城市轨道车辆车体材料选择

合集下载

城市轨道交通车辆的车体结构组成讲解

城市轨道交通车辆的车体结构组成讲解

城市轨道交通车辆的车体结构组成讲解城市轨道交通是一种现代化的公共交通方式,其车辆的车体结构组成非常重要。

车体结构不仅影响车辆的外观和舒适性,还决定了车辆的安全性和运行效能。

本文将从车体整体结构、车体材料、车体重量和车体附属设备四个方面,对城市轨道交通车辆的车体结构进行详细讲解。

一、车体整体结构城市轨道交通车辆的车体主要由车体壳体、车体底盘和车体屋盖三部分组成。

车体壳体是车体的主体结构,承担着车辆的荷载和保护乘客的功能。

车体底盘是承载轮对和悬挂系统的基础部件,其结构应具备足够的强度和刚度,以保证车辆在运行过程中的稳定性和可靠性。

车体屋盖则是覆盖在车体顶部,旨在提供乘客休息和储物的空间。

二、车体材料城市轨道交通车辆的车体材料决定了车体的强度、重量和耐久性。

目前常用的车体材料包括钢材、铝合金和复合材料。

钢材具有较高的强度和刚度,适用于承受较大荷载的部件,如车体壳体和底盘。

铝合金具有较好的耐腐蚀性和成形性,适用于车体屋盖等外壳部件。

复合材料具有较高的强度和轻量化的特点,适用于提高车辆整体的耐久性和乘坐舒适度。

三、车体重量城市轨道交通车辆的车体重量直接影响着车辆的能耗和运行成本。

因此,车体重量的控制十分重要。

一方面,车体结构需要具备足够的强度和刚度,以保证车辆的运行安全;另一方面,车体结构需要尽可能地轻量化,以降低能耗和提高运行效能。

因此,车体结构的设计需要在强度和重量之间找到一个平衡点,通过优化设计和材料选择,使车辆在满足强度要求的同时,尽可能地减轻车体重量。

四、车体附属设备城市轨道交通车辆的车体还包括一些附属设备,如车门、窗户、灯光和通风系统等。

这些设备主要用于提供乘客进出车辆的通道,保证车内的采光和通风,以及提供车辆行驶时的灯光照明。

车辆的附属设备需要与车体的结构相适应,确保设备的稳固性和可靠性。

同时,附属设备的设计还需要满足乘客的舒适性和安全性要求。

城市轨道交通车辆的车体结构组成是一个综合性的工程问题,需要考虑多个因素的综合影响。

城市轨道交通车辆轻量化车体结构材料的研究与应用

城市轨道交通车辆轻量化车体结构材料的研究与应用

城市轨道交通车辆轻量化车体结构材料的研究与应用摘要:重量作为衡量整车的一个参数,合理的控制重量是改善车辆运行工况的重要因素。

其中车辆轻量化方面,在符合合理的成本条件下,降低车辆自重,减少运动阻力,就是起到对整车车辆使用时经济的效益最大化,从而响应了国家环保节能的重要举措。

新型轻量化车体结构材料的选用是实现城市轨道交通车辆轻量化的重要途径。

关键词:轨道交通车辆;轻量化;车体;结构材料;应用1城市轨道交通车辆轻量化车体结构材料概述车辆实现轻量化,首先在确保车辆结构的刚度和强度,选用合理的材料越发重要。

目前在车内的复合材料应用比例越来越多,像P3板、AIR-PLU板、酚醛树脂发泡板、轻芯钢等材料逐步发展起来。

轻芯钢是一种新型复合材料,密度约为玻璃钢的五分之一,具有轻质度高、隔音降噪、保温阻燃、耐腐功能,可应用在城轨道车辆上的风道、地板、顶板、侧墙上,从而实现地铁车辆局部的减重。

在车辆顶部空调、车辆下部材料选用方面,从传统的碳钢、不锈钢材料,到目前可应用轻质铝合金、铝基复合材料。

其中铝基合金材料重量轻,摩擦系数稳定、散热性好,在车辆顶部和车下适当位置的应用可降低约60%的重量。

近年来镁合金材料在轨道车辆上也有应用案例。

镁合金具有质量轻、强度、振动衰减特性优良的特点,但同时对加工工艺、耐火、耐腐蚀提出较高要求。

它的比重约铝合金的68%,其成本与铝合金差异不是很多,应用推广具有较大前景。

2城市轨道交通车辆轻量化车体结构材料的应用在对车辆构造进行设计上使用轻量化材料,并对车辆零件尺寸进行优化,借助整体塑形等生产工艺,能够有效减轻车辆的整体重量,促使实现节能高效,降低排放污染的目标。

而当前城市轨道交通车辆轻量化技术主要研究方向就是轻金属材料,车辆制造中所使用的材料多达4000多种,其中约80%为金属材料,55%为钢铁材料,而15%为铝镁等轻合金以及铸铁,20%为塑料以及碳纤维等非金属材料。

近年来,城市轨道交通车辆制造中逐渐引入轻量化材料,钢铁所占比例有所降低,逐步开始使用铝合金等轻金属合金。

城市轨道车辆车体分析和结构说明

城市轨道车辆车体分析和结构说明

城市轨道车辆车体分析和结构说明首先,城市轨道车辆的车体通常由铝合金或不锈钢材料构成,这些材料具有较轻的重量和高的强度,能够提供良好的结构支撑和碰撞吸能性能。

车体结构以箱型结构为主,具有强度高、刚性好的特点,能够抵抗外部冲击和扭曲变形。

此外,车体采用分割式结构设计,方便维修和更新车辆的各个组件,降低了维护成本。

其次,城市轨道车辆的车体结构包括车头、车体和车尾三个部分。

车头通常配备了自动驾驶系统和防撞装置,以保证列车在行驶过程中能够准确无误地运行,同时提供紧急制动功能,确保乘客的安全。

车体部分由若干车厢组成,车厢之间通过连接节进行连接。

车厢内部设有座椅、扶手、垂直支撑杆等设施,以提供乘客的座位和站立空间,并通过各种装饰和灯光设计,提供舒适和宜人的乘坐环境。

车尾部分通常安装有备用能源设备和故障排除系统,以应对紧急情况和故障发生时的处理。

另外,为了提高乘客的安全性和舒适性,城市轨道车辆还采用了一系列的防振、减噪和减震设计。

例如,车轮和轨道之间安装了减震橡胶垫,用于减少车辆和轨道之间的冲击和振动。

车厢底部和车体的结构也采用了一些减震和吸震材料,以降低乘客的震动感和噪音。

车厢内的扶手和座位也采用了防滑和减振材料,提供更好的乘车体验。

此外,城市轨道车辆还配备了先进的空调和通风系统,以保持车厢内的舒适温度和空气流通。

车体上还安装了紧急开门装置和灭火设备,确保乘客在紧急情况下的安全疏散和火灾防控。

总之,城市轨道车辆的车体设计和结构旨在提供乘客的安全、舒适和便利性。

通过采用适当的材料和结构设计,车体具有较轻的重量和高的强度,能够抵抗冲击和变形。

同时,车体还配备了各种防振、减噪和减震设计,以提供更加舒适的乘车环境。

通过不断改进和创新,城市轨道车辆的车体设计和结构将进一步满足乘客的需求,并为城市交通提供更加高效和智能的解决方案。

城市轨道交通车辆车体及内饰

城市轨道交通车辆车体及内饰

城市轨道交通简称为城轨。

城轨车辆车体按材料不同,可分为耐候钢车体、不锈钢车体、铝合金车体三种。

城轨车辆的车体采用由车底架、侧墙、车顶、端墙(驾驶室)四大部分组成的封闭筒形薄壳整体承载结构。

1,底架列车底架就是由各种纵向钢梁和横向钢梁组成的长方形构架。

它承托着车体,是车体的基础。

车底架上部车体及承载物的全部重量,并通过上、下心盘将重量传给行走部。

在列车运行时,它还承受机车牵引力及列车运行中所引起的各种冲击力及其它外力。

2,侧墙钢制车体的侧墙由边梁、立柱、窗立柱和墙板等零部件组成。

在车门周围设有门边立柱和横梁进行补强。

铝合金车体的侧墙,左右各有五个车门和四个车窗,而侧墙的上部又与车顶部件组合在一起。

3、车顶。

钢制车体的车顶,由边梁、弯梁、纵向梁、顶板和车顶端部组成。

不锈钢车体的车顶有波纹顶板、车顶弯梁、侧顶板、空调机组平台等几部分组成。

铝合金车体的车顶,两侧小圆弧部分采用形状复杂的中空截面挤压铝型材,中部大圆弧部分为带有纵向加强杆件的挤压成形的车顶板,其长度与车顶等长,车顶组装时仅仅留下几条与车顶等长的纵向长焊缝。

4、端墙。

地铁车辆两端的驾驶室端墙设有端门,在端门两边设有立柱进行补强外,其他结构基本与侧墙结构类似。

其余端墙基本农贯通道,端板安装在两侧墙板和车顶之间,用于连接贯通道。

城轨车辆内饰。

客室车箱结构。

客室车箱一般由客室座椅、扶手、屏风、车窗、车门和其他设备构成的。

1.客室座椅。

现在城轨车辆的客室座椅都采用新型的防火材料,大多由钢骨架支撑的玻璃制品,采用符合人体工程学习的造型,座椅颜色以蓝色为主。

每个座椅宽为430mm,按2个座位或6个座位为一组,固定在车体侧墙上,没有与地板连接。

列车的供暖设备装在座椅下,保证暖空气覆盖车箱底部,避免头顶热风造成乘客燥热、头晕。

2.扶手和屏风。

水平、垂直扶手和侧边屏风由抛光的不锈钢材料制成。

以某地铁车辆为例,每节A车的扶手有:14个连续的从顶板到地板的垂直扶手,13个水平扶手与垂直扶手连接,10个屏风在每节车的右侧,9个对称的屏风在车的左边(由于ATC室的存在)1个水平拉手,22个把手。

城市轨道车辆-车体

城市轨道车辆-车体

❝城市轨道交通车辆-车体❝王莲芝❝城市轨道交通车辆的特殊要求❝站距短,线路曲线半径小,坡度大;客流量大而集中,乘客上下车频繁,高峰时会超载;❝车辆一般有较高的起动加速度和制动减速度;❝车辆遵循减少能耗、减少发热原则,尽量减轻自重,选择效率高的传动系统;❝运转密度较高,为确保安全行车,通信信号比较复杂,车载通信信号设备及车辆的控制系统,应有良好的适应能力。

❝车辆编号❝为了识别车辆,在车辆的侧面标有车辆编号,车辆编号包含了线路、车辆类型等信息,例如,三号线第24列车的A车编号为:03A024,其含义为: ❝03 A 024❝第一节概述❝一、车体的作用与分类❝车体是容纳乘客和司机驾驶(对于有司机室的车辆)的部分,又是安装和连接其他设备及组件的基础。

❝按照车体所使用的材料可分为碳素钢车体、铝合金车体和不锈钢车体三种,早期的城轨车辆车体材料基本上是碳素钢(包括普通低碳钢和耐候钢),目前主要使用铝合金和不锈钢。

❝按照车体结构有无司机室可分为带司机室车体和无司机室车体两种。

❝按照车体尺寸可分为A型车车体、B型车车体和C型车车体,如广州地铁一、二号线和深圳地铁车辆采用了A型车;广州地铁三、四号线和天津滨海轻轨采用了B型车。

❝按照车体结构工艺不同可分为一体化结构和模块化结构。

如:广州地铁一号线车辆采用的是一体化结构,而二号线采用的则是模块化结构。

❝城市轨道车辆车体特点❝有拖车、动车之分;❝座位少、车门开度大、服务设备简单;❝重量限制严格,要求轻量化;❝防火及隔噪要求高;❝车体结构特点❝车体结构设计上是整体承载的轻量化结构,采用大断面铝合金挤压中空型材、模块化设计制造而成,使整车重量轻,能耗低,充分发挥了车体各个构件中的强度,并大大提高了车体整体刚度。

❝车体的材料❝要求:具有一定的强度和刚度;耐腐蚀性,采用轻量化设计❝材料:碳素钢车体;不锈钢车体;铝合金车体❝南京地铁一号线概况南京地铁一号线主线南起奥体中心,北至迈皋桥,形成南京主城区中轴线的快速交通走廊。

城市轨道交通车辆构造车体

城市轨道交通车辆构造车体
4)为减轻列车自重,车辆必须轻量化,对于 车体承载结构一般采用大型中空截面挤压铝 型材、高强度复合材料或不锈钢等,采用整 体承载筒形车体结构,车辆的其他辅助设施 也尽量采用轻型材料和轻量化结构。 5)城市轨道交通车辆一般运营于城市人口稠 密地区,并用于乘载旅客,所以对车辆的防 火要求严格,特别是地铁车辆。 6)对车辆的隔音和降噪有严格要求,以最大 限度降低噪声对乘客和沿线居民的影响。
第3页/共7页
(3)整体承载结构 在板梁式侧、端墙上固接由金属板、金属梁组焊接而成 的车顶,使车体的底架、侧墙、端墙、车顶连接成一个整体,成为开口或 闭口箱形结构,此时车体各部分结构均参与承受载荷,因而称这种结构为 整体承载结构。
钢制车体整体承载结构
第4页/共7页
车体的一般结构形式:
1—缓冲梁(端梁) 2—枕梁 3—小横梁 4—大横梁 5—中 梁 6—倒梁 7—门柱 8—侧立柱 9—上侧梁 10—角柱 11—车顶弯梁 12—顶端弯梁 16页/共7页
谢谢您的观看!
第7页/共7页
第2页/共7页
7)城市轨道交通车辆主要用于城市内交通,所以车辆外观造型和色彩必须 考虑城市文化、环境美化,与城市景观相协调。 2.车体的结构形式 (1)底架承载结构 全部载荷由底架来承担的车体结构,称底架承载结构, 也称自由承载结构。 (2)侧墙和底架共同承载结构 由侧、端墙与底架共同承担载荷的车体结构, 称侧墙和底架共同承载结构,也称侧墙承载结构。

地铁车辆通用技术条件 修编说明

地铁车辆通用技术条件 修编说明

地铁车辆通用技术条件修编说明地铁车辆是城市轨道交通系统的重要组成部分,对城市的交通运行起着至关重要的作用。

地铁车辆的通用技术条件是指地铁车辆设计、制造和运营中需要满足的一系列技术要求和标准。

本文将对地铁车辆通用技术条件进行修编说明。

一、设计要求1.转向半径:地铁车辆应具备足够小的转向半径,以适应城市复杂的道路布局和线路设计要求。

2.车体结构:地铁车辆应采用轻量化、高强度的车体结构材料,以提高安全性和减少能耗。

3.客流容量:地铁车辆应具备足够大的客流容量,以满足城市人口增长和交通需求的增加。

4.紧急撤离能力:地铁车辆应具备紧急撤离能力,以应对突发事件和人员疏散的需要。

5.环境适应性:地铁车辆应具备良好的环境适应性,能够在不同气候和环境条件下正常运行。

二、制造要求1.制造工艺:地铁车辆制造过程应采用现代化、自动化的生产工艺,以提高生产效率和质量水平。

2.装备要求:地铁车辆制造需要配备适用的生产设备和检测设备,以确保产品质量和安全性。

3.质量控制:地铁车辆制造过程需要严格落实质量控制体系,确保每一辆车辆都符合要求。

4.材料选择:地铁车辆制造需要选用符合国家标准和行业标准的材料,确保车辆的性能和安全性。

5.结构设计:地铁车辆的结构设计应满足相关标准和要求,确保车辆的坚固性和稳定性。

三、运营要求1.安全性能:地铁车辆应具备良好的安全性能,包括车辆牵引性能、制动性能、防滑性能等。

2.运行稳定性:地铁车辆应具备良好的运行稳定性,能够保证平稳、舒适的运行。

3.能耗指标:地铁车辆应具备较低的能耗指标,以降低对能源的消耗并减少运营成本。

4.列车控制系统:地铁车辆应配备先进的列车控制系统,以确保运行安全和高效率的运营。

5.维护和检修:地铁车辆的维护和检修应按照相关标准和规定进行,确保车辆的长期可靠运行。

四、更新改造要求1.技术更新:地铁车辆在使用一定年限后,应进行技术更新和改造,以满足新的运营要求和技术发展需要。

2.安全改进:地铁车辆的安全改进应持续进行,及时解决存在的安全隐患和问题,确保乘客安全。

《城市轨道交通概论》项目四-城市轨道交通车辆

《城市轨道交通概论》项目四-城市轨道交通车辆

再生制动
电制动 制 动
电阻制动
方 式
机械制动
空气制动
弹簧压力制动
常用制动 快速制动 紧急制动 保压制动 停车制动
知识概要
一、城市轨道交通车辆的主要组成部分及总体结构 5.空调通风系统 通风方式一般有几种类型 通风方式:自然通风、强迫通风、空气调节。
空调通风系统: 主要由压缩机、蒸发器、冷 凝器、冷凝风机等组成。
二、辅助供电系统
辅助供 电系统 组成
辅助逆变器 充电器 蓄电池
知识概要
二、辅助供电系统 1.辅助逆变器
辅助逆变器 功用
辅助逆变器 工作原理
辅助逆变器 模块化组成
知识概要
二、辅助供电系统 1.辅助逆变器
辅助逆变器 功用
知识概要
输出三相交流电供辅助电机工作; 经整流输出直流电供列车蓄电池及应急电 池充电使用; 对交流供电的照明系统:向照明系统供电
学习导入
地铁车辆的技术发展 2.国内
学习导入
1962 开始研制
196 7
试制成功第一 列地铁车辆
1969
批量生产的DK2型地铁 车辆于1969年10月1日 开始运行在北京地铁
标志着我国现代城市 轨道交通的开始。
地铁车辆的技术发展 2.国内——CFC-01型磁浮列车实地运行测试
学习导入
一、城市轨道交通车辆的特点
接触网方式 供电的线路
知识概要
一、车辆电气牵引系统 1. 受流器
知识概要
集电靴示意图
受电弓箭示意图
知识概要
一、车辆电气牵引系统 1. 受流器
思考 列车辅助的受流设备是 车间电源 ?
应用 检修库内整车调试、设备有电检查
车间 电源
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业知识分享版使命:加速中国职业化进程摘 要〗城市轨道交通车辆的车体选材,是关系到运营的“安全、可靠、快速、轻量、经济 、适用”的重大因素之一。

对耐候钢、不锈钢、铝合金车体的材料和结构特点进行分析、比较。

探讨了针对城市轨道交通特点和对车辆的要求,合理选择车体材料问题。

对不同材料车体的发展动向作了介绍。

〖关键词〗城市轨道车辆,车体,材料选择车体是车辆结构的主体。

车体的强度、刚度,关系到运行安全可靠性和舒适性;车体的防腐耐腐能力、表面保护和装饰方法,关系到车辆外观、寿命和检修制度;车体的重量,则关系到能耗、加减速度、载客能力乃至列车编组形式(动拖比)。

以上所述都直接影响运营质量和经济效益。

车体结构形式、性能和技术经济指标主要取决于车体材料。

故车体选材一开始就成为选择城轨系统时必须同时考虑的诸多重大要素之一。

1 轨道车辆的车体结构和材料1.1 车体和车体结构的分类车体结构按使用的主要材料可分为普通碳钢车(现已停产)、高耐候结构钢(耐候钢)车、车辆专用经济不锈钢(不锈钢)车和铝合金车。

按承载方式分类,有底架承载、侧壁承载、整体承载三种方式。

按结构形式分,有板梁组合结构、开口型材与大型中空型材组合结构以及大型中空型材结构三种形式。

这些结构又同时属于整体承载结构。

从板与梁(柱)、梁(柱)与梁(柱)之间的结合方式来分,有焊接、铆接、螺柱(钉)粘结连接或混合连接结构。

我国和日本大多采用焊接结构。

焊接-铆接或焊接-螺栓(钉)连接在欧洲应用较多。

整体承载结构,即所有车体承载构件和外板都参与承载,这样能充分发挥所有承载零部件的承载作用,有效地减轻车体重量。

特别是板梁组合结构,原则上可按照有限元法的车体强度 、刚度计算结果来分配材料:强度不足部位补强,刚度不足部位补刚,强度刚度富余的部位将材料去掉,从而收到最佳的轻量效果。

1.2 耐候钢车体耐候钢车体采用板梁组合整体承载全焊接结构。

制造厂先将购进的冷轧定尺板材或将热孔卷料开卷、矫平,切断的板材经磷专业知识分享版使命:加速中国职业化进程化预处理。

车体 的外板(一般厚为2mm),是将预处理后的板材用缝焊机接宽接长; 梁柱则将预处理后的板材 (一般厚2.5mm)剪切下料、轧压、冷弯或拉延成型。

对于像底架边梁、车顶侧板那样大型板梁,一般可采用冷弯型材(厚3~6 mm)。

板和梁(柱)间采用点焊或塞焊,梁柱间采用弧焊(用焊条或二氧化碳气体保护焊)。

车体采用大部件组装方式:将底架、侧墙、车顶、端墙部件预先组成后再组成车体。

经变形矫正(打平)后的车体送到油漆工序。

底漆、面漆涂完后钢结构车体才算完成(也可在车辆总成涂面漆)。

在车体设计开始,梁柱布置完成后用三维有限元法进行车体强度计算。

在头一辆车体制造完工后,进行强度试验。

车体的强度试验属于形式试验,即同种车只试验一台,在油漆前进行。

车体需经钢结构强度试验通过后才能批量投产。

与铝合金、不锈钢车体相比,耐候钢车体有材料费、制造费低以及工艺性好、造型容易的明显优势,但也存在重量较大、耐腐蚀性不大好而导致运用成本高的劣势。

1.3 不锈钢车体不锈钢车体结构与耐候钢车体一样也是采用板梁组合整体承载全焊结构。

由于使用的板材更薄(车体外板厚0.4~1.2mm ,梁柱厚0.8~3mm),须采用大量薄板(一般为0.8mm)轧压成补强(刚)型材与外板点焊连接形成空腔,借以提高外板的刚度、强度。

这是不锈钢车的结构特征之一。

为了不降低板材强度和减小变形,应尽量采用点焊。

特别是强度级高的材料不允许任何形式的弧焊。

梁柱之间采用平面或立体接头、点焊。

板的拼接采用搭接缝焊。

采用接触焊代替弧焊是不锈钢车的又一特征和技术关键。

新型不锈钢车体采用超低碳(C <0.03%)的SUS301L 车辆专用经济不锈钢,通过压延率的不同分成LT 、DLT 、ST 、MT 、HT 5个强度级。

SUS301L 的改性压延状态机械性能代号HT 的屈服点在 961 N/mm 2以上,拉伸强度在1275 N/mm 2以上(超过耐候钢一倍以上)。

但其纵向弹性模量(E)却只有钢的85%(钢的 E =2.06×10 5 N/mm 2,不锈钢的 E =1.76×1 0 5 N/mm 2),这意味着不锈钢车体比同样结构(当然结构是有很大不同的)的耐候钢车刚度要小。

刚度下降将导致舒适性下降。

这就是不锈钢车体设计时尽量设法增大刚度的原因。

不锈钢车体制造过程中虽然不必进行防腐保护,完工后也不需涂漆,但为了提高装饰性,板材自带线条或梨皮点状装饰。

车辆制造厂家可自己进行某种修饰,也可用彩色胶膜装修。

由于车体表面装饰大多是原材料带有的,因此在焊接前的加工过程中要贴膜保护,在制造的全过程要小心操作。

专业知识分享版使命:加速中国职业化进程为了降低制造成本或提高工艺性,对这种车体上没有腐蚀倾向的部位,通常采用普通钢或耐候钢,如牵引梁、枕梁、侧门内立柱的下部(距地板面300mm 以上)内端墙立柱等。

因此,即使轻量化不锈钢车体也大约有30%的普通钢或耐候钢。

不锈钢车体比耐候钢车体大约可轻30%~40%,另外还不需涂漆(干膜油漆重量大约200~300kg/车)。

不锈钢车体的制造工艺性远不如钢车,不能采用弧焊;特别是不锈钢成形困难,因此不锈钢车体的前端造型若特别复杂或数量很少时,不得不采用钢材或玻璃钢制造(涂漆)。

由于现在生产的不锈钢车体大量采用点焊,密封性不如连续焊,因此不适用于频繁进出隧道等导致车内外压差大的高速车车体。

日本最新的不锈钢车体是1993年完成的209系电车采用的两种形式的结构:一种是侧墙外板为平板、内部仍然采用压型型材的骨架(含补强),但板厚进一步减小(侧墙外板厚1.2mm , 车顶、地板波纹板厚0.6mm ,弯梁、立柱厚1mm);另一种形式采用SUS304材料的内外双层板点焊结构,内板上带有凸起代替骨架。

东日本旅客铁道(株)、新日本制铁(株)、东急 车辆制造(株)等三家公司最近共同试制出了“不锈钢双层复合板车体”,其目的在于能像铝合金中空型材车体那样减少零部件数量和焊接工作量,以降低制造成本和提高外板平滑性,提高产品质量。

预计4~5年后这种新车将会投入使用。

1.4 铝合金车体铝合金车体从结构形式上可分为:板梁、大型开口型材和大型中空闭口型材及其组合形式。

板梁式铝合金车体在结构形式上类似于耐候钢车体,但为了提高断面系数,防止板材由于剪力产生失稳现象,因此加大板厚(一般取钢板的1.4倍,最薄用到2mm)。

铝合金车体的薄板焊接非常困难,技术水平要求高,而且变形大矫正困难,因此必须采用接触焊。

开口型材将板、梁合成一体,简化了车体制造工艺,提高了质量,但成本也相应增加。

铝合金车体目前普遍采用的结构是大型桁架式中空型材组焊式(一般采用自动弧焊)。

专业知识分享版使命:加速中国职业化进程大型中空型材组焊式车体制造时,只需将型材沿车体长度方向对接连续自动弧焊。

由于车体零件数量少、焊接工作量少,且容易实现自动化,大大降低了车体制造成本,提高了产品质量。

但与此同时,由于大型型材需要能力为8000~10000t 的大型挤出设备和大型模具,因此制品成本昂贵,设计断面变化也受到制约。

另外,由于多余金属只能靠机械加工的办法去掉,工艺复杂,成本高,所以大型中空型材结构的车体要比板梁式、大型开口型材式车体略重一些。

铝合金结构的变形校正(通常也采用火焰校正)非常困难。

因此不管什么结构形式,都必须千方百计用工装卡具来限制焊接变形。

铝合金车体的主要材料是A1~Mg 系(5000系)、A1~Mg ~Si 系(6000系)和A1~Zn ~Mg 系(7000 系)合金。

铝合金车体的特点是利用铝的相对体积质量约为普通钢的1/3这一点来减轻车体自重。

铝合金车体的自重一般可达到普通钢车体的1/2。

铝合金车体的弱点是铝的纵弹性模量小,约为普通钢的1/3,因而往往使车体刚度下降。

一般铝合金车体比普通钢车体、不锈钢车体的刚度都要小。

这是铝合金车体设计时加大板厚和尽量加大车体断面以提高车体抗弯刚度的重要原因。

铝合金车体的另一个不尽人意处就是耐腐蚀性能差,不能像不锈钢那样达到不用涂漆的程度。

不涂漆的铝合金车体虽然也有,但用过一段时间后,由于大气中的腐蚀条件(如水、洗涤剂 的作用以及运用环境中与金属粉尘接触),表面总会出现面蚀、点蚀、变色,影响美观,故大部分车都涂漆。

铝合金车体设计中还应注意的是:由于铝的熔点低,在地板下面吊装的高压大电流的发热设备(如制动电阻箱等)应加装隔热板,以防车辆火灾的发生。

铝合金车体的车辆一旦发生火灾事故,将会引发更大的灾难。

当然,采用其他材料的车体也必须加隔热板。

铝合金车体的最新结构是车顶、侧墙无梁柱的桁架式中空型材结构,有的在面板、肋板上还贴防震吸音材或填充(半填充)聚氨脂泡沫(型材挤压过程中发泡),大大提高了防震隔音效果。

日本700系新干线车就采用此项技术。

形状复杂的铝合金车体前端也有采用钢质或骨架用钢、蒙皮用玻璃钢的结构。

车下设备吊装也有采用钢梁。

铝型材之间采用摩擦搅拌焊接(FSW :Friction Stir Welding)。

这是一项很有前途的工艺。

日本JR 九州815系近郊形交流电动车已采用这种先进方法。

专业知识分享版使命:加速中国职业化进程1.5 车体新材料结构的开发国外车体新材料新结构的研制开发日新月异。

第二代轻量不锈钢车体和蜂窝材铝合金车体在10年前就已问世。

底架边梁用爆炸连接材料、底架用不锈钢、侧墙车顶端墙用铝合金的 混合材料车体在10年前也通过了鉴定。

超轻量的碳纤维增强塑料(CFRP)车体也已试制出来。

另外以普通钢、不锈钢车体为对象的外板为平板、外板的内侧为桁架式大型轧压型材、二者 点焊一起的少零部件高精度的板式轻量结构也正在开发中。

面向小型车,正在开发不用板结 构而用骨架承载、内外板材料可以自由选取的重量轻、成本低的车体也正在开发研究中。

在我国,车体材料的开发研制也从未间断过。

70年代的铝合金车体铁道车辆、90年代的不锈钢软卧车和铝合金的地铁车就已研制出来,现正在正常运行。

10年前,玻璃钢的前端也已 装到了大铁路动车组的车头上。

现在大断面铝型材和车辆经济不锈钢SUS301L 国内已完成研制,可以批量投产。

2 车体合理选材车体选材的一般作法,是在确保安全可靠的前提下,以经济特性为基础,结合城市线路条件和车辆条件进行经济技术论证,综合分析比较,从大局出发作出选择。

城市轨道交通与干线铁路交通在涉及的地域范围上大不相同,特别是在我国。

城市轨道交通车辆是针对地方乃至于十几公里或几十公里范围设计的,车辆结构和材料应该、也有可能做到在不违背国家相关法规、强制性标准的前提下充分体现地方性和本线路特色。

另一方面,每种材料都有各自的特点。

车体选材若能在熟悉各种材料的基础上,将针对线路、车辆和针对材料特点结合起来并兼顾长远和近期效果的话,选材一定会合理。

相关文档
最新文档