三角形等积变形
三角形等积变形

三角形的等积变形是指保持三角形面积不变的情况下,通过改变其形状而产生的变化。
以下是一些常见的三角形等积变形:1.直角三角形的等积变形:可以通过改变直角三角形的两条直角边的长度来实现等积变形。
例如,将直角三角形的两条直角边同时缩放,或保持一个直角边不变,将另一条直角边拉长或缩短,以使面积保持不变。
2.等边三角形的等积变形:等边三角形的边长相等,可以通过改变等边三角形的边长来实现等积变形。
可以将等边三角形的边长同时拉长或缩短,使得面积保持不变。
3.锐角三角形的等积变形:对于锐角三角形,可以通过改变其两条边长和夹角的关系来实现等积变形。
可以保持其中一条边不变,改变另一条边的长度和夹角的大小,以使面积保持不变。
4.钝角三角形的等积变形:钝角三角形也可以通过改变边长和夹角的关系来进行等积变形。
可以保持其中一条边不变,改变另一条边的长度和夹角的大小,使面积保持不变。
这些是一些常见的三角形等积变形的示例。
以下是一些额外的例子:1.等腰三角形的等积变形:等腰三角形的两条边相等,可以通过改变等腰三角形的边长和顶角的大小来实现等积变形。
可以保持其中一条边不变,改变另一条边的长度和顶角的大小,使面积保持不变。
2.不等边三角形的等积变形:对于不等边三角形,可以通过同时改变三条边的长度来实现等积变形。
保持三条边的比例关系不变,但同时拉长或缩短三条边的长度,使面积保持不变。
3.相似三角形的等积变形:相似三角形具有相似的形状但尺寸不同,可以通过改变相似三角形的比例尺寸来实现等积变形。
保持两个相似三角形的比例关系不变,但同时缩放整个三角形的尺寸,使面积保持不变。
五大模型——三角形等积变形、共角模型

xueersi学而思网校小升初几何重点考查内容萤内容拱黑一,岛头模型(共角模型)两个三角形中有一小南相等或互补,这西小三房形叫械挂角王角形花角三角形的面枳比等于对成角(相等角或互补制三、三角夥的等秋霓形直知8平有于CD ,可加£」皿=£路两个三庵形高相等,面积比等于它们的底之比两个三用形底相尊*面积比等于它们的商之比&L 皿* &皿1 = BD;CD(★★★)已知三角形DEF的面积为18, AD : BD = 2 : 3, AE : CE= 1 : 2, BF : CF = 3 : 2,则三角形ABC的面积为?伽(…)如图,已知三角形ABC面积为1,延长AB至D,使BD = AB;延长BC至E,使CE = 2BC;延长CA至F,使AF = 3AC,求三角形DEF的面积。
^9(★★★ ★)如图将四边形ABCD四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5cm2,贝U四边形EFGH的面积是多少?例4工―(★★★)图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍,EF的长是BF长的3倍。
那么三角形AEF的面积是多少平方厘米(★★★★)如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成。
求阴影部分的面积。
4. ★★★★如图, 角形AEF 的面积是18平方厘米,三角形 ABC 的面积是()平方厘米?C. 725. ★★图中的E 、F 、G 分别是正方形 ABC D 三条边的三等分点, 如果正方形的边长是 12, 那么阴影部分的面积是()A . 50B . 48 C. 56 D . 45羌I 赛班 ABC 的BA 边延长1倍到D, CB 的边延长2倍到E, AC 边延 :ABC 的面积等于1 ,那么三角形DEF 的面积是多少? B . 8 C. 3. ★★★★★如图, ABCD 的面积是 A . 130 把四边形 ABCD 的各边都延长 6,则EFGH 的面积是()? B. 145 C. 160D 是BC 的中点,AD 的长是 AE 长的3倍,EF 的长是BF 长的3倍.。
六年级数学上册讲义:直线型计算综合(一)

六年级数学上册讲义:直线型计算综合(一)知识点回顾 一、等积变形等底等高的两个三角形面积相等,这就是说两个三角形的形状可以不同,但只要底与高分别相等,它们的面积就相等。
第一类:两个三角形有一个公共顶点,而这个公共顶点所对的边在一条直线上且相等。
第二类:两个三角形有一条公共的底边,而这条底边上的高相等,即这条底边所对的顶点在一条与底边平行的直线上。
二、比例模型两个三角形的高相等,面积比等于它们的底边之比 两个三角形的的底相等,面积之比等于它们的高之比三、鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图⑴ 图⑵EDCBAEDCB A四、蝴蝶模型任意四边形中的比例关系(“蝶形定理”或“蝴蝶模型”): ①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
本讲重点 1. 等积变形2. 三角形内接正方形3. 鸟头模型4. 蝴蝶模型A BC DO ba S 3S 2S 1S 4热身小练习1.如下图,在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,三角形ABC的面积是平方厘米。
2.图中两个正方形的边长分别是5cm和3cm,阴影部分的面积是2cm。
3.下图的三角形ABC中,AD:DC=2:3,AE=EB,则甲乙两个图形面积的比是。
典型例题例1:如图,正方形ABCD的边长为12,P是AB边上任意一点,点M,N,I,H分别是边BC,AD 第2题图第3题图的三等分点,点E,F,G是边CD的四等分点,求图中阴影部分面积。
三角形等积变形

定理一:等底等高的三角形面积相等。
定理二:底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等。
定理三:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
1. 校园里有两块三角形空地,计划分别种上玫瑰和牡丹,玫瑰园和牡丹园一共占地多少平方米?2. 如下图,已知阴影部分的面积为28平方厘米,求平行四边形的面积。
3. 下图由两个正方形组成,其边长6cm和4cm,求阴影部分的面积。
4. 已知平行四边形的底边为10cm,高为5cm,求两个阴影面积之和是多少?5. 在△ABC中,已知CD=2BD,如果△ABD的面积为15平方厘米,求△ACD的面积。
6. 在△ABC 中,AD=BD ,DE=BD ,△BEC 的面积为7.5平方厘米,求△ABC 的面积。
7. △ABC 的面积为28平方厘米,CD=3BD ,求△ABD 和△ACD 的面积。
8. 平行四边形ABCD 的面积为135平方厘米,CE=2AE,求△ABE 的面积。
9. 已知E 是BC 的中点,△ABC 的面积是60平方厘米,DE=3BD ,求△ABD 的面积。
D B CE AB C DA10. 已知△AOD的面积是15平方厘米,△BOC的面积是30平方厘米,CO=2AO,求阴影部分的面积及梯形ABCD的面积。
11. 如下图,在三角形ABC中,AD=BD,CE=3BE。
若三角形BED的面积是1平方厘米,求△ABC的面积。
12.在△ABC中,已知D是AB的中点,DE=2CE,△ADE的面积为28平方厘米,求△ABC的面积。
13.已知△ABC的面积是56平方厘米,△ADC的面积是20平方厘米,BE=3AE,求△BDE 的面积。
1. 如下图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE的面积为1平方厘米.求△ABC的面积。
2. 如下图,在平行四边形ABCD中,E、F分别是AC、BC的三等分点,且平行四边形的面积为54平方厘米,求阴影部分的面积。
小学数学《三角形的等积变形》练习题(含答案)

三角形ABC的面积=(12+4)×高÷2=8×高
三角形ADC的面积=4×高÷2=2×高
所以,三角形ABC的面积是三角形ABD面积的4/3倍;三角形ABD的面积是三角形ADC面积的3倍。
巩固理解结论:两个三角形等高时,面积的倍数=底的倍数
【例2】如右图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
而四边形CEFH是它们的公共部分,
所以三角形DHF的面积=三角形BCH的面积,
进而可得阴影面积=三角形BDF的面积=三角形BCD的面积= 10×10÷2=50(平方厘米)。
法2:连接CF,那么CF平行BD,
所以,阴影面积=三角形BDF的面积=三角形BCD的面积=50(平方厘米)。
附加题目
【附1】 如右图,四边形ABCD面积为1,且AB=AE,BC=BF,DC=CG,AD=DH.求四边形EFGH的面积.
巩固理解结论:两个三角形等底时,面积的倍数=高的倍数
【例3】用两种不同的方法,把任意一个三角形分成四个面积相等的三角形.
分析:法1:如图(1),将BC边四等分,连接各等分点,则△ABD、△ADE、△AEF、△AFC面积相等。
法2:如图(2),D是BC的二等分点,E、F是AC、AB的中点,从而得到四个等积三角形△ADF、△BDF、△DCE、△ADE.
【例7】图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,求梯形ABCD的面积.
分析:
【例8】(北京市第一届“迎春杯”刊赛)如右图.将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F.如果三角形ABC的面积等于l,那么三角形DEF的面积是?
分析:连结AE、BF、CD(如右下图).由于三角形AEB与三角ABC的高相等,而底边EB=2BC,所以三角形AEB的面积是2.同理,三角形CBF的面积是3,三角形ACD的面积是1.
小学数学《三角形的等积变形》练习题(含答案)

内容概述
我们已经知道三角形面积的计算公式:三角形面积=底×高÷2
从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.
如果三角形的底不变,高越大(小),三角形面积也就越大(小);
如果三角形的高不变,底越大(小),三角形面积也就越大(小);
这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.
于是:三角形ABD的面积=12×高÷2=6×高
三角形ABC的面积=(12+4)×高÷2=8×高
三角形ADC的面积=4×高÷2=2×高
所以,三角形ABC的面积是三角形ABD面积的4/3倍;三角形ABD的面积是三角形ADC面积的3倍。
巩固理解结论:两个三角形等高时,面积的倍数=底的倍数
【例2】如右图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
【例6】如右图所示,在平行四边形ABCD中,E为AB的中点,AF=2CF,三角形AFE(图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?
【例7】图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,求梯形ABCD的面积.
【例8】(北京市第一届“迎春杯”刊赛)如右图.将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F.如果三角形ABC的面积等于l,那么三角形DEF的面积是?
例题精讲
第三讲三角形的等面积变形

例 3,正方形 ABCD 和正方形 CEFG,且正方形 ABCD 边长为 10 厘米,则图中三角形 BDF 面积为多少平方厘米?
A
DG FHBEC分析:连接 CF.则 CF∥BD。则三角形 BCD 与三角形 BDF 就是这两条平行线之间的等积模型。 因为他们有一条公共的底边 BD,而他们的高的长度正好是这两条平行线之间的距离,两条
E
D
F
G
O
C
连接 FD、OD,则三角形 OFD 与三角形 OFE 是等积三角形,所以面积相等,所以凹四边形 CFDO 的面积等于三角形 CEF 的面积,都是 32 平方厘米,而 CDF 的面积为长方形面积的 一半模型,所以等于长方形面积的一半,即 12×8÷2=48(平方厘米),所以三角形 CDF 的 面积=48-32=16(平方厘米),所以 OG=16×2÷8=4(厘米)。 学案 4 如下图所示,已知三角形 BEC 的面积等于 20 平方厘米,E 是 AB 边上靠近 B 点的四等 分点。三角形 AED 的面积是多少平方厘米?平行四边形 DECF 的面积是多少平方厘米?
请同学们自己试一试吧。 学案 2,
F
A B
D
C
E
如上图,已知三角形 ABC 的面积为 1,延长 AB 至 D,使 BD=AB,延长 BC 至 E,使 CE=2BC, 延长 CA 至 F,使 AF=3AC,求三角形 DEF 的面积。 分析:连接 CD,AE.因为 AB:BD=1:1,所以三角形 DBC 的面积:三角形 ABC 的面积=1:1, 所以也是 1 个单位,因为 BC:CE=1:2,所以三角形 DCE 的面积为 2 个单位,同理三角形 ACE 的面积也是 2 个单位,因为 AC:AF=1:3,所以三角形 AEF 的面积为 6 个单位,因为三角形 ADC 的面积为 2 个单位,而 AC:AF=1:3,所以三角形 ADF 的面积为 6 个单位,这样 DEF 的 面积为 6+6+2+2+1+1=18 个平方单位。
三角形的等积变形

三角形的等积变形一、等积变形【例1】★★★三个正方形ABCD,BEFG,HKPF如图所示放置在一起,图中正方形BEFG 的周长等于14厘米。
求图中阴影部分的面积。
二、倍比关系【例2】★★★如图,有四个长方形的面积分别是1平方厘米、2平方厘米、3平方厘米和4平方厘米,组合成一个大的长方形,求图中阴影部分的面积。
【几个重要的模型】模型一:同一三角形中,相应面积与底的正比关系:即:两个三角形高相等,面积之比等于对应底边之比。
bS1︰S2 =a︰b ;模型一的拓展:等分点结论(“鸟头定理”)如图,三角形AED占三角形ABC面积的23×14=16模型二:任意四边形中的比例关系(“蝴蝶定理”)S 4S 3s 2s 1O DCBA①S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) 模型三:梯形中比例关系(“梯形蝴蝶定理”)①S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2模型四:相似三角形性质hh H cb a CB Aac b HC BA①a b c hA B C H=== ; ②S 1︰S 2=a 2︰A 2模型五:燕尾定理S △ABG :S △AGC =S △BGE :S △GEC =BE :EC ; S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;F D CBAS 4S 3s 2s 1ba。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例5 如右图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE 的面积为1平方厘米.求三角形ABC的面积.
解法1:连结BD,在△ABD 中 ∵ BE=3AE, ∴ S△ABD=4S△ADE=4 (平方厘米). 在△ABC中,∵CD=2AD, ∴ S△ABC=3S△ABD=3×4=12 (平方厘米).
上述结论,是我们研究三角形等积变形的 重要依据.
方法2:如右图,先将BC二等分,分点D、连结AD, 得到两个等积三角形,即△ABD与△ADC等 积.然后取AC、AB中点E、F,并连结DE、DF.以 而得到四个等积三角形,即△ADF、△BDF、 △DCE、△ADE等积.
例2 用三种不同的方法将任意一个三角形分成 三个小三角形,使它们的面积比为及 1∶3∶4.
三角形等积变形
我们已经掌握了三角形面积的计算公式: 三角形面积=底×高÷2
这个公式告诉我们:三角形面积的大小,取决 于三角形底和高的乘积.
①等底等高的两个三角形面积相等.
例如在右图中,若△ABD与 △AEC的底边相等 (BD=DE=EC=BC) ,它们所对的顶点同为A点, (也就是它们的高相等) 那么这两个三角形的面积 相等. 同时也可以知道△ABC 的面积是△ABD或 △AEC面积的3倍.
证明:∵△ABC与△DBC等 底等高, ∴S△ABC=S△DBC 又∵ S△AOB=S△ABC—S△BOC S△DOC=S△DBC— S△BOC ∴S△AOB=S△COD.
例4 如右图,把四边形ABCD改成一个等积的三角形
分析 本题有两点要求,一是把四边形改成一个三角形,二 是改成的三角形与原四边形面积相等.我们可以利用三角 形等积变形的方法,如右图, 把顶点A移到CB的延长线上的A′处, △A′BD与△ABD面积相等,从而 △A′DC面积与原四边形ABCD面积也 相等.这样就把四边形ABCD等积地 改成了三角形△A′DC.问题是A′位 置的选择是依据三角形等积变形原 则.过A作一条和DB平行的直线与 CB的延长线交于A′点. 解:①连结BD; ②过A作BD的平行线,与CB的 延长线交于A′. ③连结A′D,则△A′CD与四边形 ABCD等积.
例9 如右图,在平行四边形ABCD中,直线CF交AB于E, 交DA延长线于F,若S△ADE=1,求△BEF的面积. 解:连结AC,∵AB//CD, ∴S△ADE=S△ACE 又∵AD//BC, ∴S△ACF=S△ABF 而 S△ACF=S△ACE+S△AEF∶ S△ABF=S△BEF+S△AEF ∴ S△ACE=S△BEF ∴S△BEF=S△ADE=1.
再 见
方法 1:如下左图,将 BC边八等分,取 1∶3∶4的分点D、E, 连结AD、AE,从而得 到△ABD、△ADE、 △AEC的面积比为 1∶3∶4.
DE,从而得到三个三角形:△ADE、△BDE、 △ACD.其面积比为1∶3∶4.
当然本题还有许多种其他分法,同学们可 以自己寻找解决
例3 如右图,在梯形ABCD中,AC与BD是对角线, 其交点O,求证:△AOB与△COD面积相等
②底在同一条直线上并且相等,该底所对的角 的顶点是同一个点或在与底平行的直线上,这两 个三角形面积相等.
例如在右图中,△ABC与 △DBC的底相同(它们的 底都是BC),它所对的 两个顶点A、D在与底BC 平行的直线上,(也就 是它们的高相等),那 么这两个三角形的面积 相等.
③若两个三角形的高(或底)相等,其中一个三角 形的底(或高)是另一个三角形的几倍,那么这个 三角形的面积也是另一个三角形面积的几倍. 例如右图中,△ABC与 △DBC的底相同(它们的底 都是BC),△ABC的高是 △DBC高的2倍(D是AB中点, ABБайду номын сангаас2BD,有AH=2DE),则 △ABC的面积是△DBC面积 的2倍.
例8 如右图,四边形ABCD面积为1,且AB=AE, BC=BF,DC=CG,AD=DH.求四边形EFGH的面积.
解:连结BD,将四边形ABCD分 成两个部分S1与S2.连结FD, 有S△FBD=S△DBC=S1 所以 S△CGF=S△DFC=2S1. 同理 S△AEH=2S2, 因此 S△AEH+S△CGF=2S1+2S2=2 (S1+S2)=2×1=2. 同理,连结AC之后,可求 出S△HGD+S△EBF=2所以四边 形EFGH的面积为2+2+1=5(平 方单位).
解法2:连结CE,如右图所示,在△ACE中,
∵ CD=2AD, ∴ S△ACE=3S△ADE=3 (平方厘米). 在△ABC中,∵BE=3AE ∴ S△ABC=4S△ACE =4×3=12(平方厘 米).
例6 如下页图,在△ABC中,BD=2AD,AG=2CG, BE=EF=FC。求阴形面积。
解:连结BG,在△ABG中,
∴ S△ADG+S△BDE+S△CFG
例7 如右图,ABCD为平行四边形,EF平行AC,如果 △ADE的面积为4平方厘米.求三角形CDF的面积.
解:连结AF、CE, ∴S△ADE=S△ACE; S△CDF=S△ACF;又∵AC 与EF平行, ∴S△ACE=S△ACF; ∴ S△ADE=S△CDF=4(平方 厘米).