y =ax 2+c 的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点 (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图象相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值. 八、(本题满分14分)23.(14分)如图,Rt △ABC 中,∠ACB =90°,AC =BC ,P 为△ABC 内部一点,且∠APB =∠BPC =135°. (1)求证:△PAB ∽△PBC ; (2)求证:PA =2PC ;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证h 12=h 2•h 3.密封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题2019年安徽省中考数学试卷参考答案与试题解析(后附试卷)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是( ) A .﹣2B .﹣1C .0D .1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:根据有理数比较大小的方法,可得 ﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2. 故选:A .【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a 3•(﹣a )的结果是( ) A .a 2B .﹣a 2C .a 4D .﹣a 4【分析】直接利用同底数幂的乘法运算法则求出答案. 【解答】解:a 3•(﹣a )=﹣a 3•a =﹣a 4. 故选:D .【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是( )A .B .C .D .【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【解答】解:几何体的俯视图是:故选:C .【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为( ) A .1.61×109 B .1.61×1010C .1.61×1011D .1.61×1012【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【解答】解:根据题意161亿用科学记数法表示为1.61×1010 . 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.(4分)已知点A (1,﹣3)关于x 轴的对称点A '在反比例函数y =的图象上,则实数k 的值为( ) A .3B .C .﹣3D .﹣【分析】先根据关于x 轴对称的点的坐标特征确定A '的坐标为(1,3),然后把A ′的坐标代入y =中即可得到k 的值.【解答】解:点A (1,﹣3)关于x 轴的对称点A '的坐标为(1,3),把A ′(1,3)代入y =得k =1×3=3. 故选:A .密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y =(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k . 6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km /h )为( )A .60B .50C .40D .15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C .【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =12,点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF 交AB 于点G .若EF =EG ,则CD 的长为( )A .3.6B .4C .4.8D .5【分析】根据题意和三角形相似的判定和性质,可以求得CD 的长,本题得以解决. 【解答】解:作DH ∥EG 交AB 于点H ,则△AEG ∽△ADH ,∴,∵EF ⊥AC ,∠C =90°, ∴∠EFA =∠C =90°, ∴EF ∥CD , ∴△AEF ∽△ADC ,∴, ∴,∵EG =EF , ∴DH =CD ,设DH =x ,则CD =x , ∵BC =12,AC =6, ∴BD =12﹣x ,∵EF ⊥AC ,EF ⊥EG ,DH ∥EG , ∴EG ∥AC ∥DH , ∴△BDH ∽△BCA , ∴,即,解得,x =4, ∴CD =4, 故选:B .【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( ) A .2019年B .2020年C .2021年D .2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿), 2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年, 故选:B .【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a ,b ,c 满足a ﹣2b +c =0,a +2b +c <0,则( ) A .b >0,b 2﹣ac ≤0 B .b <0,b 2﹣ac ≤0 C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【分析】根据a ﹣2b +c =0,a +2b +c <0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况,本题得以解决. 【解答】解:∵a ﹣2b +c =0,a +2b +c <0, ∴a +c =2b ,b =,∴a +2b +c =(a +c )+2b =4b <0, ∴b <0, ∴b 2﹣ac ==﹣ac ==≥0,即b <0,b 2﹣ac ≥0, 故选:D .【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b 和b 2﹣ac 的正负情况.10.(4分)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A .0B .4C .6D .8【分析】作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H ,可得点H 到点E 和点F 的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H∵点E ,F 将对角线AC 三等分,且AC =12, ∴EC =8,FC =4=AE ,∵点M 与点F 关于BC 对称∴CF =CM =4,∠ACB =∠BCM =45°∴∠ACM =90° ∴EM ==4则在线段BC 存在点H 到点E 和点F 的距离之和最小为4<9在点H 右侧,当点P 与点C 重合时,则PE +PF =12 ∴点P 在CH 上时,4<PE +PF ≤12在点H 左侧,当点P 与点B 重合时,BF ==2∵AB =BC ,CF =AE ,∠BAE =∠BCF ∴△ABE ≌△CBF (SAS )密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题∴BE =BF =2 ∴PE +PF =4∴点P 在BH 上时,4<PE +PF <4∴在线段BC 上点H 的左右两边各有一个点P 使PE +PF =9, 同理在线段AB ,AD ,CD 上都存在两个点使PE +PF =9. 即共有8个点P 满足PE +PF =9,故选:D .【点评】本题考查了正方形的性质,最短路径问题,在BC 上找到点N 使点N 到点E和点F 的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分) 11.(5分)计算÷的结果是 3 .【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可. 【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为 如果a ,b 互为相反数,那么a +b =0 .【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为: 如果a ,b 互为相反数,那么a +b =0;故答案为:如果a ,b 互为相反数,那么a +b =0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键. 13.(5分)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为.【分析】连接CO 并延长交⊙O 于E ,连接BE ,于是得到∠E =∠A =30°,∠EBC =90°,解直角三角形即可得到结论.【解答】解:连接CO 并延长交⊙O 于E ,连接BE , 则∠E =∠A =30°,∠EBC =90°, ∵⊙O 的半径为2, ∴CE =4, ∴BC =CE =2,∵CD ⊥AB ,∠CBA =45°, ∴CD =BC =,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x ﹣a +1和y =x 2﹣2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是 a >1或a <﹣1 .【分析】由y =x ﹣a +1与x 轴的交点为(1﹣a ,0),可知当P ,Q 都在x 轴的下方时,x 直线l 与x 轴的交点要在(1﹣a ,0)的左侧,即可求解; 【解答】解:y =x ﹣a +1与x 轴的交点为(a ﹣1,0), ∵平移直线l ,可以使P ,Q 都在x 轴的下方, ∴当x =a ﹣1时,y =(1﹣a )2﹣2a (a ﹣1)<0, ∴a 2﹣1>0, ∴a >1或a <﹣1; 故答案为a >1或a <﹣1;密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x =1﹣a 时,二次函数y <0是解题的关键. 三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解方程:(x ﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可. 【解答】解:两边直接开平方得:x ﹣1=±2,∴x ﹣1=2或x ﹣1=﹣2, 解得:x 1=3,x 2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB .(1)将线段AB 向右平移5个单位,再向上平移3个单位得到线段CD ,请画出线段CD .(2)以线段CD 为一边,作一个菱形CDEF ,且点E ,F 也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C ,D 点位置,进而得出答案; (2)直接利用菱形的判定方法进而得出答案. 【解答】解:(1)如图所示:线段CD 即为所求;(2)如图:菱形CDEF 即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x 米,则乙工程队每天掘进(x ﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x 米,则乙工程队每天掘进(x ﹣2)米, 由题意,得2x +(x +x ﹣2)=26,解得x =7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键. 18.(8分)观察以下等式: 第1个等式:=+, 第2个等式:=+, 第3个等式:=+, 第4个等式:=+, 第5个等式:=+,……按照以上规律,解决下列问题: (1)写出第6个等式:;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.【分析】(1)根据已知等式即可得; (2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB 长为6米,∠OAB =41.3°,若点C 为运行轨道的最高点(C ,O 的连线垂直于AB ),求点C 到弦AB 所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】连接CO 并延长,与AB 交于点D ,由CD 与AB 垂直,利用垂径定理得到D 为AB 的中点,在直角三角形AOD 中,利用锐角三角函数定义求出OA ,进而求出OD ,由CO +OD 求出CD 的长即可.【解答】解:连接CO 并延长,与AB 交于点D , ∵CD ⊥AB ,∴AD =BD =AB =3(米), 在Rt △AOD 中,∠OAB =41.3°, ∴cos41.3°=,即OA ===4(米),tan41.3°=,即OD =AD •tan41.3°=3×0.88=2.64(米),则CD =CO +OD =4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ;(2)设▱ABCD 的面积为S ,四边形AEDF 的面积为T ,求的值.【分析】(1)根据ASA 证明:△BCE ≌△ADF ;(2)根据点E 在▱ABCD 内部,可知:S △BEC +S △AED =S ▱ABCD ,可得结论. 【解答】解:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC , ∴∠ABC +∠BAD =180°, ∵AF ∥BE ,∴∠EBA +∠BAF =180°, ∴∠CBE =∠DAF , 同理得∠BCE =∠ADF ,在△BCE 和△ADF 中, ∵,∴△BCE ≌△ADF (ASA ); (2)∵点E 在▱ABCD 内部, ∴S △BEC +S △AED =S ▱ABCD , 由(1)知:△BCE ≌△ADF ,∴S △BCE =S △ADF ,∴S 四边形AEDF =S △ADF +S △AED =S △BEC +S △AED =S ▱ABCD ,密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题∵▱ABCD 的面积为S ,四边形AEDF 的面积为T , ∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格: 编号① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮尺寸(cm )8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b 按照生产标准,产品等次规定如下:尺寸(单位:cm ) 产品等次 8.97≤x ≤9.03 特等品 8.95≤x ≤9.05 优等品 8.90≤x ≤9.10 合格品 x <8.90或x >9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm . (i )求a 的值;(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i )由可得答案;(ii )由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得. 【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i )优等品有⑥~⑪,中位数在⑧8.98,⑨a 之间, ∴,解得a =9.02(ii )大于9cm 的有⑨⑩⑪,小于9cm 的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩ 画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种. ∴抽到两种产品都是特等品的概率P =.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比. 七、(本题满分12分)22.(12分)一次函数y =kx +4与二次函数y =ax 2+c 的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点 (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图象相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值.【分析】(1)由交点为(1,2),代入y =kx +4,可求得k ,由y =ax 2+c 可知,二次函数的顶点在y 轴上,即x =0,则可求得顶点的坐标,从而可求c 值,最后可求a 的值密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)由(1)得二次函数解析式为y =﹣2x 2+4,令y =m ,得2x 2+m ﹣4=0,可求x 的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k +4=﹣2,解得k =﹣2, 又∵二次函数顶点为(0,4), ∴c =4把(1,2)带入二次函数表达式得a +c =2,解得a =﹣2(2)由(1)得二次函数解析式为y =﹣2x 2+4,令y =m ,得2x 2+m ﹣4=0∴,设B ,C 两点的坐标分别为(x 1,m )(x 2,m ),则,∴W =OA 2+BC 2=∴当m =1时,W 取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可. 八、(本题满分14分)23.(14分)如图,Rt △ABC 中,∠ACB =90°,AC =BC ,P 为△ABC 内部一点,且∠APB =∠BPC =135°. (1)求证:△PAB ∽△PBC ; (2)求证:PA =2PC ;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证h 12=h 2•h 3.【分析】(1)利用等式的性质判断出∠PBC =∠PAB ,即可得出结论; (2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt △AEP ∽Rt △CDP ,得出,即h 3=2h 2,再由△PAB ∽△PBC ,判断出,即可得出结论.【解答】解:(1)∵∠ACB =90°,AB =BC , ∴∠ABC =45°=∠PBA +∠PBC 又∠APB =135°, ∴∠PAB +∠PBA =45° ∴∠PBC =∠PAB又∵∠APB =∠BPC =135°,∴△PAB ∽△PBC(2)∵△PAB ∽△PBC ∴在Rt △ABC 中,AB =AC , ∴∴∴PA =2PC(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E , ∴PF =h 1,PD =h 2,PE =h 3, ∵∠CPB +∠APB =135°+135°=270° ∴∠APC =90°, ∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90° ∴∠EAP =∠PCD ,∴Rt △AEP ∽Rt △CDP , ∴,即,∴h 3=2h 2∵△PAB ∽△PBC ,密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题 ∴,∴∴.即:h 12=h 2•h 3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP =∠PCD 是解本题的关键.。

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.13.(2019安徽省六安市模拟)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③△POF∽△BNF;④当△PMN ∽△AMP时,点P是AB的中点,其中一定正确的结论有.(填上所有正确的序号).14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy中,已知A(2,0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹角为60°,那么点P的坐标是.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.25.(2019重庆市长寿区模拟)在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H=.处,过点H作HN⊥HG交AB于N点,交AE于M点,则S△MNF26.(2019北京市海淀区模拟)一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.27.(2019福建省龙岩市模拟)如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.28.(2019深圳市光明新区模拟)用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.29.(2019江苏省徐州市模拟)我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.30.(2019山东省济南市模拟)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.【分析】由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积.【解答】解:设正三角形的边长为a,则a2×=2,解得a=2.则图中阴影部分的面积=2×﹣2=2.故答案是:2.【点评】考查了二次根式的应用.解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.根据二次根式恒等时,有理数部分与有理数部分和无理数部分与无理数部分对应相等的关系,列出恒等式即可解答【解答】解:(a+)(a+)==(b+)(c+)=(bc+2)+(b+c)根据题意得=(bc+2)+(b+c)∵a,b,c都为有理数,∴bc=a2,b+c=2a∴b(2a﹣b)=a2,∵b2﹣2ab+a2=0,∴(a﹣b)2=0,∴a=b=c又∵(a+)2=(a+﹣1)(b,∴(a+)含有因式(),而a又是有理数,故a=2,当a=b=c=2时,A=B=C,【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.得到等式找出abc之间的数量关系.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.【分析】(1)根据勾股定理可得CD,AD,BD的长度,当O,D,C共线时,OC的长度最大,即△AOB是等腰直角三角形时,OC的长度最大,可求t.(2)分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【解答】解:(1)∵BC=AC=5,AB=8,CD⊥AB∴BD=4=AD,∴由勾股定理得:CD=3∵AD=BD,∠AOB=90°∴OD=AB=4∵在△OCD中,OC<OD+DC∴当O,D,C三点共线时,OC值最大,即OD⊥AB,∵AD=BD,DO⊥AB∴BO=AO,且AB=8∴AO=BO=4,且点A的速度为每秒1个单位长度∴t==4(2)若BC∥x轴∴∠CBA=∠BAO且∠CDB=∠AOB∴△BOC∽△AOB∴,即∴t=若AC∥y轴,∴∠CAB=∠ABO且∠CDA=∠AOB∴△ACD∽△AOB∴即∴t=∴当t=或时,△ABC的边与坐标轴平行【点评】本题考查的是勾股定理,等腰三角形的性质,相似三角形的性质和判定,关键是利用分类思想解决问题.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.【解答】解:连接CD,∵在直角三角形ABC中,∠C=90°,∴AB===10,∵点D是AB的中点,∴CD=AD=AB=5,∴∠A=∠ACD,∵DM=DN,∴∠DMN=∠DNM,∵∠DMN=∠A+∠ADM,∠DNM=∠ACD+∠CDN,∴∠ADM=∠CDN,∴△ADM≌△CDN(SAS),∴AM=CN,∵∠CDM=∠MDN+∠CDN,∠A=∠MDN,∴∠CMD=∠CDM,∴AM=CD=5,∴AM=CN=AC﹣CM=3,∴MN=2.故答案为:2.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)【解答】解:如图所示:∵斜边与半圆相切,点B是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=4,∴OC=OB=2,BC=2.∴S阴影=S扇形BOD+S△BOC=+×2×2=+2.故答案为:+2.6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.【解答】解:如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.∵F A=FB,OA=OB,∴OF⊥AB,AH=BH=,∴sin∠BOH=,∴∠BOH=∠AOH=60°,∴∠AOB=120°∴∠C=∠AOB=60°,∵DB⊥BC,∴∠DBC=90°,∴∠CDB=30°,∵∠AFB=60°,∴∠ADB=∠AFB,∴点D的运动轨迹是以F为圆心,F A为半径的圆,∴当D在OF的延长线上时,△ABD的面积最大,最大面积=×(2+3)=6+3,故答案为6+3.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.【分析】连接BE,作EF⊥BD于F,由折叠的性质得:∠DAC=∠DAE,DE=CD=,求出,得出BE=DE=,由圆周角定理得出∠DAE=∠BAE=∠BDE=∠DBE,得出∠DAC=∠DAE=∠BAE,求出∠BAE=∠BDE=∠DBE=30°,由等腰三角形的性质和直角三角形的性质得出DF=BF,EF=DE=,求出DF=EF=,即可得出结果.【解答】解:连接BE,作EF⊥BD于F,如图所示:由折叠的性质得:∠DAC=∠DAE,DE=CD=,∵点E是的中点,∴,∴BE=DE=,∠DAE=∠BAE=∠BDE=∠DBE,∴∠DAC=∠DAE=∠BAE,∵∠CAB=90°,∴∠BAE=30°,∴∠BDE=∠DBE=30°,∵EF⊥BD,∴DF=BF,EF=DE=,∴DF=EF=,∴BD=2DF=;故答案为:.【点评】本题考查了翻折变换的性质、圆周角定理、垂径定理、等腰三角形的判定与性质、勾股定理等知识;熟练掌握圆周角定理,求出∠BAE=30°是解题关键.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.【分析】设PD=t.则PA=10﹣t.首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题.【解答】解:如图,设PD=t.则PA=6﹣t.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=10,在Rt△ABP中,∵AB2+AP2=PB2,∴62+(10﹣t)2=102,∴t=2或18(舍去),∴PD=2,∴t=2s时,B、E、P共线.故答案为:2.【点评】本题考查了矩形的性质、勾股定理等知识,解题的关键是学会利用特殊位置解决问题.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.【分析】如图,连接AC、BD交于点O,连接OM.首先说明点E从点A运动到点D时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点O,连接OM,∵BF⊥CE∴∠BFC=90°,∴点F的运动轨迹在以边长BC为直径的⊙M上,当点E从点A运动到点D时,点F的运动路径长为,∵四边形ABCD是菱形∴AB=BC=5,∠ABD=∠DBC=∠ABC=30°∵BM=MO∴∠MBO=∠BOM=30°,∴∠OMC=60°∴的长==π故答案为:π【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)【解答】解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴+=>0,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:【点评】本题考查圆的切线性质,主要涉及相似三角形的判定与性质,勾股定理,切线的性质等知识,题目综合程度较高,很好地考查学生综合运用知识的能力.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.【分析】作辅助线,构建直角三角形,设OF=x,则DF=x,OD=x,证明△DFC∽△OGD,则,得DC=,根据勾股定理列方程可得,计算x2=50﹣25,根据两条对角线乘积的一半可得菱形的面积.【解答】解:连接OE,CD交于点G,过D作DF⊥OB于F,∵∠AOB=45°,∴△ODF是等腰直角三角形,设OF=x,则DF=x,OD=x,∵四边形OCED是菱形,∴OE⊥CD,OG=EG=OE=5,∵OC=OD,∴∠ODG=∠DCF,∵∠DFC=∠OGD=90°,∴△DFC∽△OGD,∴,∴,DC =,在Rt △OCG 中,,解得x 2=50+25(舍)或50﹣25,∴菱形OCED 的面积=CD •OE =•10==50﹣50,故答案为:50﹣50.【点评】本题考查了菱形的性质、半径的性质、相似三角形的判定和性质、勾股定理等知识,寻找相似三角形利用相似三角形性质求线段是常用的数学方法.13.(2019安徽省六安市模拟)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③△POF ∽△BNF ;④当△PMN ∽△AMP 时,点P 是AB 的中点,其中一定正确的结论有 .(填上所有正确的序号).【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形,从而作出判断. 【解答】解:∵四边形ABCD 是正方形, ∴∠BAC =∠DAC =45°. 在△APE 和△AME 中,,∴△APE ≌△AME (ASA ),故①正确; ∴PE =EM =PM ,同理,FP=FN=NP.∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故③错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故④正确.故答案为:①②④.14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.【分析】根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.【解答】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF==4,∴EF=4﹣4,∴PD+PE的长度最小值为4﹣4,故答案为:4﹣4.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,所以所作的第2018个菱形的边长是()2017,故答案为()2017.【点评】此题主要考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是掌握探究规律的方法,属于中考常考题型.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB ∥x 轴,BC ∥y 轴,点C 在x 轴上,则△ABC 的面积为 .【分析】作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图,根据反比例函数比例系数k 的几何意义得S 矩形AEOD =1,S 矩形BFOD =4,于是得到S 矩形AEFB =3,然后根据矩形的性质和三角形面积公式易得S △ABC =S △FAB =1.5.【解答】解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图, ∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4, ∴S 矩形AEFB =4﹣1=3, ∴S △FAB =1.5, ∴S △ABC =S △FAB =1.5. 故答案为1.5.【点评】本题考查了反比例函数系数k 的几何意义,矩形的面积,熟练掌握反比例函数系数k 的几何意义是解题的关键.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy 中,已知A (2,0),B (0,6),M(0,2).点Q 在直线AB 上,把△BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ .如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是 .【分析】先求出OA=2,OB=6,OM=2,BM=OB﹣OM=4,tan∠BAO=,得出∠BAO=60°,AB=2OA=4,分∠PQB=120°或∠PQB=60°两种情况,(1)当∠PQB=120°时,又分两种情况:①延长PQ交OB于点N,则∠BQN=60°,QN⊥BM,由折叠得出BM=MP=4,求出BN=NM=BM=2,由勾股定理得出NP==2,ON=OM+NM=4,即可得出P点的坐标;②QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,即可得出P点的坐标;(2)当∠PQB=60°时,Q点与A点重合,AB=AP=4,OP=AP﹣OA=2,即可得出P点的坐标;综上情况即可P点的坐标.【解答】解:∵A(2,0),B(0,6),M(0,2),∴OA=2,OB=6,OM=2,BM=OB﹣OM=4,∴tan∠BAO===,∴∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,∵直线PQ与直线AB所构成的夹角为60°,∴∠PQB=120°或∠PQB=60°,(1)当∠PQB=120°时,分两种情况:①如图1所示:延长PQ交OB于点N,则∠BQN=60°,∴∠QNB=90°,即QN⊥BM,由折叠得:BM=MP=4,∠BQM=∠PQM,∵∠PQB=120°,∴∠BQM=∠PQM=120°,∴∠BQN=∠MQN=60°,∵QN⊥BM,∴BN=NM=BM=2,在Rt△PNM中,NP===2,ON=OM+NM=4,∴P点的坐标为:(2,4);②如图2所示:QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,∴P点的坐标为:(0,﹣2);(2)当∠PQB=60°时,如图3所示:Q点与A点重合,由折叠得:AB=AP=4,OP=AP﹣OA=4﹣2=2,∴P点的坐标为:(﹣2,0);综上所述:P点的坐标为:(2,4)或(0,﹣2)或(﹣2,0).【点评】本题考查了翻折变换的性质、直角三角形的性质、勾股定理、三角函数、坐标等知识,熟练掌握翻折变换的性质、直角三角形的性质,并进行分类讨论是关键.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC 的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.【点评】此题考查了圆周角定理,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意掌握转化思想的应用.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)【分析】根据已知条件得到当x=﹣1时,y>0,即a﹣b+c>0,故①正确;根据抛物线的对称轴为直线x=1,即﹣=1,得到3a+b≠0,故②错误;根据已知条件得到方程ax2+bx+c=n有两个相等的实数根,得到b2=4a(c﹣n),故③正确;根据抛物线的开口向下,得到y=n,于是得到直最大线y=n﹣1与抛物线由两个交点,即可得到一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确.【解答】解:∵抛物线顶点坐标为(1,n),∴抛物线的对称轴为直线x=1,∵与x轴的一个交点在点(3,0)和(4,0)之间,∴当x=﹣1时,y>0,即a﹣b+c>0,故①正确;∵抛物线的对称轴为直线x=1,即﹣=1,∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n),∴抛物线y=ax2+bx+c(a≠0)与直线y=n有唯一一个交点,即方程ax2+bx+c=n有两个相等的实数根,∴△=b2﹣4a(c﹣n)=0,∴b2=4a(c﹣n),故③正确;∵抛物线的开口向下,=n,∴y最大∴直线y=n﹣1与抛物线由两个交点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确;故答案为:①③④.【点评】本题考查的是二次函数图象与系数的关系,图象开口方向判断出a,由对称轴得出b,抛物线与y轴的交点判断c,抛物线与x轴交点的个数确定b2﹣4ac.22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.【分析】设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,通过角的关系得到PE∥BF,由平行得到△PEA∽△BFP;由相似得到x与y的关系,在Rt△FEP中,FE2=FP2+EP2,得到FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,结合x的取值范围,确定EF的范围.【解答】解:设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,∵∠AEP=∠EPF=∠PFB=90°,∴PE∥BF,∴△PEA∽△BFP,∴=,∴4y=3x,在Rt△FEP中,FE2=FP2+EP2,∴FE2=y2+(8﹣x)2,∴FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,∵0<x<8,∴当x=时,FE有最小值,当x=0时,EF有最大值8,∴≤EF<8.故答案为≤EF<8.【点评】本题考查二次函数最值,三角形相似,勾股定理,平行线的判定,是综合性很强的一道题;能够通过平行得到三角形相似,能够通过相似得到边的关系,利用勾股定理得到二次函数的解析式,再由二次函数的值的范围求解,因此熟练掌握相似、平行、二次函数最值的求法是解题的关键.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.【分析】分两种情况:直线BC在OA的下方和上方,画图计算边界时点c的值,可得c的取值.【解答】解:如图所示1,直线BC在OA的下方时当c=﹣1时,区域S内的整点有(1,0),(2,0),(3,0),有3个;当直线BC:y=+c过(1,﹣1)时,c=﹣,且经过(5,0)∴区域S内恰有4个整点,c的取值范围是﹣≤c<﹣1.如图2,直线BC在OA的上方时,∵点(2,2)在函数y=(x>0)的图象上,当直线BC:y=过(1,2)时,c=,。

安徽省2019年中考数学真题试题(含解析)含答案

安徽省2019年中考数学真题试题(含解析)含答案

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.12.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×10125.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3 B.C.﹣3 D.﹣6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60 B.50 C.40 D.157.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF ⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0 B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0 D.b<0,b2﹣ac≥010.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0 B.4 C.6 D.8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a9.03 9.04 9.06 9.07 9.08 b(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.2019年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意161亿用科学记数法表示为1.61×1010 .故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3 B.C.﹣3 D.﹣【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60 B.50 C.40 D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF ⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0 B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0 D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac 的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac 的正负情况.10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0 B.4 C.6 D.8【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,可得点N到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点N到点E和点F的距离之和最小为4<9∴在线段BC上点N的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点N使点N到点E和点F的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是 3 .【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b互为相反数,那么a+b =0 .【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a>1或a<﹣1 .【分析】由y=x﹣a+1与x轴的交点为(1﹣a,0),可知当P,Q都在x轴的下方时,x直线l与x轴的交点要在(1﹣a,0)的左侧,即可求解;【解答】解:y=x﹣a+1与x轴的交点为(1﹣a,0),∵平移直线l,可以使P,Q都在x轴的下方,∴当x=1﹣a时,y=(1﹣a)2﹣2a(1﹣a)<0,∴a2﹣1>0,∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.【解答】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EAB+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED =S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED =S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a9.03 9.04 9.06 9.07 9.08 b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i)由可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y 轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=﹣2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△PAB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠PAB+∠PBA=45°∴∠PBC=∠PAB又∵∠APB=∠BPC=135°,∴△PAB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴PA=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△PAB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.。

2019年中考数学模拟试题及答案分析607656

2019年中考数学模拟试题及答案分析607656

2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.若分式x yx y+-中的x、y的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的13D.是原来的162.数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的()A.平均数或中位数B.方差或标准差C.众数或平均数D.众数或中位数3.如图所示,△ABC中,AB=AC,BE=CE,则由“SSS”可直接判定()A.△ABD≌△ACD B.△ABE≌△ACE C.△BED≌△CED D.以上答案都不对4.如图,四边形EFGH是四边形ABCD平移后得到的,则下列结论中正确的个数是()①平移的距离是线段AE的长度;②平移的方向是点C到点F;③线段CF与线段DG是对应边;④平移的距离是线段DG的长度.A.1个B.2个C.3个D.4个5.下列计算正确的是()A .3303a a a a -÷==B .64642()()ab ab ab ab -÷==C .844()()()x y x y x y --÷+=+D .53532()()a a a a a -÷-=-÷=- 6.下列各多项式分解因式正确的个数是( )①432318273(69)x y x y x y x y +=+;②3222()x y x y xy x xy +=+;③3222+622(3)x x x x x x +=+;④232224682(234)x y x y xy xy xy x y -+-=-+-A .3 个B . 2 个C .1 个D .0 个7.5()10()a x y b y x ---在分解因式时,提取的公因式应当为( )A . 510a b -B .510a b +C .5()x y -D .y x -8. 用一副三角板画图,不能画出的角的度数是( )A .15°B .75°C .145°D .165°9.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针最可能停留的区域是( )A .1B . 2C . 3D . 410.桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜.哪方赢的机会大?( )A .红方B .蓝方C .一样D .不知道11.下列计算中,正确的是( )A .a 3÷a 3=a 3-3=a 0=1B .x 2m+3÷x 2m -3=x 0=1 C .(-a )3÷(-a )=-a 2 D .(-a )5÷(-a )3×(-a )2=112.已知26x y -+=,则4)2(3)2(22+---y x y x 的值是( )A .144B .94C .58D .14213.下列说法正确的是( )A .足球在草地上滚动,可看作足球在作平移变换B .我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向作平移变换”C .小明第一次乘观光电梯,随着电梯的上升,他高兴地对同伴说:太棒了,•我现在比大楼还高呢,我长高了D .在图形平移变换过程中,图形上可能会有不动点14.下列判断正确的是 ( )①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒。

[名师推荐]2019年安徽省初中学业水平考试数学模拟试卷(1)附参考答案

[名师推荐]2019年安徽省初中学业水平考试数学模拟试卷(1)附参考答案

2019 年安徽省初中学业水平考试数学模拟试卷(一)一、选择题(本大题共10小题,每小题4分,满分40分) 1.合肥市某日的气温是-2 ℃~6 ℃,则该日的温差是( A ) A .8 ℃ B .5 ℃ C .2 ℃D .-8 ℃2.计算x 2·4x 3的结果是( C ) A .4x 3 B .4x 4 C .4x 5D .4x 6 3.如图,一个水平放置的六棱柱,这个六棱柱的左视图是( C )A B C D4.地球上陆地的面积约为150 000 000 km 2把“150 000 000用科学记数法表示为( A ) A .1.5×108 B .1.5×107 C .1.5×109D .1.5×1065.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2的度数是( C )A .64°B .65°C .66°D .67°6.不等式组⎩⎪⎨⎪⎧1-x <0,6>3x 的解集是( C )A .x >1B .x <2C .1<x <2D .无解7.小明为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是( D ) A .被抽取的天数为50天B .空气轻微污染的所占比例为10%C .扇形统计图中表示优的扇形的圆心角度数57.6°D .估计该市这一年(365天)达到优和良的总天数不多于290天8.市政府计划两年内将该市人均住房面积由现在的10 m 2提高到14.4 m 2,设每年人均住房面积增长率为x ,则所列方程正确的是( A )A .10(1+x )2=14.4B .10(1-x )2=14.4C .10(1+x )=14.4D .10+10(1+x )+10(1+x )2=14.49.若函数y =ax -c 与函数y =bx的图象如图所示,则函数y =ax 2+bx +c 的大致图象为( D )A B C D10.如图,在矩形ABCD 中,AB =3,BC =3,将△ABC 沿对角线AC 折叠,点B 恰好落在点P 处,CP 与AD 交于点F ,连接BP 交AC 于点G ,交AD 于点E ,下列结论不正确的是( D )A .AC =2APB .△PBC 是等边三角形 C .S △BGC =3S △AGPD .PG CG =13二、填空题(本大题共4小题,每小题5分,满分20分) 11.84.1的整数部分是__9__.12.因式分解:a 3-4ab 2=__a (a +2b )(a -2b )__.13.如图,一个边长为4 cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC相交于点E ,则CE =3cm __.14.在△ABC 中,AB =6 cm ,点P 在AB 上,且∠ACP =∠B ,若点P 是AB 的三等分点,则AC 的长是三、(本大题共2小题,每小题8分,满分16分) 15.计算:9+(π-3)0-|-5|+(-1)2 018+⎝⎛⎭⎫12-2解:原式=3+1-5-1+4=4.16.先化简,再求值:⎝⎛⎭⎫x x +1-3x x -1÷xx 2-1,其中x =-2.解:原式=x (x -1)-3x (x +1)(x +1)(x -1)·(x +1)(x -1)x =-2x 2-4xx =-2x -4,把x =-2代入,得-2×(-2)-4=0.四、(本大题共2小题,每小题8分,满分16分)17.如图,在正方形网格中,△ABC 为格点三角形,每个小正方形的边长均为1个单位. (1)画出△ABC 关于y 轴对称的△A ′B ′C ′; (2)求AC 边上的高.解:(1)如图所示,△A ′B ′C ′为所求;(2)△ABC 中,AB =32+32=32,BC =22+22=22,AC =12+52=26;∵AB 2+BC 2=(32)2+(22)2=26=AC 2,∴△ABC 为直角三角形,设AC 边上的高为x ,则有12AC·x =12AB·BC ,∴x =32×2226=62613.18.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1 224,47×43=2 021,…(1)认真观察,分析上述各式中两因数的个位数字、十位数字分别有什么联系,找出因数与积之间的规律,并用字母表示出来;(2)验证你得到的规律.解:(1)上述等式的规律是:两因数的十位数字相等,个位数字相加等于10,而积后两位是两因数个位数字相乘、前两位是十位数字相乘,乘积再加上这个十位数字之和;如果用m 表示十位数字,n 表示个位数字的话,则第一个因数为10m +n ,第二个因数为10m +(10-n ),积为100m (m +1)+n (10-n );表示出来为:(10m +n )[10m +(10-n )]=100m (m +1)+n (10-n );(2)∵左边=(10m +n )(10m -n +10)=(10m +n )[10(m +1)-n ]=100m (m +1)-10mn +10n (m +1)-n 2=100m (m +1)-10mn +10mn +10n -n 2=100m (m +1)+n (10-n )=右边,∴(10m +n )[10m +(10-n )]=100m (m +1)+n (10-n ),成立.五、(本大题共2小题,每小题10分,满分20分)19.如图所示,巨型广告牌AB 背后有一看台CD ,台阶每层高0.3 m ,且AC =17 m ,小明坐在台阶的FG 这层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB 在地面上的影长AE =10 m ,过了一会,当α=45°,问小明在FG 这层是否还能晒到太阳?请说明理由(3取1.73).解:当α=45°时,小明仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点M ,与MC 的交点为点H.当α=60°时,在Rt △ABE 中,∵tan 60°=AB AE =AB 10,∴AB =10·tan 60°=103≈10×1.73=17.3(m ),∵∠BFA =45°,∴tan 45°=ABAM =1,此时的影长AM =AB =17.3(m ),∴CM =AM -AC =17.3-17=0.3(m ),∴CM =CF =0.3(m ),∴大楼的影子落在台阶FC 这个侧面上,∴小明能晒到太阳.20.商店只有雪碧、可乐、果汁、红茶四种饮料,赵敏同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到红茶的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和红茶的概率.解:(1)∵商店只有雪碧、可乐、果汁、红茶四种饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到红茶的概率是14;(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和红茶的有2种情况,∴他恰好买到雪碧和红茶的概率P =212=16. 六、(本题满分12分)21.如图,C ,D 两点在以AB 为直径的半圆O 上,AD 平分∠BAC ,AB =20,AD =415,DE ⊥AB 于E .(1)求DE 的长; (2)求证:AC =2OE .(1)解:连接BD ,∵AB 为直径,∴∠ADB =90°,在Rt △ADB 中,BD =AB 2-AD 2=202-(415)2=410,∵S △ADB =12AD·BD =12AB·DE ,∴AD·BD =AB·DE ,∴DE =AD·BD AB =415×41020=46,即DE =46;(2)证明:连接OD ,作OF ⊥AC 于点F .∵OF ⊥AC ,∴AC =2AF ,∵AD 平分∠BAC ,∴∠BAC =2∠BAD ,又∵∠BOD =2∠BAD ,∴∠BAC =∠BOD ,Rt △OED 和Rt △AFO 中,∵⎩⎨⎧∠BAC =∠BOD ,∠AFO =∠OED =90°,OA =OD ,∴△AFO ≌△OED ,∴AF =OE ,∵AC =2AF ,∴AC =2OE.七、(本题满分12分)22.安徽凤凰城建材市场为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9 000元? (3)小明说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 解:(1)当每吨售价是240元时,此时的月销售量为:45+260-24010×7.5=60(吨);(2)设当售价定为每吨x 元时,由题意,可列方程(x -100)⎝⎛⎭⎫45+260-x 10×7.5=9 000,化简得x 2-420x +44 000=0.解得x 1=200,x 2=220,当售价定为每吨200元时,销量更大,所以售价应定为每吨200元;(3)小明说的不对.∵由(2)知,x 2-420x +44 000=0,∴当月利润最大时,x 为210元,理由:方法一:当月利润最大时,x 为210元,而对于月销售额W =x ⎝⎛⎭⎫45+260-x 10×7.5=-34(x -160)2+19 200来说,当x为160元时,月销售额W 最大,∴当x 为210元时,月销售额W 不是最大,∴小明说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17 325元;而当x 为200元时,月销售额为18 000元.∵17 325元<18 000元,∴当月利润最大时,月销售额W 不是最大.∴小明说的不对.八、(本题满分14分)23.如图,在菱形ABCD 中,E ,F 为边BC ,CD 上的点,且CE =CF ,连接AE ,AF ,∠ABC 的平分线交AE 于点G ,连接CG .(1)求证:AG =CG ; (2)求证:CG ∥AF ;(3)若BG =CG ,则△ABE 与△BGE 是否相似?若相似,写出证明过程;若不相似,请说明理由. (1)证明:在菱形ABCD 中,AB =BC ,∵BG 平分∠ABC ,∴∠ABG =∠CBG ,在△ABG 和△CBG 中,⎩⎨⎧AB =BC ,∠ABG =∠CBG ,BG =BG ,∴△ABG ≌△CBG ,∴AG =CG ;(2)证明:连接AC ,∵AC 是菱形ABCD 的对角线,∴∠ACE =∠ACF ,在△ACE 和△ACF 中,⎩⎨⎧CE =CF ,∠ACE =∠ACF ,AC =AC ,∴△ACE ≌△ACF ,∴∠CAE =∠CAF ,由(1)知,AG =CG ,∴∠CAE =∠ACG ,∴∠ACG =∠CAF ,∴CG ∥AF ;(3)解:△ABE ∽△BGE.理由如下:由(1)知,△ABG ≌△CBG ,∴∠BAG =∠BCG ,∵BG =CG ,∴∠CBG =∠BCG ,∴∠BAG =∠CBG ,又∵∠AEB =∠BEG ,∴△ABE ∽△BGE.。

2019年安徽省中考数学模拟试卷及答案

2019年安徽省中考数学模拟试卷及答案

2019年安徽省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共40分)1.−4的绝对值是()A. 4B. −4C. 14D. −142.据报道2019年前3月,某市土地出让金达到11.9亿,比2018年同期的7.984亿上涨幅度达到48.8%.其中数值11.9亿可用科学记数法表示为( )A. 1.19×109B. 11.9×108C. 1.19×1010D. 11.9×10103.下列运算:①a2⋅a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 44.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A. B. C. D.5.下列多项式中,能用公式法分解因式的是()A. a2−aB. a2+b2C. −a2+9b2D. a2+4ab−4b26.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A. b=a(1+8.9%+9.5%)B. b=a(1+8.9%×9.5%)C. b=a(1+8.9%)(1+9.5%)D. b=a(1+8.9%)2(1+9.5%)7.一元二次方程(m−2)x2−4mx+2m−6=0有两个相等的实数根,则m等于()A. −6B. 1C. −6或1D. 28.一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是()A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,29.下列条件中,不能判定四边形ABCD是平行四边形的是( )A. AB=CD,AD=BCB. AB//CD,AD=BCC. AB//CD,∠B=∠DD. AB//CD,AB=CD10.如图,等腰Rt▵ABC(∠ACB=90∘)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让▵ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,▵ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A. B. C. D.二、填空题(本大题共4小题,共20分)11.不等式x+16≥2x−54+1的解集为______.12.如图,菱形纸片ABCD中,∠A=60∘,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为___________13.如图,一次函数图象经过点A,且与正比例函数y=−x的图象交于点B,则该一次函数的表达式为_____________.14.如图,在△ABC中,∠ABC=90∘,AB=4,BC=3,点D、E分别是边AB、AC上的动点,将△ADE沿DE翻折,点A落在射线CB上的点P处.当△CEP为直角三角形时,AD的长为________.三、计算题(本大题共1小题,共12分)15.某中学为推进素质教育,在初一年级设立了六个课外兴趣小组,如图是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:(1)初一年级共有多少人?(2)补全频数分布直方图.(3)求“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率.四、解答题(本大题共8小题,共79分)3−(√2)2.16.计算:(√3−2)0+√−2717.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(−2,1)、B(−3,2)、C(−1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕C点逆时针旋转90∘后得到的△A2B2C.19.观察下列等式:①1−1−12=−11×2;②12−13−14=−13×4;③13−15−16=−15×6;④14−17−18=−17×8;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.20.如图,小东在教学楼的窗口C处,测得正前方旗杆顶部A点的仰角为37∘,旗杆底部B的仰角为45∘,旗杆AB=14米.(1)求教学楼到旗杆的距离.(2)求AC的长度.(参考数据:sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75)21.如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l//BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.22.某公司销售一种产品,产品成本为40元/千克,经市场调查,若按50元/千克销售,每月可销售500kg,销售单价每上涨2元,月销售量就减少20kg.(1)写出月销售利润y(单位:元)与销售单价x(单位:元/千克)之间的函数解析式(不要求写出x的取值范围);(2)当销售单价定为60元时,计算月销售量和月销售利润;(3)当销售单价定为多少元时能获得最大利润?最大利润是多少?23.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE.(2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F.若BF=BC,①求证:EH=EC;②请你找出线段AH、AD、DF之间的数量关系,并说明理由.2019年安徽省中考数学模拟试卷参考答案 1. A2. A3. B4. D5. C6. C7. C8. A9. B 10. B 11. x ≤5412. 75∘13. y =x +2.14. 209或1004915. 解:(1)32÷10%=320,所以初一年级共有320人;(2)体育小组的人数=320−48−64−32−64−16=96(人),频数分布直方图为:(3)“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率=48+32320=14. 16. 解:原式=1−3−2=−4.17. 解:设城中有x 户人家,依题意得:x +x3=100解得x =75.答:城中有75户人家.18. 解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C为所作;19. 解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第5个等式为:15−19−110=−19×10;(2)第n个等式为:1n −12n−1−12n=−12n(2n−1),证明:左边=2(2n−1)−2n−(2n−1)2n(2n−1)=−12n(2n−1),右边=−12n(2n−1),∴左边=右边,∴原式成立.20. 解:(1)设CD=x米,∵tan∠ACD=ADCD,∴AD=CDtan∠ACD=x⋅tan37∘=0.75x,∵∠DCB=45∘,∴BD=CD=x,∵AB=AD+BD=14,∴0.75x+x=14,解得:x=8,即教学楼到旗杆的距离为8米;(2)∵CD=8,cos∠ACD=CDAC,∴AC=CDcos∠ACD =80.8=10,即AC的长度为10米.21. 解:(1)如图所示:(2)∵直线l与⊙O相切与点P,∴OP⊥l,∵l//BC,∴PE⊥BC,∴BE=CE,∴弦AE将△ABC分成面积相等的两部分.22. 解:(1)由题意得:y=(x−40)[500−202×(x−50)]=−10x2+1400x−40000;(2)当x=60时月销售量:500−10×(60−50)=400(kg),销售利润:y=−10×602+1400×60−40000=8000(元);(3)当x=−b2a =70时,y最大=4ac−b24a=9000(元).即当售价定为70元时会获最大利润,最大利润为9000元.23. (1)证明:如图1中,∵△ABC是等边三角形,∴∠A=∠BCD=∠ABC=60∘,AC=BC,∵AE=CD,∴△ACE≌△CBD,∴BD=EC.(2)①证明:如图2中,∵△ACE≌△CBD,∴∠ACE=∠CBD,∵∠ABC=∠ACB=60∘,∴∠ABD=∠ECB,∵BF=BC,∴∠BFC=∠BCF,∴∠FBH+∠H=∠BCE+∠ECH,∴∠H=∠ECH,∴EH=EC.②解:结论:AD=AH+DF.理由:如图2−1中,在射线EB上截取EM=DF.∵BD=CE=EH,BF=BD+DF=BC=AB,∴HM=EH+EM=BF=BC=AB,∴AH=BM,∵AD=BE=BM+EM,BM=AH,EM=DF,∴AD=AH+DF.。

安徽省芜湖市芜湖县2019年中考数学二模试卷(解析版)

安徽省芜湖市芜湖县2019年中考数学二模试卷(解析版)

2019年安徽省芜湖市芜湖县中考数学二模试卷一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的)1.(4分)给出四个数0,﹣,,﹣1,其中最小的数是()A.﹣1B.﹣C.0D.2.(4分)下列等式正确的是()A.a3•a4=a12B.(2a4)3=8a7C.(﹣2)0=﹣1D.a﹣3÷a4=a﹣7 3.(4分)2019年全国两会发布,2018年全国338个地级以上城市大气的PM2.5平均浓度同比下降9.3%.PM2.5颗粒物被称为大气的元凶,PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,其中2.5微米用科学记数法表示为()A.2.5×10﹣4米B.2.5×10﹣5米C.2.5×10﹣6米D.2.5×10﹣7米4.(4分)第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.5.(4分)共享单车为市民出行带来了方便,某单车公式第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y 与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a6.(4分)一组数据:1、3、3、5,若添加一个数据3,则下列各统计量中会发生变化是()A.方差B.平均数C.中位数D.众数7.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(4分)如图,已知二次函数y=ax2+bx+c的图象分别与x轴的正半轴和负半轴交于A、B 两点,且OA<OB,则一次函数y=ax+b和反比例函数y=的图象可能是()A.B.C.D.9.(4分)在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.10.(4分)如图,在△ABC中,AB=AC=4,∠BAC=120°,P为AB上一动点,Q是BC上一动点,则AQ+PQ的最小值为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣1的绝对值是.12.(5分)分解因式:x2y2﹣x2=.13.(5分)如图,AB是半圆O的直径,点D,E在半圆上,∠DOE=100°,点C在上,连接CD,CE,则∠DCE等于度.14.(5分)如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:()﹣2﹣+2cos60°﹣(2019﹣)016.(8分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在11×16 的网格图中,△ABC三个顶点坐标分别为A(﹣4,0),B(﹣1,1),C(﹣2,3).(1)请画出△ABC沿x轴正方向平移4个单位长度所得到的△A1B1C1;(2)以原点O为位似中心,将(1)中的△A1B1C1放大为原来的3倍得到△A2B2C2,请在第一象限内画出△A2B2C2,并直接写出△A2B2C2三个顶点的坐标.18.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60米,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1米,HF段的长为1.50米,篮板底部支架HE的长为0.75米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)五、(本大题共2小题,每小题10分,满分20分)19.(10分)正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:(2)原正方形能否被分割成2016个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.20.(10分)如图,已知△ABC内接于⊙O,BC为⊙O直径,延长AC至D,过D作⊙O 切线,切点为E,且∠D=90°,连接BE.DE=12,(1)若CD=4,求⊙O的半径;(2)若AD+CD=30,求AC的长.六、(本题满分12分)21.(12分)3月22日是“世界水日”,环保兴趣小组的李亮同学想了解本小区1200户家庭的用水情况,他随机调查了50户家庭的月平均用水量(单位:t),并绘制了如下不完整的频数分布表和频数分布直方图.(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果户平均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计李亮所在的小区中等用水量家庭大约有多少户?(3)从月平均用水量在2≤x<3和8≤x<9这两个范围内的样本家庭中任意抽取2户,请用树状图或列表法求抽取出的2个家庭来自不同范围的概率.七、(本题满分12分)22.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x天(1≤x≤80且x为正整数)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800.八、(本题满分14分)23.(14分)(1)如图1,在等边三角形ABC中,点D为△ABC内一点,∠ADB=120°,延长BD至E使DE=AD,连接AE、CE.填空:①∠BEC=;②线段BD、CE之间的数量关系为;(2)如图2,在△ABC和△DAE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接BD、CE.求证:BD⊥CE.(3)如图3,在四边形ABCD中,∠BAD=∠DBC=∠DCB=45°,若AB=6,AD=8,求AC的长.2019年安徽省芜湖市芜湖县中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的)1.(4分)给出四个数0,﹣,,﹣1,其中最小的数是()A.﹣1B.﹣C.0D.【分析】根据有理数的大小比较法则得出即可.【解答】解:四个数0,﹣,,﹣1中,最小的数是﹣,故选:B.【点评】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.(4分)下列等式正确的是()A.a3•a4=a12B.(2a4)3=8a7C.(﹣2)0=﹣1D.a﹣3÷a4=a﹣7【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘;零指数幂:a0=1(a≠0);同底数幂的除法法则:底数不变,指数相减分别进行计算即可.【解答】解:A、a3•a4=a7,故原题计算错误;B、(2a4)3=8a12,故原题计算错误;C、(﹣2)0=1,故原题计算错误;D、a﹣3÷a4=a﹣7,故原题计算正确;故选:D.【点评】此题主要考查了同底数幂的乘除法、零指数幂、积的乘方和幂的乘方,关键是熟练掌握计算法则.3.(4分)2019年全国两会发布,2018年全国338个地级以上城市大气的PM2.5平均浓度同比下降9.3%.PM2.5颗粒物被称为大气的元凶,PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,其中2.5微米用科学记数法表示为()A.2.5×10﹣4米B.2.5×10﹣5米C.2.5×10﹣6米D.2.5×10﹣7米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.5微米÷1000000=2.5×10﹣6米;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(4分)第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.【分析】俯视图就是从物体的上面看物体,从而得到的图形.【解答】解:由立体图形可得其俯视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.5.(4分)共享单车为市民出行带来了方便,某单车公式第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y 与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x,然后根据已知条件可得出方程.【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.【点评】此题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.(4分)一组数据:1、3、3、5,若添加一个数据3,则下列各统计量中会发生变化是()A.方差B.平均数C.中位数D.众数【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:原数据的1、3、3、5的平均数为=3,中位数为=3,众数为3,方差为×[(1﹣3)2+(3﹣3)2×2+(5﹣3)2]=2;新数据1、3、3、3、5的平均数为=3,中位数为3,众数为3,方差为×[(1﹣3)2+(3﹣3)2×3+(5﹣3)2]=1.6;∴添加一个数据3,方差发生变化,故选:A.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.7.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解①得x>1;解②得x<2;不等式组的解集是1<x<2,故选:B.【点评】此题主要考查了一元一次不等式组,在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(4分)如图,已知二次函数y=ax2+bx+c的图象分别与x轴的正半轴和负半轴交于A、B 两点,且OA<OB,则一次函数y=ax+b和反比例函数y=的图象可能是()A.B.C.D.【分析】根据题目中二次函数的图象可以判断a、b、c的正负情况,从而可以得到一次函数y=ax+b和反比例函数y=的图象所在的象限,本题得以解决.【解答】解:∵二次函数y=ax2+bx+c的图象分别与x轴的正半轴和负半轴交于A、B两点,且OA<OB,∴a<0,b<0,c>0,∴一次函数y=ax+b的图象在第二、三、四象限,反比例函数y=的图象在第二、四象限,故选:D.【点评】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解答本题的关键是明确它们各自的特点,利用数形结合的思想解答.9.(4分)在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.【分析】根据题意找到临界点,E、F分别同时到达D、C,画出一般图形利用锐角三角函数表示y即可.【解答】解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.【点评】本题为动点问题可函数图象探究题,考查了二次函数图象和锐角三角函数函数的应用,解答关键是分析动点到达临界点前后图形的变化.10.(4分)如图,在△ABC中,AB=AC=4,∠BAC=120°,P为AB上一动点,Q是BC 上一动点,则AQ+PQ的最小值为()A.B.C.D.【分析】作点A关于CB的对称点A',过点A'作A'P⊥AB,则AQ+PQ的最小值为A'P的长;在Rt△AA'P中,AA'=4,∠P AA'=60°,即可求A'P;【解答】解:作点A关于CB的对称点A',过点A'作A'P⊥AB,则AQ+PQ的最小值为A'P的长;∵AB=AC=4,∠BAC=120°,∴AA'=4,∠AA'P=30°,∴A'P=2;故选:B.【点评】本题考查等腰三角形的性质,轴对称求最短路径;通过作对称点,将AQ+PQ的最小值转化为A'P的长是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣1的绝对值是﹣1.【分析】由于﹣1>0,根据绝对值的意义即可得到﹣1的绝对值.【解答】解:|﹣1|=﹣1,故答案为:﹣1.【点评】本题考查了绝对值的意义:若a>0,则|a|=a;若a=0,则|a|=0,若a<0,则|a|=﹣a.12.(5分)分解因式:x2y2﹣x2=x2(y+1)(y﹣1).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(y+1)(y﹣1).故答案为:x2(y+1)(y﹣1).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)如图,AB是半圆O的直径,点D,E在半圆上,∠DOE=100°,点C在上,连接CD,CE,则∠DCE等于130度.【分析】补全⊙O,在⊙O上AB的下方取一点M,连接DM,EM.根据圆周角定理,圆内接四边形的性质即可解决问题.【解答】解:补全⊙O,在⊙O上AB的下方取一点M,连接DM,EM.∵∠M=∠DOE=50°,∠M+∠DCE=180°,∴∠DCE=130°,故答案为130【点评】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.14.(5分)如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为2或2﹣2或2+2.【分析】设BP=x,分三种情况:①当P在线段BC上时,如图1,②当P在CB的延长线上时,如图2,③当P在BC 的延长线上时,如图3,证明:△ABP∽△PCQ,列比例式可得对应x的值.【解答】解:分三种情况:设BP=x,①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAP+∠APB=90°,∵∠APQ=90°,∴∠APB+∠CPQ=90°,∴∠BAP=∠CPQ,∴△ABP∽△PCQ,∴,∴,∴x1=x2=2,∴BP=2;②当P在CB的延长线上时,如图2,同瑆得:△ABP∽△PCQ,∴,∴,x2+4x﹣4=0,x=﹣2+2或﹣2﹣2(舍)③当P在BC的延长线上时,如图3,同瑆得:△ABP∽△PCQ,∴,∴,x2﹣4x﹣4=0,x=2+2或2﹣2(舍),综上,则线段BP的长为2或2﹣2或2+2;故答案为:2或2﹣2或2+2.【点评】本题考查正方形的性质、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,学会利用方程的思想解决问题,并注意分类讨论画出图形.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:()﹣2﹣+2cos60°﹣(2019﹣)0【分析】直接利用负指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分别化简得出答案.【解答】解:原式=4﹣2+2×﹣1=4﹣2+1﹣1=4﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.(8分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:设甲原有x文钱,乙原有y文钱,由题意可得,,解得:,答:甲原有36文钱,乙原有24文钱.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在11×16 的网格图中,△ABC三个顶点坐标分别为A(﹣4,0),B(﹣1,1),C(﹣2,3).(1)请画出△ABC沿x轴正方向平移4个单位长度所得到的△A1B1C1;(2)以原点O为位似中心,将(1)中的△A1B1C1放大为原来的3倍得到△A2B2C2,请在第一象限内画出△A2B2C2,并直接写出△A2B2C2三个顶点的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,△A2B2C2三个顶点的坐标:A2(0,0),B2(9,3),C2(6,9).【点评】此题主要考查了位似变换以及平移变换,正确得出对应点位置是解题关键.18.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60米,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1米,HF段的长为1.50米,篮板底部支架HE的长为0.75米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】(1)直接利用锐角三角函数关系得出cos∠FHE==,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:(1)由题意可得:cos∠FHE==,则∠FHE=60°;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠F AG=∠FHE=60°,sin∠F AG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端F到地面的距离是4.4米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五、(本大题共2小题,每小题10分,满分20分)19.(10分)正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:(2)原正方形能否被分割成2016个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.【分析】(1)根据图形特点找出正方形ABCD内点的个数与分割成的三角形的个数的关系,总结规律即可;(2)根据规律列出方程,解方程得到答案.【解答】解:(1)如图;(2)能.1007个点.设点数为n,则2(n+1)=2016,解得n=1007,答:原正方形能否被分割成2016个三角形,此时正方形ABCD内部有1007个点.【点评】本题考查的是图形的变化类问题,正确理解题意、根据图形的特点正确找出规律是解题的关键.20.(10分)如图,已知△ABC内接于⊙O,BC为⊙O直径,延长AC至D,过D作⊙O切线,切点为E,且∠D=90°,连接BE.DE=12,(1)若CD=4,求⊙O的半径;(2)若AD+CD=30,求AC的长.【分析】(1)连接OE,作OH⊥AD于H,构造矩形OHDE,在Rt△OCH中,利用勾股定理得到OC2=CH2+OH2=(OE﹣CD)2+DE2=(OC﹣4)2+144,借助于方程求得OC 的长度即可;(2)由已知条件和图中线段间的数量关系推知(AH+HD)+(HD﹣CH)=30,即HD =15,由矩形的性质得到:OE=HD=OC=15,故在Rt△OCH中,利用勾股定理求得CH的长度,则AC=2CH.【解答】(1)解:连接OE,作OH⊥AD于H,∵DE是⊙O的切线,∴OE⊥DE.又∵∠D=90°,∴四边形OHDE是矩形,设⊙O的半径为r,在Rt△OCH中,OC2=CH2+OH2,∴r2=(r﹣4)2+144,∴半径r=20.(2)解:∵OH⊥AD,∴AH=CH.又∵AD+CD=30,即:(AH+HD)+(HD﹣CH)=30.∴2HD=30,HD=15,即OE=HD=OC=15,∴在Rt△OCH中,CH===9.∴AC=2CH=18.【点评】考查了圆的切线的性质,矩形的判定和性质及垂径定理.解答此类题目的关键是通过作辅助线构造直角三角形,利用勾股定理求得相关线段的长度.六、(本题满分12分)21.(12分)3月22日是“世界水日”,环保兴趣小组的李亮同学想了解本小区1200户家庭的用水情况,他随机调查了50户家庭的月平均用水量(单位:t),并绘制了如下不完整的频数分布表和频数分布直方图.(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果户平均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计李亮所在的小区中等用水量家庭大约有多少户?(3)从月平均用水量在2≤x<3和8≤x<9这两个范围内的样本家庭中任意抽取2户,请用树状图或列表法求抽取出的2个家庭来自不同范围的概率.【分析】(1)根据第一组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解;(2)利用总户数540乘以对应的百分比求解;(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示,利用树状图法表示出所有可能的结果,然后利用概率公式求解.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.补全频数分布表和频数分布直方图,如图所示:故答案为:15,30%,6;(2)中等用水量家庭大约有1200×(30%+20%+12%)=744(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.七、(本题满分12分)22.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x天(1≤x≤80且x为正整数)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800.【分析】(1)由题意得:y=(200﹣2x)(x+40﹣30)或y=(200﹣2x)(90﹣30);(2)按1≤x≤40和41≤x≤80时函数表达式求最大值即可;(3)按1≤x≤40和41≤x≤80时函数表达式y≥4800即可求解.【解答】解:(1)由题意得:y=(200﹣2x)(x+40﹣30)或y=(200﹣2x)(90﹣30),(2)当1≤x≤40时,y=﹣2(x+10)(x﹣100),则函数对称轴为x=45,故x=40时,函数取得最大值为6000,当41≤x≤80时,y=12000﹣120x,函数在x=41时,取得最大值为:7080,故:第41天,利润最大,最大利润为7080元;(3)当1≤x≤40时,y=﹣2(x+10)(x﹣100)≥4800,解得:20≤x≤70,20≤x≤40,为21天,则函数对称轴为x=45,故x=40时,函数取得最大值为4000,当41≤x≤80时,y=12000﹣120x≥4800,x≤60,即:41≤x≤60,为20天,故:共有41天.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.八、(本题满分14分)23.(14分)(1)如图1,在等边三角形ABC中,点D为△ABC内一点,∠ADB=120°,延长BD至E使DE=AD,连接AE、CE.填空:①∠BEC=60°;②线段BD、CE之间的数量关系为BD=CE;(2)如图2,在△ABC和△DAE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接BD、CE.求证:BD⊥CE.(3)如图3,在四边形ABCD中,∠BAD=∠DBC=∠DCB=45°,若AB=6,AD=8,求AC的长.【分析】(1)通过证明△ABD≌△ACE,可得BD=CE,∠ADB=∠AEC=120°,可求∠BEC=∠AEC﹣∠AEB=60°;(2)由“SAS”可证△ABD≌△ACE,可得∠ABD=∠ACE,由直角三角形的性质可证BD⊥CE;(3)过点D作DF⊥AD,交AB的延长线于点F,连接CF,通过△ADB≌△FDC,可得AB=CF=6,∠DAB=∠DFC=45°,由勾股定理可求AC的长.【解答】解:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=60°∵∠ADB=120°∴∠ADE=60°,且DE=AD∴△ADE是等边三角形∴AD=AE=DE,∠DAE=∠AED=60°∴∠DAE=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE∴△ABD≌△ACE(SAS)∴BD=CE,∠ADB=∠AEC=120°∴∠BEC=∠AEC﹣∠AEB=60°故答案为:60°,BD=CE,(2)如图,延长BD交AC于点O,交EC于点F,∵∠BAC=∠DAE=90°,AB=AC,AD=AE∴△ABD≌△ACE(SAS)∴∠ABD=∠ACE∵∠ABD+∠AOB=90°,∴∠ACE+∠FOC=90°∴∠OFC=90°∴BD⊥CE,(3)如图,过点D作DF⊥AD,交AB的延长线于点F,连接CF,∵DF⊥AD,∠DAB=45°∴∠DF A=∠DAB=45°∴AD=DF=8∴AF==8∵∠DBC=∠DCB=45°,∴DB=DC,∠BDC=90°∵∠BDC=∠ADF=90°∴∠ADB=∠CDF,且AD=DF,BD=CD∴△ADB≌△FDC(SAS)∴AB=CF=6,∠DAB=∠DFC=45°∴∠AFC=∠AFD+∠DFC=90°∴AC==2【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,掌握性质定理和判定定理是解题的关键,正确作出辅助线是重点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省2019中考数学模拟试题③一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列说法正确的有()①﹣(﹣3)的相反数是﹣3②近似数1.900×105精确到百位③代数式|x+2|﹣3的最小值是0④两个六次多项式的和一定是六次多项式.A. 1个B. 2个C. 3个D. 4个【分析】根据相反数的定义,近似数以及绝对值非负数的性质,多项式的定义对各小题分析判断即可得解.解:①﹣(﹣3)的相反数是﹣3,正确;②近似数1.900×105精确到百位,正确;③代数式|x+2|﹣3的最小值是﹣3,故本小题错误;④两个六次多项式的和一定是六次多项式,错误;综上所述,说法正确的有①②共2个.【答案】B2. 如图,若∠1=∠3,则下列结论一定成立的是()A. ∠1=∠4B. ∠3=∠4C. ∠1+∠2=180°D. ∠2+∠4=180°【分析】先根据∠1=∠3,判定AD∥BC,再根据平行线的性质,得出∠1+∠2=180°.解:∵∠1=∠3,∴AD∥BC,∴∠1+∠2=180°.而AB与CD不一定平行∴∠1与∠4不一定相等,∠3与∠4不一定相等,∠2与∠4不一定互补.【答案】C3. 巴黎与北京的时差为﹣7小时(正数表示同一时刻比北京早的时数),如果北京时间是10月2日14时,那么巴黎时间是()A. 10月2日21时B. 10月2日7时C. 10月2日5时D. 10月1日7时【分析】根据巴黎与北京的时差,根据北京时间确定出巴黎时间即可.解:∵巴黎与北京的时差为﹣7小时(正数表示同一时刻比北京早的时数),北京时间是10月2日14时,∴巴黎时间是10月2日7时.【答案】B4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.解:观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,【答案】A【点评】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A. 6πB. 8πC. 12πD. 16π【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解..解:此圆锥的侧面积=?4?2π?2=8π【答案】B6. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. 或 D. 或【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.解:x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1【答案】A【点评】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.7. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.解:甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,甲==,=4,甲=乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,乙==,乙==6.4,【点评】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.【答案】D8.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.解:A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,【答案】B【点评】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.9. 如图,直线、都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD 沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD 的边位于、之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.、1<x≤2、2<x≤3三种情况结【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.解:由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合.【点评】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.【答案】A10. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与折痕所成的角a的度数应为()A. 15°或30°B. 30°或60°或60° D. 30°或45° C. 45°【分析】折痕为AC 与BD ,∠BAD=120°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=30°,易得∠BAC=60°,所以剪口与折痕所成的角a 的度数应为30°或60°.解:∵四边形ABCD 是菱形,∴∠ABD=∠ABC ,∠BAC=∠BAD ,AD ∥BC ,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a 的度数应为30°或60°.【点评】此题主要考查菱形的判定以及折叠问题,关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角【答案】D二、填空题(本大题共4小题,每小题5分,满分20分)11.根据如图所示的计算程序,若输入的x 的值为,则输出的y 的值为.【分析】先把x ==2<4,代入x 中,计算即可.解:当x ==2时,y =×2=1,【答案】1【点评】本题考查了代数式求值和算术平方根,解答本题的关键就是弄清楚图中给出的计算程序.12.计算:(ba _ab )÷aba =.【分析】根据分式的混合运算顺序和运算法则计算可得.解:原式=(aba2-ab2b)÷aba=ab b a b a ))((·ba a =bb a 【答案】bba 【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.13.如图,AB 是⊙O 的直径,CD 切O 于D ,AC ⊥D ,垂足为C ,已知,AB =4,BAC =110°,则劣弧AD 的长为.【分析】连接OD ,如图,利用切线的性质得到OD ⊥CD ,则判断AC ∥OD ,则根据平行线的性质计算出∠AOD 的度数,然后根据弧长公式计算劣弧AD的长.解:连接OD ,如图,∵CD 切O 于D ,∴OD ⊥CD ,∵AC ⊥CD ,∴AC ∥OD ,∴∠AOD+∠OAC =180°,∴∠AOD =180°﹣110°=70°,∴劣弧AD 的长=﹣π.【答案】97π【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了弧长公式.14.如图,在△ABC 中,已知:AB =AC =6,BC =8,P 是BC 边上一点(P 不与点B ,C 重合),∠DPE =∠B ,且DP 边始终经过点A ,另一边PE 交AC 于点F ,当△APF 为等腰三角形时,则PB 的长为.【分析】需要分类讨论:①当AP =PF 时,易得△ABP ≌△PCF .②当AF =PF 时,△ABC ∽△FAP ,结合相似三角形的对应边成比例求得答案.③当AF =AP 时,点P 与点B 重合.解:①当AP =PF 时,易得△ABP ≌△PCF ,则PC =AB =6,故PB =2.②当AF =PF 时,△ABC ∽△FAP ,∴==PFAP =BCAC =86,即PC =29.∴PB =27.③当AF =AP 时,点P 与点B 重合,不合题意.综上所述,PB 的长为2或27.【答案】2或27【点评】此题考查了相似三角形的判定与性质、全等三角形的判定和性质、等腰三角形的性质,熟练掌握性质定理是解题的关键.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2-1+3·tan30°-38-(2018-π)0.解:原式=12+1-2-1=-32.(8分)16. 《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【分析】设城中有x 户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.解:设城中有x 户人家,由题意得x+31x=100解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.四、(本大题共2小题,每小题8分,满分16分)17.在4×4的方格中,△ABC 的三个顶点都在格点上.(1)在图1中画出与△ABC 成轴对称且与△ABC 有公共边的格点三角形(画出一个即可);(2)在图2、图3中各作一格点D ,使得△ACD ∽△DCB ,并请连结AD 、CD 、BD .【分析】(1)利用相似三角形的性质得出答案;(2)利用相似三角形的性质得出D 点位置.解:(1)如图所示:(2)如图所示:△ACD ∽△DCB .【点评】此题主要考查了相似变换,正确得出对应点位置是解题关键.18.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB 与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);【答案】11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五、(本大题共2小题,每小题10分,满分20分)19.图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n=n(n+1)2.如果图③和图④中的圆圈都有13层.(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在图④的每个圆圈中填上一串连续的整数-23,-22,-21,-20,…,则最底层最右边这个圆圈中的数是________;(3)求图④中所有圆圈中各数之和(写出计算过程).解:(1)79(3分)(2)67(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,所以图④中所有圆圈中各数的和为(-23)+(-22)+…+(-1)+0+1+2+…+67=-(1+2+3+...+23)+(1+2+3+ (67)=-23×242+67×682=200220.如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C 作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.证明:(1)由圆周角定理的推论1得∠B=∠E.又∵∠B=∠D,∴∠E=∠D.∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形.(2)过点O作OM⊥BC于M,ON⊥CE于N.∵四边形AECD为平行四边形,∴AD=CE.又∵AD=BC,∴CE=CB,∴OM=ON.又∵OM⊥BC,ON⊥CE,∴CO平分∠BCE六、(本题满分12分)21. 某校举行“汉字听写”比赛,每位学生听写汉字39个.比赛结束后随机抽查部分学生听写结果,图1,图2是根据抽查结果绘制的统计图的一部分.组别听写正确的个人数数xA 0≤x<810B 8≤x<1615C 16≤x<2425D 24≤x<32mE 32≤x<40n根据以上信息解决下列问题:(1)本次共随机抽查了多少名学生,求出m,n的值并补全图2的条形统计图;(2)求出图1中∠α的度数;(3)该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.【分析】(1)根据“总数=部分÷所占百分数”解答即可;(2)扇形统计图中每部分所占的扇形的圆心角=所占百分数×360°,即可解答;(3)在调查的样本中“听写正确的个数少于24个”有10+15+25个,求出它们所占的百分数,再乘以3000即可解答。

相关文档
最新文档