离子阱质谱仪
离子阱质谱仪中的扫描

离子阱质谱仪中的扫描
离子阱质谱仪通常由三个电极构成,驱动电极、辅助电极和探测电极。
其中,驱动电极和辅助电极可以通过改变电场的频率和幅度来实现离子的扫描。
在离子阱质谱仪中,有两种常见的扫描模式,质谱扫描和离子电荷扫描。
1. 质谱扫描(Mass Scan),在质谱扫描模式下,离子阱的电场频率会在一定范围内变化,使得不同质荷比的离子能够被激发和检测。
这样可以获取到离子的质量谱图,从而确定样品中的化合物的质量及其相对丰度。
2. 离子电荷扫描(Ion Charge Scan),在离子电荷扫描模式下,离子阱的电场幅度会在一定范围内变化,使得不同电荷状态的离子能够被激发和检测。
这样可以确定离子的电荷状态及其相对丰度,从而推断样品中的化合物的结构和组成。
此外,还有一些特殊的扫描模式,如离子陷阱质谱仪中的离子碰撞诱导解离(CID)扫描和多级质谱(MSn)扫描等。
这些扫描模
式可以进一步提高质谱仪的分析能力,实现更加精确的离子分析和结构鉴定。
总的来说,离子阱质谱仪中的扫描是通过改变电场的频率和幅度,使得离子在离子阱内进行选择性激发、分离和检测的过程。
不同的扫描模式可以获取到不同的质谱信息,从而实现对样品的分析和鉴定。
离子阱质谱

=安捷伦 G6300 系列LC/MSD Trap现场培训教材质谱数据系统毛细管电泳液相色谱气相色谱注意包含在该文件中的信息将可能在未通知的情况下改变。
安捷伦科技有限公司不对与该材料有关的任何活动做担保。
这些活动包括但不仅限于为了某特殊目的而进行的销售和适应性。
安捷伦科技有限公司将不会对包含在材料里的与装备,表现和材料使用有关的错误或导致的损失负责。
这份文件中的任何部分都不得拷贝或复制或未经安捷伦科技公司的预先允许进行翻译。
安捷伦科技有限公司售后服务电话:800-8203278手机用户:400-8203278中文网站:/chem/cn2007年6月G6300A 系列离子阱软件概述以及开机关机操作仪器硬件概述1.1典型配置1.2仪器原理简介1.2.1离子阱的主体包含一个环电极和两个端电极,环电极和端电极都是绕Z轴旋转的双曲面,并满足r20=2Z20( r0为环形电极的最小半径,Z0为两个端电极间的最短距离)。
射频电压V rf加在环电极上,两个端电极都处于零电位。
1.2.2与四极杆分析器类似,离子在离子阱内的运动遵循马修方程,也有类似四极杆分析器的稳定图。
在稳定区内的离子,轨道振幅保持一定大小,可以长时间留在阱内,不稳定区的离子振幅很快增长,撞击到电极而消失。
离子阱的操作只有射频RF电压,没有直流DC电压,因此离子阱的操作只对应于稳定图上的X轴。
对于一定质量的离子,在一定V rf下,不同质量数的离子按照m/z由小到大在稳定图的X轴上自右向左排列。
当射频电压从小到大扫描时,排在稳定图上的离子自左向右移动,振幅逐渐加大,依次到达稳定图右边界,从离子阱中抛出,经过高能打拿极然后由电子倍增器检测。
1.3仪器硬件概述1.3.1离子源1.3.2离子源原理1.3.3仪器构造-示意图1.3.4 仪器构造-实物离子阱整体离子阱分解图1.3.5 LC-MSD Trap 的典型操作模式(以MS2为例):首先样品组分通过LC 进行分离,然后通过大气压电离源电离产生离子,离子阱在电场作用下,通过离子电荷控制(ICC )在阱中进行离子累积存储一定数量的离子,然后通过扫描隔离掉低于目标离子质量数的离子,通过在端电极上施加附加电场排除掉阱中高于目标质量数的离子,这个过程为Isolation ,接下来通过在端电极上施加特定离子的共振波形,使其与He 碰撞导致离子内能增加而使离子碎裂,此过程称之为Fragmenation 或CID ,最后在离子阱上扫描Rf 电压得到二级质谱。
离子阱类质谱仪地基本工作原理

离子阱质谱仪的分类
根据结构和工作原理,离子阱质谱仪 可分为线性离子阱和四极离子阱两类 。线性离子阱通过电场和磁场的作用 ,将离子按质荷比分离并检测;而四 极离子阱则利用四极滤器,通过调整 电场和磁场,实现离子的分离和检测 。
灵敏度
灵敏度
灵敏度是离子阱质谱仪检测离子的能 力,高灵敏度的仪器能够检测到更低 浓度的离子。提高灵敏度的方法包括 优化离子源、降低仪器噪音和采用先 进的信号放大技术。
灵敏度影响因素
影响离子阱质谱仪灵敏度的因素有很 多,如仪器设计、制造工艺、操作条 件和样品性质等。优化这些因素可以 提高灵敏度,从而更好地检测和解析 低浓度样品。
电场与磁场系统
总结词
电场与磁场系统是离子阱质谱仪的核心部分,通过控制电场和磁场来对离子进行分离和 检测。
详细描述
在离子阱质谱仪中,电场与磁场系统通常由一组电极和磁铁组成。电场的作用是使离子 加速或减速,而磁场的作用则是使离子发生偏转。通过精确控制电场和磁场的强度和方 向,离子阱质谱仪能够将不同质量和电荷状态的离子分离,并引导到检测器中进行检测
磁场作用
磁场的作用是控制离子的运动轨迹。 在离子阱中,磁场的方向与电场垂直 ,形成洛伦兹力,使离子在电场和磁 场的共同作用下做回旋运动。
离子的形成与捕获
气体分子电离
在电场的作用下,气体分子吸收 能量并发生电离,形成带正电荷 或负电荷的离子。
离子捕获
在离子阱中,电极施加的电场和 磁场共同作用,形成一个封闭的 空间,使离子在空间内做回旋运 动并被捕获。
离子的分离与检测
分离方式
离子阱质谱仪采用不同的分离方式,如时间飞行质谱仪、四极杆质谱仪等,根 据离子的质荷比、电荷态等特性进行分离。
质谱仪的构造和工作原理

质谱仪的构造和工作原理
质谱仪是一种利用质谱原理进行分析和检测的仪器。
它通常由离子源、质量分析器和检测器三部分组成。
离子源用于将样品中的分子转化为带电的离子,质量分析器用于根据离子质量、电荷比和能量将离子分离并检测,检测器则用于对检测到的离子进行计数和记录。
质谱仪的工作原理是将样品原子或分子通过电离源产生带电离子,然后经过质量分析器进行分离并检测。
其中,离子源的类型有多种,如电子轰击离子源、化学电离源和光电离源等。
不同的离子源会对样品进行不同的离子化反应,因此在选择离子源时需要考虑样品性质和分析需求。
质量分析器是质谱仪最核心的部分,它可以将离子根据其质量、电荷比和能量进行分离。
常用的质量分析器有四极杆质谱仪、飞行时间质谱仪和离子阱质谱仪等。
每种质量分析器的工作原理不同,但都是根据离子在电场中的运动规律进行离子分离和检测。
检测器是质谱仪的最后一部分,它的作用是对分离和检测到的离子进行计数和记录。
常用的检测器有电子增强器、多道计数器和荧光屏等。
在选择检测器时需要考虑样品的离子强度和信噪比等因素。
总之,质谱仪是一种非常重要的分析仪器,它可以广泛应用于化学、生物、医学、环境等领域,为科学研究和产业发展提供了有力的支持。
- 1 -。
离子阱质谱技术的原理及应用

离子阱质谱技术的原理及应用第一章离子阱质谱技术的概述离子阱质谱技术是目前广泛应用在化学分析、生化分析、药物代谢、环境分析等领域的重要分析技术。
它是一种质谱分析技术,利用离子阱对离子进行聚焦和储存,然后通过调节离子的能量和频率进行离子的选择性振动,将离子分离并进行检测。
本章将对离子阱质谱技术的基本原理和发展历程进行概述。
第二章离子阱质谱技术的原理离子阱是由一个稳定的电场和一个变化的电场构成的三维电场。
利用该设计可以将离子捕获在稳定的电场区域内,然后在变化的电场中进行离子的振荡。
离子阱可以分为两种不同的类型,其中线性离子阱使用零和波形扫描技术,旋转盘离子阱则使用直流偏置电压和射频电压扫描技术。
离子阱技术的发展主要是从单圈到多圈运动模式的发展,这样可以更好的控制离子的en,满足更高的分析需求。
第三章离子阱质谱技术的应用离子阱质谱技术的应用领域非常广泛,主要用于分子识别和定量分析。
化学分析中,离子阱技术可以用于制定无标准化合物的就地分析方法。
在生物分析方面,离子阱质谱技术可以用于制定肽段质谱与蛋白质的定量分析。
此外,离子阱质谱还可以应用于环境分析领域,例如痕量金属分析、化学毒素分析、多种有机化合物检测及大气污染物的检测等领域。
第四章离子阱质谱技术的优势离子阱质谱技术有许多优势。
首先,离子阱质谱技术灵敏度高,检测界限低,可以使用非常少的样品来获得精确的结果。
其次,离子阱质谱技术可以分析多种化学物质,包括小分子、大分子、多肽和RNA等物质。
此外,在无标准样品分析方面,离子阱质谱技术还有很好的应用前景。
第五章离子阱质谱技术的发展离子阱质谱技术在过去几十年中不断向前发展。
离子阱质谱技术的目标是开发更为灵敏、便携、多功能的仪器。
现在,离子阱质谱技术的研究方向主要是在以下方面开展:高分辨率性能、更长的离子存储时间、更广泛的应用、离子捕捉和质谱分析在大气中的应用等领域。
第六章现有离子阱质谱技术的局限和未来挑战离子阱质谱技术还有一些局限性,包括电子倍增器的限制、质谱分析速度的限制、分析循环时间的限制等方面。
离子阱类质谱仪的基本工作原理

离子阱类质谱仪的基本工作原理离子阱类质谱仪(ion trap mass spectrometer)是一种广泛应用于科学研究和工业应用中的质谱仪。
它通过将带电粒子困在一个电场中,通过控制电场参数,可以使得不同质量的离子在电场中稳定悬浮或循环运动。
该质谱仪具有以下特点:高分辨率、高灵敏度、相对简单的电子支持底座、易于控制、可进行多次扫描等。
1.离子产生:样品经过电离过程,可以通过电子轰击、光子电离、化学电离等方式将分子中的一个或多个电子剥离,形成带电离子。
常用的离子阱类质谱仪有电子轰击离子源、化学电离源、光解电离源等。
2.离子注入:离子生成后,通过引入与分析区连接的离子注入孔口将离子注入分析区(离子阱)内。
注入方法通常有直接注入和时间聚焦注入两种方式。
直接注入通过电场作用将离子注入到分析区,时间聚焦注入则利用离子的动能和速度分布差异,通过调整时序来选择只有特定方向和速率的离子被注入。
3. 离子控制:离子进入离子阱后,通过调整电场控制参数,使得离子在分析区内作稳定运动,常见的离子阱类型有线性离子阱(linear ion trap)和三维离子阱(3D ion trap)。
线性离子阱是由两个平行的极板和一个夹持离子的圆柱形电极构成,通过调整极板电压和夹持电势,使得离子在轴向上做一维运动,产生稳定的轨道;三维离子阱则引入了额外的射频电场,使得离子在径向上也进行稳定的悬浮旋转运动。
4.离子激发:离子在离子阱内运动时,可以通过外加电场、光子激发或碰撞等方式,对其进行激发,使得离子达到能级跃迁。
激发过程可以产生对应于激发态的离子信号,从而间接地确认样品中其中一种化合物的存在。
5.质谱检测:离子阱类质谱仪的检测采用非破坏性检测方式,通过监测离子在离子阱内运动的轨迹和特性来获得离子的质荷比和数量信息。
常见的检测方法有周转时间法、振荡电子法等。
利用这些技术,可实现离子的质量分离、质荷比测量、质谱图谱等信息的获取。
总的来说,离子阱类质谱仪通过控制离子的运动轨迹和电场参数,使得离子在离子阱内稳定悬浮或循环运动,从而实现离子的分离、激发和检测。
质谱仪是怎么分类的 质谱仪工作原理

质谱仪是怎么分类的质谱仪工作原理质谱仪的分类方法很多,下面列举一些不同方法的分类:1、常用的是依照质量分析器的工作原理可分为:磁偏转(单/双)聚焦质谱、四极杆质谱、离子阱质谱(包括线性离子阱和轨道离子阱)、飞行时间质谱和傅里叶变换离子回旋共振质谱等五大类;除此之外,还有下面很多种分类方法:2、按质量分析器的工作模式可分为:静态质谱仪(磁偏转(单/双)聚焦质谱)和动态质谱仪(四极杆质谱、离子阱质谱、飞行时间质谱和傅里叶变换离子回旋共振质谱)两大类;3、按分析物质的化学成份性质可分为:无机质谱仪(元素分析)和有机质谱仪(有机分子分析及生物大分子分析);也有人把生物质谱单独分出来;4、按离子源的电离方式可分为:电子轰击电离质谱仪、化学电离质谱仪、场/解析电离质谱仪、快原子轰击电离质谱仪、辉光/电弧/激光电离质谱仪、基质辅佑襄助激光解吸电离质谱仪、电喷雾电离质谱仪等。
5、按分析的应用领域可分为:试验室分析质谱仪、专用质谱仪、工业质谱仪、医疗质谱等;6、按辨别率高处与低处可分为:低辨别质谱仪、中辨别质谱仪和高辨别质谱仪。
7、按与其它分析仪器联用方式可分为:气相色谱—质谱联用仪(气质联用仪)、液相色谱—质谱联用仪(液质联用仪)、光谱—质谱联用仪、毛细管电泳质谱联用仪等;8、按多个质量分析器组合模式可分为:单级质谱仪和多级(串级)质谱仪;串级质谱仪又分时间串级(离子阱)质谱和空间串级质谱(三重四极杆质谱和四极杆—飞行时间质谱仪);9、按仪器外观可分为:台式质谱仪和落地式质谱仪;小型质谱仪和大型质谱仪。
质谱仪中的离子源怎么清洗?1、降低接口温度、离子源温度、四极杆温度(以四极杆质谱仪为例),关闭质谱仪电源。
2、打开卸压阀,缓慢卸压到常压。
3、打开离子源舱门(此步骤开始可以佩带口罩以及不掉毛手套)。
4、使用专用工具依照拆卸步骤将离子源整体取出放置在的清洗台面。
5、使用专用工具将离子源各部件一一拆开,分类整齐放置在清洗台面,不需要抛光打磨的部件(如加热快、绝缘体等)分开放置。
线性离子阱轨道阱组合式质谱(LTQ-Orbitrap MS)

百泰派克生物科技
线性离子阱轨道阱组合式质谱(LTQ-Orbitrap
MS)
混合线性离子阱轨道阱质谱仪是基于傅立叶变换的混合仪器之一,第一台质量分析仪是线性离子阱(LIT),第二台是高分辨率轨道阱(Orbitrap)。
因为LIT本身是检测器,LIT-orbitrap组合可用于MS和MSn实验。
为了利用到Orbitrap分析仪的最高分辨率,必须考虑LIT和FT分析仪的数据采集时间。
离子的捕获能力和LIT的高数据采集速度允许采集选定前体离子的MS/MS光谱,同时将部分前体转移到Orbitrap中以进行精确的质量测量。
可以在第二个碰撞池中使用不同的碰撞方法在不同的碰撞能量下进行其他裂解。
来自任何一个碰撞池的产品都通过C阱注入到Orbitrap中,然后在Orbitrap中收集瞬态信号用于随后的FT分析。
线性离子阱轨道阱组合式质谱。
这种混合质谱的显着优势使其在以下研究领域中广受欢迎:
蛋白质组学:自上而下分析,蛋白质ID,翻译后修饰(PTM)分析和定量蛋白质组学
代谢组学:非靶向代谢组学,未知化合物从头结构解析
百泰派克生物科技利用Orbitrap Elite混合离子阱轨道阱质谱仪为您提供专业的分析服务。
我们也可以根据您的具体需求,定制相关的分析服务。
欢迎咨询!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加速区
质量分析器 计算机数据 处理系统
检测器
质谱仪种类非常多,工作原理和应用范围也有很大的不同。
按质谱仪所用的质量分析器的不同,可分为单聚焦质谱仪、 双聚焦质谱仪,四极杆质谱仪,飞行时间质谱仪,离子阱质 谱仪,傅立叶变换质谱仪等。
从应用角度,有机质谱仪可以分为下面几类: ① 气相色谱-质谱联用仪(GC-MS)。根据质谱仪工作原理不同,可分 为气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱 质谱仪等。
很弱或不出现。
(3)分子式的推导
低分辨质谱数据(同位素相对丰度)
高分辨质谱数据(分子量的尾数)
•如何判断分子式的合理性
该式的式量等于分子量;
符合氮律;
不饱和度要合理。
利用低分辨质谱数据,推导分子式:
同位素相对丰度计算法、查 Beynon 表法
同位素相对丰度的计算法:
■对于C, H, N, O组成的化合物, 其通式:CxHyNzOw
1 2 mv zV 2
H 2 R2 m/ z 质谱的基本方程 2V
其行进轨道的曲率半径决定于各离子的质量和 所带电荷的比值m/z。
双聚焦质谱计:静电分析器 + 磁分析器
静电分析器由两个同心圆板组成,两圆板之间保持一 定的电位差(E)。
加速后的离子通过 静电场和磁场后, 达到能量聚焦、方
向聚焦和质量色散
足以到达检测器。寿命在106s到 105s的)分子离子峰的识别 • 在质谱图中,分子离子峰应是最高质荷比的离子峰。
(同位素离子及准分子离子峰除外)。
• 分子离子峰是奇电子离子峰。
• 分子离子能合理地丢失碎片(自由基或中性分子)。
• 符合氮律:
当化合物不含氮或含偶数个氮时,分子量为偶数;
MALDI适用于生物大 分子,如肽类,核酸类化合
脉冲式激光
物。可得到分子离子峰,无
明显碎片峰。此电离方式特 别适合于飞行时间质谱计。
5、质谱图的组成
质谱图由横坐标、纵坐标和棒线组成。
横坐标标明离子质荷比(m/z)的数值,纵坐标标明各峰
的相对强度,棒线代表质荷比的离子。图谱中最强的一
个峰称为基峰,将它的强度定为100。
(a+b)1, M : M+2≈1 : 1 (a+b)2, M : M+2 : M+4≈1 : 2 :1
◎分子中含1Cl 和1Br
(a1+b1) (a2+b2), M : M+2 : M+4≈3 : 4 : 1 (3a+b)(a+b)=3a2+4ab+b2
查Beynon表法
CHNO m/z M+1 M+2 理论计算值,会出现不符合N律和不符合UN的一般规律。 例如:已知某化合物的质谱图中,M为166;M+1为10.15,
RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S
若某一元素有两种同位素,在某化合物中含有 m 个 该元素的原子,则分子离子同位素峰簇的各峰的相对 丰度可用二项式 (a+b)m 展开式的系数推算
若化合物含有 i 种元素,它们都有非单一的同位素 组成,总的同位素峰簇各峰间的强度可用下式表示: (a1+b1)m1 (a2+b2)m2 … (ai+bi)mi
场解吸 (field desorption, FD )
• 样品不需汽化, 将样品吸附在作为场离子发射体的金 属丝上, 送入离子源, 然后通以微弱电流, 使样品分子 从发射体上解吸下来, 并扩散至高场强的场发射区, 进 行离子化. • 适用于难汽化、热不稳定的样品. 如: 糖类. • FI、FD分子离子峰较强,碎片离子峰较少。
■
含重同位素(如 Cl, Br)的样品
35Cl
: 37Cl = 100 : 32.5 ≈3 : 1;
79Br
: 81Br = 100 : 98≈1 : 1
◎分子中含1 Cl,
(a+b)1, M : M+2≈3 : 1
◎分子中含2 Cl,
◎分子中含1 Br, ◎分子中含2 Br,
(a+b)2, M : M+2 : M+4≈9 : 6 :1
RH+ + M → R + MH+ (R-H)+ + M → R +( M-H)+
准分子离子相对强度较大,碎片离子峰数目较少。
(3) 场致离(FI)和场解吸 ( FD )
场致离(field ionization, FI) •气态样品分子在在强电场(107-108V/cm)的作用下发 生电离。 •要求样品分子处于气态, 灵敏度不高, 应用逐渐减少.
例:设 m/z 154为分子离子峰, 154-139=15, 合理
m/z 154 155 156 157 RI 100 9.8 5.1 0.5
的目的,使仪器的 分辨率大大提高。
静电分析器加在磁分析器之前。加速后的离子在
静电分析器中, 受到外斥内吸的电场力(zE)的作用,
迫使离子作弧形运动。
mv zE R 1 2 结合 mv zV, 导出 R 2V 2 E
静电分析器只允许具有特定能量的离子通过,达
到能量聚焦,提高仪器分辨率。
2
1 2 mv zV 2
m: 离子质量;v: 离子速度;z: 离子电荷;V: 加速电压
被加速的离子进入磁分析器时,磁场再对离子进行作 用,让每一个离子按一定的弯曲轨道继续前进。
离子动能产生的离心力(mv2/R)与由磁场产生的向心力 (Hzv)相等: RHz mv 2 R: 曲率半径 v Hzv m R H: 磁场强度
C8H14N4
10.40 0.49
C9H2N4
11.28 0.58
由上述数据可以看出, C9H10O3 最符合上述条件。
高分辨质谱法
精确质量,与分辨率有关 ※ 试误法 精确质量的尾数=0.007825y + 0.003074z -0.005085w
※ 查表法
H
N
O
Beynon and Lederbey 制作了高分辨质谱法数据表, 可查出对应于某精确质量的分子式。 ※ 计算机处理
质谱
一、质谱的基本知识
1、定义 化合物分子在真空条件下受电子流的“轰击”或
强电场等其他方法的作用,电离成离子,同时发生某
些化学键有规律的断裂,生成具有不同质量的带正电
荷的离子,这些离子按质荷比(m/z)的大小被收集并
记录的图谱。 质谱可以给出化合物的分子量和分子式。
2、质谱计框图
进样系统 真空系统 离子源
7、质谱中的各种离子
(1) 分子离子 :
分子被电子束轰击失去一个电子形成的离子。
分子离子用 M+• 表示,是一个游离基离子。
在质谱图上,与分子离子相对应的峰为分子离子峰。 分子离子峰的应用: 分子离子峰的质荷比就是化合物的相对分子质量,
所以,用质谱法可测分子量。
(2)同位素离子 含有同位素的离子称为同位素离子。 与同位素离子相对应的峰称为同位素离子峰。
(4)快原子轰击(fast atom bombardment, FAB) • 用高能量的快速Ar原子束轰击样品分子(用液体基质 负载样品并涂敷在靶上,常用基质有甘油、间硝基苄
醇、二乙醇胺等),使之离子化。
• FAB灵敏度高,适用于对热不稳定、极性强的分子, 如肽、蛋白质、金属有机物等。 • 样品分子常以质子化的[M+H]+离子出现 • 基质分子会产生干扰峰。
(5)电喷雾电离(ESI) 样品溶液在电场的作用下形成带高度电荷的雾状小 液滴,在向质量分析器移动的过程中,液滴因溶剂 不断挥发而缩小,导致表面电荷密度不断增大,当 电荷之间的排斥力足以克服液滴的表面张力时,液 滴发生裂分,如此反复进行,最后得到带单电荷或 多电荷的离子。
主要应用于液相色谱-质谱联用仪。
当化合物含奇数个氮时,该化合物分子量为奇数。
(2)分子离子峰的相对强度(RI)
• 芳环(包括芳杂环)> 脂环化合物 >硫醚、硫酮 > 共轭烯
分子离子峰比较明显。
• 直链醛、酮、酸、酯、酰胺、卤化物等通常显示
分子离子峰。
• 脂肪族醇、胺、亚硝酸酯、硝酸酯、硝基化合物 、
腈类及多支链化合物容易裂解,分子离子峰通常
RI(M+1) / RI(M) ×100 = 1.1x + 0.37z ( 2H 0.016,
17O
0.04忽略 )
RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
■
含硫的样品
32S
: 33S : 34S = 100 : 0.8 :4.4
RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S
M+2为1.1。按Beynon表可以查到分子量为166的一些分子式为:
M+1 M+2 C8H8NO3 9.27 0.98 C9H10O3 M+1 M+2 10.00 1.05 0.89 0.72
C8H10N2O2 9.65 0.82 C8H12N3O 10.02 0.65
C9H12NO2 10.38 C9H14N2O 10.75
丁 酮 的 质 谱 图
6、质谱术语
基峰:
• 离子强度最大的峰,规定其相对强度(RI)或相对丰 度(RA)为100。
精确质量: • 精确质量的计算基于天然丰度最大的同位素的精确原 子量。
如:
1H 1.007825 14N 14.003074