全国高校自主招生数学模拟试卷五 新人教版.doc
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)

一、单选题二、多选题1. 已知i是虚数单位,若是实数,则实数( )A .2B .-2C .1D .-12. 设,则直线与直线垂直的充分不必要条件是( )A.B.C .或1D .或3. 教育部为发展贫困地区教育,在全国部分大学培养教育专业公费师范生,毕业后分配到相应的地区任教.现将5名男大学生,4名女大学生平均分配到甲、乙、丙3所学校去任教,则( )A.甲学校没有女大学生的概率为B.甲学校至少有两名女大学生的概率为C.每所学校都有男大学生的概率为D .乙学校分配2名女大学生,1名男大学生且丙学校有女大学生的概率为4.已知,若,且均不相等,现有如下说法:①;②;③.则正确说法的个数为( )A .0B .1C .2D .35. 如图所示,当篮球放在桌面并被斜上方一个灯泡(当成质点)发出的光线照射后,在桌面上留下的影子是椭圆,且篮球与桌面的接触点是椭圆的右焦点.若篮球的半径为个单位长度,灯泡与桌面的距离为个单位长度,灯泡垂直照射在平面上的点为,椭圆的右顶点到点的距离为个单位长度,则此时椭圆的离心率等于()A.B.C.D.6. 设为实数,若直线与直线平行,则值为( )A.B .1C.D .27. 不等式的解集为( )A.B.C.D.8. 已知数列的各项均为实数,为其前n 项和,若对任意,都有,则下列说法正确的是( )A.为等差数列,为等比数列B .为等比数列,为等差数列C.为等差数列,为等比数列D.为等比数列,为等差数列9.设等差数列的前项和是,若,则( )A.B.C.D.10.已知函数(即,)则( )A .当时,是偶函数B .在区间上是增函数C .设最小值为,则D .方程可能有2个解2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)三、填空题四、解答题11. 甲箱中有4个红球,2个白球和3个黑球,乙箱中有3个红球,3个白球和3个黑球,先从甲箱中随机取出一球放入乙箱,分别以,和表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则下列结论正确的是( )A .事件B与事件相互独立B.C.D.12.已知函数()有两个不同的极值点,则下列说法正确的是( )A .若,则曲线的切线斜率不小于B.函数的单调递减区间为C .实数a的取值范围为D.若函数的所有极值之和小于,则实数a的取值范围为13. 已知正实数满足,的值为____________.14. 经过原点的直线交椭圆于P ,Q 两点,点P 在第一象限,若点P 关于x 轴的对称点称为M ,且,直线与椭圆交于点B ,且满足,则椭圆的离心率为_______.15. 在三棱锥中,底面与侧面均是边长为2的等边三角形,且,分别是,的中点,当三棱锥的体积最大时,______.16. 随着新冠疫情防控进入常态化,人们的生产生活逐步步入正轨.为拉动消费,某市政府分批发行亿元政府消费券.为了解政府消费券使用人群的年龄结构情况,在发行完第一批政府消费券后,该市政府采用随机抽样的方法在全市市民中随机抽取了人,对是否使用过政府消费券的情况进行调查,部分结果如下表所示,其中年龄在岁及以下的人数占样本总数的,没使用过政府消费券的人数占样本总数的.使用过政府消费券没使用过政府消费券总计45岁及以下9045岁以上总计200(1)请将题中表格补充完整,并判断是否有的把握认为该市市民是否使用政府消费券与年龄有关?(2)现从岁及以下的样本中按是否使用过政府消费券进行分层抽样,抽取人做进一步访谈,然后再从这人中随机抽取人填写调查问卷,则抽取的人中恰好一个使用过政府消费券,一个没使用过政府消费券的概率为多少?附:,其中.0.150.100.050.0252.0722.7063.8415.02417. 已知函数.(1)判断的单调性;(2)若,且存在唯一的,使得,求证:.18. 如图,在平面直角坐标系中,已知抛物线的焦点为,点是第一象限内抛物线上的一点,点的坐标为(1)若,求点的坐标;(2)若为等腰直角三角形,且,求点的坐标;(3)弦经过点,过弦上一点作直线的垂线,垂足为点,求证:“直线与抛物线相切”的一个充要条件是“为弦的中点”.19. 2022年2月20日,北京冬奥会在鸟巢落下帷幕,中国队创历史最佳战绩.北京冬奥会的成功举办推动了我国冰雪运动的普及,让越来越多的青少年爱上了冰雪运动.某校体育组组织了一次冰雪运动趣味知识竞赛,100名喜爱冰雪运动的学生参赛,现将成绩制成如下频率分布表.学校计划对成绩前15名的参赛学生进行奖励,奖品为冬奥吉祥物冰墩墩玩偶.成绩分组频率0.080.260.420.180.06(1)试求众数及受奖励的分数线的估计值;(2)从受奖励的15名学生中按表中成绩分组利用分层抽样抽取5人.现从这5人中抽取2人,试求这2人成绩恰有一个不低于90分的概率.20. 国务院于2023年开展第五次全国经济普查,为更好地推动第五次全国经济普查工作,某地充分利用信息网络开展普查宣传,向基层普查人员、广大普查对象及社会公众宣传经济普查知识.为了解宣传进展情况,现从参与调查的人群中随机选出200人,并将这200人按年龄(单位:岁)分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求图中a的值;(2)求这200人年龄的平均数(同一组数据用该组所在区间的中点值作代表)和中位数(精确到0.1);(3)现要从年龄在与的两组中按照人数比例用分层随机抽样的方法抽取5人,再从这5人中任选3人进行问卷调查,求从中至少抽到2人进行问卷调查的概率.21. 已知函数.(1)求函数的单调递减区间;(2)求在上的解.。
高中数学试卷 高考数学试卷 数学模拟卷五校联考自主招生模拟试卷二十套(含答案)

一、高中数学国重五校联考自主招生模拟试卷模拟试卷(一)1、设,15,n N n +∈≥集合A ,B 都是{1,2,...,}I n =的真子集,A ,A B A B I =∅=I U ,证明:集合A 或B 中,必有两个不同的数,它们的和为完全平主数。
2、设2()(0)f x ax bx c a =++>,方程()f x x =的两个根是1x 和2x ,且12210,x x x a>->.又若10t x <<,试比较()f t 与1x 的大小。
3、求函数2()max{|1|,|5|}f x x x =+-的最小值,并求出相应的x 值。
4、已知()f x 是定义在R 上的不恒为0的函数,且对于任意的,a b ∈R ,有()()().f ab af b bf a =+(1)求(0)f ,(1)f 的值。
(2)判断()f x 的奇偶性,并证明你的结论。
(3)(2)(2)2,()n n f f u n N n-+==∈,求数列{}n u 的前n 项和.n S5、已知关于x 的方程222(1)(1),1ax a x a +=->,证明方程的正根比1小,负根比1-大。
6、设,a b 是两个正数,且a b <,当[,]x a b ∈时246y x x =-+的最小值为a ,最大值为b ,求,a b 的值。
7、求函数y =8、某生产队想筑一面积为144 m2的长方形围栏,围栏一边靠墙,现有铁丝网50 m,筑成这样的围栏最少要用多少米铁丝网?已有的墙最多利用多长?最少利用多长?9、在正方形ABCD中,过一顶点D作对角线CA的平行线DE,若|CE|=|CA|,且CE交边DA于点F,求证:|AE|=|AF|.10、设△ABC的重心为H,外心为O,外接圆半径为R,|OH|=d,|BC|=a,|CA|=b,|AB|=c,求证:22222++=-9.a b c R d11、设圆满足:①截y轴所得弦长为2;②被x轴分成两段弧,其弧长之比为3:1,在满足上述条件的圆中,求圆心到直线:20-=的距离最小的圆的方程。
2021-2022年高中数学 专题五模拟试卷 新人教A版版必修5

2021-2022年高中数学 专题五模拟试卷 新人教A 版版必修5一、选择题,本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若,则的最小值是 ( )A. B. C.2 D.32.在下列函数中,最小值为2是 ( )A.且 B.C. D.3.已知,且则的最大值是 ( )A. B. C. D.4.已知33log log 2,m n m n +=+则的最小值是( )A. B.2 C. 6 D.5.函数的值域是 ( )A. B.C.或 D.6.已知且,则的最小值是 ( )A.9 B.8 C. D.67.设x >0,从不等式和,启发我们可推广为x +n +1,则括号内应填写的是( )A. B. C.2n D.8.若x,y是正数,则的最小值是()A.3 B.C.4 D.9.已知非负实数a,b满足2a+3b=10,则最大值是()A.B.C.5 D.1010.若,则有()A.最小值1 B.最大值1C.最小值D.最大值11.已知,全集,P={,则()A.B.C.D.12.若,且,则xy有()A.最大值64 B.最小值C.最小值D.最小值64二、填空题,本大题共6小题,每小题4分,满分24分,把正确的答案写在题中横线上.13.设22,2,=+=则与的大小关系是 .A xB x A B14.函数22=-<<的最大值是 .()(42)(0f x x x x15.已知x, y满足,则的最小值是 .16.已知,且,则的最大值为 .17.已知,则将按从小到大的顺序排列得.18.在函数①②,③,④中,以2为最小值的函数的序号是 .三、解答题, 本大题共5小题,共66分,解答应写出必要的文字说明、证明过程和演算步骤.19.(本小题满分12分)已知实数a,b,c,d满足a+b=7,c+d=5,求的最小值.20.(本小题满分12分)设试比较的大小,并证明你的结论.21.(本小题满分14分)今有一台坏天平,两臂长不等,其余均精确. 有人说要用它称物体的质量,只需将物体放在左右托盘各称一次,则两次结果的和的一半就是物体的真实质量. 这种说法对吗?请说明理由.22.(本小题满分14分)已知内接于单位圆,且.⑴求证内角C为定值⑵求面积的最大值.23.(本小题满分14分)在中,a ,b ,c 分别是内角A , B , C 的对边. 求证:1111cos cos cos 111.2A B C a b c a b c a b c⎛⎫++≤++<++ ⎪⎝⎭【选做题】已知a>0, b>0, 且a+b=1. 求证:(1)(2) 39489 9A41 驁 38596 96C4 雄33323 822B 舫 30197 75F5 痵$737788 939C 鎜27349 6AD5 櫕29751 7437 琷27518 6B7E 歾28327 6EA7 溧。
江西省普通高等学校招生全国统一考试仿真卷五理科数学试题Word版含答案

绝密 ★ 启用前2017年普通高等学校招生全国统一考试仿真卷理科数学(五)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2017重庆一中]已知集合{}1,2,3A =,()(){}|120B x x x =∈+-<Z ,则()AC B =Z ()A.{}1,2,3B .{}1,2ﻩC.{}2,3ﻩD.{}3【答案】C 【解析】由()(){}|120B x x x =∈+-<Z 得:{}10,=B ,则(){}2,3AC B =Z ,故选C .2.[2017重庆联考]已知2iii a b +=+(a b ,是实数),其中i 是虚数单位,则ab =( )A.-2ﻩB .-1ﻩC .1 D.3 【答案】A【解析】由题设可得2i i 1a b +=-,则12a b =-=,,故2ab =-,应选答案A . 3.[2017长郡中学]在等差数列{}n a 中,912132a a =+,则数列{}n a 的前11项和11S =( )A.24ﻩB.48ﻩC .66ﻩD.132【答案】C 【解析】设等差数列{}n a 公差为d ,则91121811a a d a a d=+=+,,所以有1118(11)32a d a d +=++,整理得,1656a d a +==,1111161111662a a S a +=⨯=⨯=,故选C.4.[2017枣庄模拟]已知函数()f x 的定义域为[]0,2,则函数()()2g x f x =定义域为( ) A.[]0,1 B .[]0,2ﻩC .[]1,2ﻩD.[]1,3【答案】A【解析】由题意,得022820xx⎧⎨-⎩≤≤≥,解得01x≤≤,故选A.5.[2017衡阳八中]甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和P,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则P值为() A.35ﻩB.45ﻩC.34ﻩD.14【答案】C【解析】设:“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“甲射击一次,未击中目标”为事件A,“乙射击一次,击中目标”为事件B,则332(()()1()()1555P A P A P B p P B p==-===-,,,,依题意得:329(1)5520p p⨯-+⨯=,解得34p=,故选C.6.[2017云师附中]秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,其算法的程序框图如图所示,若输入的012na a a a⋅⋅⋅,,,,分别为01n⋅⋅⋅,,,,若5n=,根据该算法计算当2x=时多项式的值,则输出的结果为()A.248B.258ﻩC.268ﻩD.278【答案】B【解析】该程序框图是计算多项式5432()5432f x x x x x x=++++,当2x=时,(2)258f =,故选B.7.[2017雅礼中学]四位男生和两位女生排成一排,男生有且只有两位相邻,则不同排法的种数是( )A.72ﻩB.96 C.144ﻩD.240 【答案】C【解析】先从4为男生中选2为捆绑在一起,和剩余的2为男生,插入到2为女生所形成的空隙中,所以共有223423144A A A =种不同的排法,故选C .8.[2017师大附中]已知点M N ,是抛物线24y x =上不同的两点,F 为抛物线的焦点,且满足2π3MFN ∠=,弦MN 的中点P 到直线1:16l y =-的距离记为d ,若22||MN d λ=⋅,则λ的最小值为( ) A .3ﻩB.3ﻩC.13+ﻩD.4 【答案】A【解析】 设||m MF =,||n NF =则抛物线的定义及梯形中位线的性质可得2d m n =+,222||MN m n mn =++,所以由题设可得22224()44()()m n mn mnm n m n λ++==-++, 因为2()4m n mn +≥,即241()mnm n +≤,所以413λ-=≥,应选答案A .9.[2017湖南十三校]已知函数()f x 的定义域为R ,且(2)2f =,又函数()f x 的导函数()y f x '=的图象如图所示,若两个正数a b 、满足(2)2f a b +<,则22b a ++的取值范围是( )A.2(2)3,ﻩﻩB .2()(2)3-∞+∞,,C.(2)+∞,ﻩD.2()3-∞,【答案】A【解析】由导函数图象,可知函数在(0)+∞,上为单调增函数,∵(2)2f=,正数a b、满足(2)2f a b+<,∴22a bab+<⎧⎪>⎨⎪>⎩,又因为22ba++表示的是可行域中的点与(22)--,的连线的斜率.所以当(22)--,与(02),相连时斜率最大,为2,当(22)--,与(10),相连时斜率最小,为23,所以22ba++的取值范围是2(2)3,,故选A.10.[2017南阳一中]如图所示,A,B,C是圆O上不同的三点,线段CO的延长线与线段BA交于圆外的一点D,若OC OA OBλμ=+(λ∈R,μ∈R),则λμ+的取值范围是()A.(0,1) B.(1,)+∞ C.(),1-∞-D.()1,0-【答案】D【解析】∵OA OB OC==,OC OA OBλμ=+,∴()22OC OA OBλμ=+,展开得2221OA OBλμλμ++⋅=,∴222cos1AOBλμλμ++∠=,当60AOB∠=︒时,()2221λμλμλμλμ++=+-=即()211λμλμ+=+<,∴11λμ-<+<.当,OA OB趋近于射线OD时,由平行四边形法则可知OC OE OF OA OBλμ=+=+,此时0,0λμ<>且λμ>,∴0λμ+<,因此λμ+的取值范围是()1,0-,故选D .11.[2017正定中学]如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )A.8πﻩB .25π2ﻩC.41π4ﻩD.12π【答案】C【解析】由三视图可知,该几何体为如图所示的四棱锥S ABCD -,其中四边形ABCD 为矩形,平面SBC ⊥平面25ABCD AB CD BC AD SB =====,,球心O 在SC 中垂面1ABO 上,其中1O 为三角形SBC 外心.设1BO x=,则由11SO BO x==得22(2)1x x -+=,解得54x =,所以该多面体的外接球半径254111616R OB ==+=因此其表面积为241π4π4S R ==,故选C.12.[2017郑州一中]已知函数()ln f x x x x =+,若k ∈Z ,且(1)()k x f x -<对任意的1x >恒成立,则k 的最大值为( ) A .2ﻩB.3ﻩC.4ﻩD.5 【答案】B【解析】因为()ln f x x x x =+,若k ∈Z ,且(1)()k x f x -<对任意的1x >恒成立,即(1)ln k x x x x -<+,因为1x >,即ln 1x x xk x +<-,对任意1x >恒成立,令ln ()1x x x g x x +=-,则2ln 2()(1)x x g x x --'=-, 令()ln 2(1)h x x x x =-->,则11()10x h x x x -'=-=>,所以函数()h x 在(1)+∞,上单调递增. 因为(3)1ln30(4)22ln 20h h =-<=->,,所以方程()0h x =在(1)+∞,上存在唯一实根0x ,且满足0(34)x ∈,,当1x x <<时,()0h x <,即()0g x '<,当0x x >时,()0h x >,即()0g x '>,所以函数ln ()1x x xg x x +=-在0(1)x ,上单调递减,在0()x +∞,上单调递增,因为x 是()0h x =的根,即00ln 20x x --=,所以[]000000min 00(1ln )(12)()()(34)11x x x x g x g x x x x ++-====∈--,所以min 0()k g x x <=,因为0(34)x ∈,,故整数k 的最大值为3,故选B.第Ⅱ卷本卷包括必考题和选考题两部分。
普通高等学校高三招生全国统一考试模拟(五)数学(理)试题Word版含答案

C. D.
9. 展开式中, 项的系数是()
A. B. C. D.
10.如图是一三棱锥的三视图,则此三棱锥内切球的体积为()
A. B. C. D.
11.已知函数 是定义在 内的奇函数,且满足 ,若在区间 上, ,则 ()
A. B. C. D.
12.过抛物线 的焦点 且斜率为 的直线 交抛物线于点 ,若 ,且 ,则 的取值范围是()
(1)求圆心 的轨迹 的方程;
(2)若点 是轨迹 上的一点,求证: 中, 的外角平分线与曲线 相切.
21.(本小题满分12分)
已知函数 ,其中 为自然对数的底数.
(1)求函数 的单调区间;
(2)求证: 时, .
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
22.(本小题满分10分)选修4-4:坐标系与参数方程
A. B. C. D.
5.已知 为坐标原点,分别在双曲线 第一象限和第二象限的渐近线上取点 ,若 的正切值为 ,则双曲线离心率为()
A. B. C. D.
6.若点 满足 ,则 的最小值为()
A. B. C. D.
7.按下面的程序框图,如果输入的 ,则输出的 的取值范围为()
A. B.
C. D.
8.将函数 的图象向右平移 个单位,得到函数 的图象,则 图象的一个对称中心是()
2018年普通高等学校招生全国统一考试模拟试题
理数(五)
本试卷共6页,23题(含选考题)。全卷满分150分。考试用时120分钟。
注意事项:
1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
全国大联考2025届高三第五次模拟考试数学试卷含解析

全国大联考2025届高三第五次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则( ) A . B . C . D .2.双曲线22221(0,0)x y a b a b -=>>的左右焦点为12,F F ,一条渐近线方程为:b l y x a=-,过点1F 且与l 垂直的直线分别交双曲线的左支及右支于,P Q ,满足11122OP OF OQ =+,则该双曲线的离心率为( ) A .10 B .3 C .5D .2 3.已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于( )A .82B .8C .42D .44.函数()()sin f x x θ=+在[]0,π上为增函数,则θ的值可以是( )A .0B .2πC .πD .32π 5.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A .16B .12C .8D .6 6.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A 3B .33C .32D 37.设0.380.3log 0.2,log 4,4a b c ===,则( ) A .c b a << B .a b c <<C .a c b <<D .b a c << 8.已知变量的几组取值如下表:若y 与x 线性相关,且ˆ0.8yx a =+,则实数a =( ) A .74 B .114 C .94 D .1349.若复数z 满足(1)12i z i +=+,则||z =( )A .2B .32C .2D .1210.点M 在曲线:3ln G y x =上,过M 作x 轴垂线l ,设l 与曲线1y x =交于点N ,3OM ON OP +=,且P 点的纵坐标始终为0,则称M 点为曲线G 上的“水平黄金点”,则曲线G 上的“水平黄金点”的个数为( )A .0B .1C .2D .311.已知六棱锥P ABCDEF -各顶点都在同一个球(记为球O )的球面上,且底面ABCDEF 为正六边形,顶点P 在底面上的射影是正六边形ABCDEF 的中心G ,若PA AB =,则球O 的表面积为( ) A .163π B .94π C .6πD .9π 12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫- ⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( )A .5B .15CD .5二、填空题:本题共4小题,每小题5分,共20分。
2013年全国高校自主招生数学模拟试卷五

-n-3). 12.在平面直角坐标系 xOy 中,给定两点 M(-1,2)和 N(1,4),点 P 在 x 轴上移动, 当∠MPN 取最大值时,点 P 的横坐标为 ; y 解: 当∠MPN 最大时, ⊙MNP 与 x 轴相切于点 P(否则⊙MNP 与 x N 轴交于 PQ,则线段 PQ 上的点 P使∠MPN 更大).于是,延长 NM 交 M x 轴于 K(-3,0),有 KM·KN=KP2,KP=4.P(1,0),(-7,0),但(1, 0)处⊙MNP 的半径小,从而点 P 的横坐标=1. O P K 三.解答题(本题满分 60 分,每小题 20 分) 13.一项“过关游戏”规则规定:在第 n 关要抛掷一颗骰子 n 次, 如果这 n 次抛掷所出现的点数的和大于 2n,则算过关.问: ⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少? 解:⑴ 设他能过 n 关,则第 n 关掷 n 次,至多得 6n 点, 由 6n>2n,知,n≤4.即最多能过 4 关. ⑵ 要求他第一关时掷 1 次的点数>2,第二关时掷 2 次的点数和>4,第三关时掷 3 次的 点数和>8. 4 2 第一关过关的概率=6=3;
5.设三位数 n=¯¯¯ abc ,若以 a,b,c 为三条边长可以构成一个等腰(含等边)三角形,则这 样的三位数 n 有( ) A.45 个 B.81 个 C.165 个 D.216 个 6.顶点为 P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面 圆内的点,O 为底面圆圆心,AB⊥OB,垂足为 B,OH⊥PB,垂足为 H,且 PA=4,C 为 PA 的 中 点 , 则 当 三 棱 锥 O - HPC 的 体 积 最 大 时 , OB 的 长 为 ( ) 5 A. 3 2 5 B. 3 6 C. 3 2 6 D. 3
普通高等学校招生全国统一考试数学模拟试题 人教版

普通高等学校招生全国统一考试数学模拟试题 人教版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试结束后,将本试卷和答题卡一并交回.满分150分,考试时间120分钟. 注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.答在试卷上的答案无效. 参考公式:球的表面积公式:24S R π=,其中R 是球的半径本试卷分第Ⅰ卷(选择题、填空题)和第Ⅱ卷解答题两部分,满分:150分;时间:120分钟. 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号用蓝、黑墨水钢笔签字笔写在答卷上; 2.第I 卷每小题得出答案后,请将答案填写在答题卷相应表格指定位置上.答在第Ⅰ卷上不得分.第Ⅰ卷(共60分)一.选择题 (本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}2|213,|60M x x N x x x =+>=+-≤,则MN 等于( )A .(3,2][1,2]--⋃B .(3,2)(1,)--⋃+∞C .[3,2)(1,2]--⋃D .(,3)(1,2]-∞-⋃命题立意及解析:本题主要考查绝对值不等式和二次不等式的解法及集合运算.{}1|1,|03M x x N x x ⎧⎫=<=<<⎨⎬⎩⎭,所以103MN x x ⎧⎫=<<⎨⎬⎩⎭.选C .2.设2()3x f x x =-,则在下列区间中,使函数)(x f 有零点的区间是( ) A .[]0,1 B .[]1,2 C .[]2,1-- D .[]1,0-命题立意及解析:本题主要考查函数零点与方程根的关系及数形结合思想.先在同一坐标系水画出函数13x y =和22y x =的图象,通过观察排除A 和B ,然后利用勘根定理即可解决.选D .3. 设过抛物线22(0)y px p =>的焦点F 的弦PQ ,则以PQ 为直径的圆与抛物线准线的位置关系是( )A .相交B . 相切C .相离D .以上答案均有可能命题立意及解析:本题主要考查抛物线定义及直线与圆位置关系的判定方法.由抛物线定义及梯形中位线定理可得.选B .4.232007i i i i ++++的值是( )A . 1B .iC .i -D .1-命题立意及解析:本题主要考查复数的简单运算.由虚数单位i 的周期性或由等比数列知识即可解决.选D .5.命题P :将函数sin 2y x =的图象向右平移3π个单位得到函数sin(2)3y x π=-的图象;命题Q :函数sin()cos()63y x x ππ=+-的最小正周期是π.则复合命题“P 或Q ”“P 且Q ”“非P ”为真命题的个数是( )A .0个B . 1个C .2个D .3个命题立意及解析:本题主要考查三角函数的图象和性质以及三角恒等变换.易知命题P 假,命题Q 真,所以“P 或Q ”真,“P 且Q ”假,“非P ”真,故选C . 6.长方体1AC 的长、宽、高分别为3、2、1,从A 到1C 沿长方体的表面的最短距离为( )A .13+B .210+C .32D .23命题立意及解析:本题主要考查空间几何体的简单运算及转化思想.求表面上最短距离可把图形展成平面图形,即化折为直,易知答案为C .7.如图,A 是圆上固定的一点,在圆上其他位置任取一点A ',连接AA ',它是一条弦,它的长度小于或等于半径长度的概率为( )A .12 B . 32C .13D .14 命题立意及解析:本题主要考查几何概型的概率问题.以A 为圆心,以圆的半径为半径画弧与圆交于两点,所求概率为这两点劣弧的长与圆周长的比值,易知为C .8. 观察等式2020003sin 30cos 60sin 30cos604++=,2020003sin 20cos 50sin 20cos504++=和 2020003sin 15cos 45sin15cos 454++=,由此得出以下推广命题不正确的是( ) A . 223sin cos sin cos 4αβαβ++=B .20203sin (30)cos sin(30)cos 4αααα-++-=C .2020003sin (15)cos (15)sin(15)cos(15)4αααα-+++-+=D .22003sin cos (30)sin cos(30)4αααα++++=命题立意及解析:本题主要考查合情推理中的推广问题,由所给三个等式的规律可以看出选项A 不正确,应加条件βα0-=30才能成立. 9.已知随机变量ξ的分布列为下表所示:则ξ的标准差为( )A .3.56B C .3.2D .命题立意及解析:本题主要考查了离散性随机变量及其分布列的相关知识.由题意,有0.40.11x ++=,所以0.5x =,0.40.3 2.5 3.2E ξ=++=,222.20.40.20.1D ξ=⨯+⨯21.80.5 3.56+⨯==B .10.定义在R 上的偶函数()y f x =满足(2)()f x f x +=,且当(0,1]x ∈时单调递增,则( )A 15()(5)()32f f f <-< B 15()()(5)32f f f <<- C 51()()(5)23f f f <<- D 15(5)()()32f f f -<<命题立意及解析:本题主要考查函数性质的综合应用.此题包含单调性、奇偶性和周期性.由(2)()f x f x +=知函数是以2为周期的周期函数,又()y f x =是偶函数,所以51()()22f f =,(5)(5)(1)f f f -==,又函数在(0,1]x ∈时单调递增,所以11()()(1)32f f f <<,即15()()(5)32f f f <<-,故选B . 11.“神六”飞天,举国欢庆.据科学计算,运载“神舟六号”飞船的“长征二号”系列火箭,在点火1分钟通过的路程为2km ,以后每分钟通过的路程增加2km ,在到达离地面240km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是( ) A .10分钟 B .13分钟 C .15分钟 D .20分钟命题立意及解析:本题主要考查数列应用问题,背景新颖,创新意识浓厚.由题意知火箭在这个过程中路程随时间的变化成等差数列,设第n 分钟后通过的路程为n a ,则12,2a d ==,(22)2,2402n n n n a n S +===,解得15n =,选C .则2008在第 行第 列( )A .第 251 行第 3 列B .第 250 行第 3 列C .第 250 行第 4 列D .第 251 行第 4 列 命题立意及解析:本题主要考查数列的基本知识,易知答案为B .第Ⅱ卷 解答题(共90分) 必做题部分(共78分)二.填空题(每小题4分,共16分)13.若n 为正奇数,则111777n n n n n C C --+⋅++⋅被9除所得的余数为:命题立意及解析:本题主要考查二项式定理的应用.原式(17)1(91)1n n =+-=--01111999(1)(1)1929(1)7n n n n n n n n C C C M M ---=⋅-⋅++⋅⋅-+--=-=-+,其中M Z ∈,所以余数为7.14.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是______.命题立意及解析:本题主要考查线性规划问题.22y x +的几何意义是可行域内的点到原点O 的距离的平方,易得22y x +的最小值是5.15.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数共有命题立意及解析:本题主要考查排列的实际应用.当1和3之间是0时,有2323A A ⋅个,当1和3之间是2或4时,有21122222A A A A ⋅⋅⋅,所以共有28个. 16.在如下程序框图中,输入0()f x cosx =,则输出的是__________命题立意及解析:本题主要考查算法初步知识中的程序框图及读图能力和导数的计算问题,根据初始值和判断框中的条件有,102()()sin ,()cos f x f x x f x x '==-=-,3()sin f x x =,4()cos f x x =,可以看出()n f x 是以4为周期的函数,故20073()()sin f x f x x ==.17. (本题满分12分) 在△ABC 中,,,A B C 为三个内角,,a b c 为三条边,23ππ<<C 且.2sin sin 2sin CA Cb a b -=- (1)判断△ABC 的形状;(2)若||2BA BC +=,求BA BC ⋅的取值范围.命题立意及解析:本题主要考查正余弦定理及向量运算. (1)解:由C A Cb a b 2sin sin 2sin -=-及正弦定理有:C B 2sin sin = ∴2B C =或π=+C B 2若2B C =,且32C ππ<<,∴23B ππ<<,)(舍π>+C B ;∴2B C π+=,则A C =,∴ABC ∆为等腰三角形.(2)∵ ||2BA BC +=,∴222cos 4a c ac B ++⋅=,∴222cos ()a B a c a-==,而C B 2cos cos -=, ∴1cos 12B <<,∴2413a <<,∴2(,1)3BA BC ⋅∈. 18. (本题满分12分) 如图所示,在棱长为2的正方体1111ABCD A BC D -中,E 、F 分别为1DD 、DB 的中点.(Ⅰ)求证:EF //平面11ABC D ; (Ⅱ)求证:1EF B C ⊥; (Ⅲ)求三棱锥EFC B V -1的体积.命题立意及解析:本题主要考查空间线面位置关系的证明和体积的计算问题.证明:(Ⅰ)连结1BD ,在B DD 1∆中,E 、F 分别为1D D ,DB 的中点,则11111111////EF D BD B ABC D EF ABC D EF ABC D ⎫⎪⊂⇒⎬⎪⊄⎭平面平面平面 CDBFE D 1C 1B 1AA 1CDBFED 1C 1B 1AA 1ABC D MNP(Ⅱ)1111111,B C ABB C BC AB B C ABC D AB BC B ⊥⎫⎪⊥⎪⎬⊂⎪⎪=⎭平面⇒111111B C ABC D BD ABC D ⊥⎫⇒⎬⊂⎭平面平面111//B C BD EF BD ⊥⎫⎬⎭1EF B C ⇒⊥(Ⅲ)11CF BDD B ⊥平面,∴1CF EFB ⊥平面,且CF BF ==112EF BD ==1B F ===13B E ===∴22211EF B F B E +=,即190EFB ∠=∴11113B EFC C B EF B EF V V S CF --∆==⋅⋅=11132EF B F CF ⨯⋅⋅⋅=11132⨯=. 注:本题还可以用向量法做.19.(本题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花园AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,|AB|=3米,|AD|=2米, (I )要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (II )当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.(Ⅲ)若AN 的长度不少于6米,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.命题立意及解析:本题主要考查函数的应用、导数及均值不等式的应用等,考查学生分析问题和解决问题的能力.解:设AN 的长为x 米(x >2),∵|DN||DC||AN||AM|=,∴|AM |=32xx -∴S AMPN =|AN |•|AM |=232xx - (I )由S AMPN > 32 得 232x x - > 32 ,∵x >2,∴2332640x x -+>,即(3x -8)(x -8)> 0∴8283x x <<> 或 ,即AN 长的取值范围是8(2)(8)3∞,,+ (II )2233(2)12(2)12123(2)12222x x x y x x x x -+-+===-++---1223(2)12242x x ≥-•+=-当且仅当123(2),2x x -=-即x=4时,y =232x x -取得最小值.即S AMPN 取得最小值24(平方米)(Ⅲ)令y =232x x -,则y ′=2226(2)334)(2)(2)x x x x x x x ---=--( ∴当x > 4,y ′> 0,即函数y =232x x -在(4,+∞)上单调递增,∴函数y =232x x -在[6,+∞]上也单调递增.∴当x =6时y =232x x -取得最小值,即S AMPN 取得最小值27(平方米).20.(本题满分12分) 过抛物线22(y px p =>0)的对称轴上的定点(,0)(0)M m m >,作直线AB 与抛物线相交于,A B 两点. (1)试证明,A B 两点的纵坐标之积为定值;(2)若点N 是定直线:l x m =-上的任一点,试探索三条直线,,AN MN BN 的斜率之间的关系,并给出证明. 命题立意及解析:本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.(1)证明:设1122(,),(,)A x y B x y 有122y y pm ⋅=-,下证之: 设直线AB 的方程为:x ty m =+与22y px =联立得 22y px =x ty m =+消去x 得2220y pty pm --=,由韦达定理得 122y y pm ⋅=-. (2)解:三条直线,,AN MN BN 的斜率成等差数列,下证之:设点(,)N m n -,则直线AN 的斜率为11AN y n k x m -=+;直线BN 的斜率为22BN y nk x m-=+,1212222212122()2()2222AN BN y n y n p y n p y n k k y y y pm y pm m m p p----+=+=+++++122112221122121212()()2()2()y n y n y y n y y n p p y y y y y y y y y y -----=+=⋅--- 12121212()222()2n y y n n np p p y y y y y y pm m-=⋅=⋅=⋅=---又直线MN 的斜率为02MN n nk m m m-==---,∴2AN BN MN k k k +=,即直线,,AN MN BN 的斜率成等差数列.21.(本题满分14分) 已知数列}{n a 的前n 项和为n S ,且满足211=a ,)2(021≥-n S S a n n n =+.(1)问:数列}1{nS 是否为等差数列?并证明你的结论; (2)求n S 和n a ;(3)求证:22221231124n S S S S n+++⋅⋅⋅+<-. 命题立意及解析:本题主要考查递推数列、等差数列与不等式的综合应用,考查分类讨论思想,考查放缩的方法.解析:(1)由已知有2111==a S ,211=S ; 2≥n 时,112---=-=n n n n n S S S S a 所以2111=--n n S S ,即}1{nS 是以2为首项,公差为2 的等差数列. (2)由(1)得:n n S n22)1(21=⋅-+=,n S n 21= 当2≥n 时,12--=n n n S S a )1(21--=n n .当1=n 时,211=a ,所以⎪⎪⎩⎪⎪⎨⎧≥--==)2()1(21)1(21n n n n a n(3)当1=n 时,141214121⨯-==S ,成立. 当2≥n 时,22222322214134124141n S S S S n ⨯+⋅⋅⋅+⨯+⨯+=+⋅⋅⋅+++=)131211(41222n +⋅⋅⋅+++1111(141223(1)n n<+++⋅⋅⋅+⨯⨯- nn 4121)111(41-=-+=综上有22221231124n S S S S n+++⋅⋅⋅+<-.选做题部分(本题12分)22. 选做题(本题共有3小题,考生可从中任选一道做,多做只按从前到后的顺序给分,满分12分)(1)已知: 如图, AB 是⊙O 的直径, ⊙O 过AC 的中点D, DE 切⊙O 于点D, 交BC 于点E . ①求证: DE ⊥BC ; ②如果CD=4, CE=3, 求⊙O 的半径.证明: ①连结OD . ∵DE 切⊙O 于点D ,∴DE ⊥OD, ∴∠ODE=900又∵AD=DC, AO=OB ,∴OD//BC∴∠DEC=∠ODE=900, ∴DE ⊥BC②连结BD . ∵AB 是⊙O 的直径, ∴∠ADB=900∴BD ⊥AC, ∴∠BDC=900又∵DE ⊥BC, △RtCDB ∽△RtCED∴CE DC DC BC =, ∴BC=3163422==CE DC 又∵OD=21BC ,∴OD=3831621=⨯, 即⊙O 的半径为38.(2)求椭圆14922=+y x )之间距离的最小值,与定点(上一点01P . 解:()3cos 2sin 10P P θθ设,,则到定点(,)的距离为: ()d θ===∴当时,取最小值cos )θθ=(35455d . (3)设321,,a a a 均为正数,且m a a a =++321,求证ma a a 9111321≥++. 证法1:由已知条件和均值不等式有:321111a a a ++)111)((1321321a a a a a a m ++++= ⎥⎥⎦⎤⎢⎢⎣⎡++++++=)()()(31133123321221a a a a a a a a a a a a m m m9)2223(1=+++≥, 当且仅当3321ma a a ===时,等号成立. 证法2:由已知条件和柯西不等式有:321111a a a ++)111)((1321321a a a a a a m ++++=21m ≥9m=, 当且仅当3321ma a a ===时,等号成立.[参考答案]一.选择题答案:二、填空题答案: 13.7. 14.5. 15.π.16.sin x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高校自主招生数学模拟试卷五一.选择题(本题满分36分,每小题6分)1.设锐角θ使关于x 的方程x 2+4x cos θ+cos θ=0有重根,则θ的弧度数为 ( )A .π6B .π12或5π12C .π6或5π12D .π122.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ≠∅,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 3.不等式log 2x -1+12log 12x 3+2>0的解集为 A .[2,3) B .(2,3] C .[2,4) D .(2,4] 4.设点O 在∆ABC 的内部,且有→OA +2→OB +3→OC =→0,则∆ABC 的面积与∆AOC 的面积的比为( )A .2B .32C .3D .535.设三位数n=¯¯¯abc ,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 6.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为( ) A .53 B .253 C .63 D .263二.填空题(本题满分54分,每小题9分)7.在平面直角坐标系xOy 中,函数f (x )=a sin ax +cos ax (a >0)在一个最小正周期长的区间上的图像与函数g (x )= a 2+1的图像所围成的封闭图形的面积是 ;8.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )= ;9.如图,正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1—A 1的度数是 ; 10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k= ;11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,B 1A 1BCD AC 1D 1则n∑i=01a i的值是 ;12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ; 三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数的和大于2n,则算过关.问:⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少?14.在平面直角坐标系xOy 中,给定三点A (0,43),B (-1,0),C (1,0),点P 到直线BC 的距离是该点到直线AB 、AC 距离的等比中项.⑴ 求点P 的轨迹方程;⑵ 若直线L 经过∆ABC 的内心(设为D ),且与P 点轨迹恰好有3个公共点,求L 的斜率k 的取值范围.15.已知α,β是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )=2x -t x 2+1的定义域为[α,β].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,π2)(i=1,2,3),若sin u 1+sin u 2+sin u 3=1,则1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364.2013年全国高校自主招生数学模拟试卷四参考答案一.选择题(本题满分36分,每小题6分)1.设锐角θ使关于x 的方程x 2+4x cos θ+cot θ=0有重根,则θ的弧度数为 ( )A .π6B .π12或5π12C .π6或5π12D .π12解:由方程有重根,故14∆=4cos 2θ-cot θ=0,∵ 0<θ<π2,⇒2sin2θ=1,⇒θ=π12或5π12.选B .2.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ≠∅,则b 的取值范围是 ( )A .[-62,62]B .(-62,62)C .(-233,233]D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,⇒2b 2≤3,⇒b ∈[-62,62].选A . 3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),⇒x ∈[2,4),选C .4.设点O 在∆ABC 的内部,且有→OA +2→OB +3→OC =→0,则∆ABC 的面积与∆AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设∆AOC=S ,则∆OC 1D=3S ,∆OB 1D=∆OB 1C 1=3S ,∆AOB=∆OBD=1.5S .∆OBC=0.5S ,⇒∆ABC=3S .选C .5.设三位数n=¯¯¯abc ,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;1⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .6.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,⇒PB ⊥AB ,⇒AB ⊥面POB ,⇒面PAB ⊥面POB . OH ⊥PB ,⇒OH ⊥面PAB ,⇒OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,⇒PC ⊥面OCH .⇒PC 是三棱锥P -OCH 的高.PC=OC=2. 而∆OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形). 当OH=2时,由PO=22,知∠OPB=30︒,OB=PO tan30︒=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=α,则V P —AOB =16R 3sin αcos α=112R 3sin2α,V B -PCO =124R 3sin2α.PO 2PB 2=R 2R 2+R 2cos 2α=11+cos 2α=23+cos2α.⇒V O -PHC =sin2α3+cos2α⨯112R 3. ∴ 令y=sin2α3+cos2α,y '=2cos2α(3+cos2α)-(-2sin2α)sin2α(3+cos2α)2=0,得cos2α=-13,⇒cos α=33, ∴ OB=263,选D .二.填空题(本题满分54分,每小题9分)7.在平面直角坐标系xOy 中,函数f (x )=a sin ax +cos ax (a >0)在一个最小正周期长的区间上的图像与函数g (x )= a 2+1的图像所围成的封闭图形的面积是 ;解:f (x )= a 2+1sin(ax +ϕ),周期=2πa ,取长为2πa,宽为2a 2+1的矩形,由对称性知,面积之半即为所求.故填2πaa 2+1.AB PO H C又解:∫ϕ1ϕ0a 2+1[1-sin(ax +ϕ)]dx=a 2+1a ∫π20(1-sin t )dt=2p aa 2+1. 8.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )= ;解:令x=y=0,得,f (1)=1-1-0+2,⇒f (1)=2.令y=1,得f (x +1)=2f (x )-2-x +2,即f (x +1)=2f (x )-x .①又,f (yx +1)=f (y )f (x )-f (x )-y +2,令y=1代入,得f (x +1)=2f (x )-f (x )-1+2,即f (x +1)=f (x )+1.②比较①、②得,f (x )=x +1.9.如图,正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1—A 1的度数是 ; 解:设AB=1,作A 1M ⊥BD 1,AN ⊥BD 1,则BN ·BD 1=AB 2,⇒BN=D 1M=NM=33.⇒A 1M=AN=63.∴ AA 12=A 1M 2+MN 2+NA 2-2A 1M ·NA cos θ,⇒12=23+23+13-2⨯23cos θ,⇒cos θ=12.⇒θ=60︒.10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k= ;解:设k 2-pk=n ,则(k -p 2)2-n 2=p 24,⇒(2k -p +2n )(2k -p -2n )=p 2,⇒k=14(p +1)2.11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;解:1a n +1=2a n +13,⇒令b n =1a n +13,得b 0=23,b n =2b n -1,⇒b n =23⨯2n .即1a n =2n +1-13,⇒n∑i=01a i =13(2n +2-n -3).12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ;解:当∠MPN 最大时,⊙MNP 与x 轴相切于点P (否则⊙MNP 与x轴交于PQ ,则线段PQ 上的点P '使∠MP 'N 更大).于是,延长NM 交x轴于K (-3,0),有KM ·KN=KP 2,⇒KP=4.P (1,0),(-7,0),但(1,0)处⊙MNP 的半径小,从而点P 的横坐标=1. 三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数的和大于2n,则算过关.问:⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少?解:⑴ 设他能过n 关,则第n 关掷n 次,至多得6n 点,M N B 1A1BC D AC 1D 1由6n >2n,知,n ≤4.即最多能过4关.⑵ 要求他第一关时掷1次的点数>2,第二关时掷2次的点数和>4,第三关时掷3次的点数和>8.第一关过关的概率=46=23;第二关过关的基本事件有62种,不能过关的基本事件有为不等式x+y ≤4的正整数解的个数,有C 24个 (亦可枚举计数:1+1,1+2,1+3,2+1,2+2,3+1)计6种,过关的概率=1-662=56;第三关的基本事件有63种,不能过关的基本事件为方程x +y +z ≤8的正整数解的总数,可连写8个1,从8个空档中选3个空档的方法为C 38=8⨯7⨯63⨯2⨯1=56种,不能过关的概率=5663=727,能过关的概率=2027;∴连过三关的概率=23⨯56⨯2027=100243.14.在平面直角坐标系xOy 中,给定三点A (0,43),B (-1,0),C (1,0),点P 到直线BC 的距离是该点到直线AB 、AC 距离的等比中项.⑴ 求点P 的轨迹方程;⑵ 若直线L 经过∆ABC 的内心(设为D ),且与P 点轨迹恰好有3个公共点,求L 的斜率k 的取值范围.解:⑴ 设点P 的坐标为(x ,y ),AB 方程:x -1+3y4=1,⇒4x -3y +4=0, ①BC 方程:y=0, ② AC 方程:4x +3y -4=0, ③∴ 25|y |2=|(4x -3y +4)(4x +3y -4)|,⇒25y 2+16x 2-(3y -4)2=0,⇒16x 2+16y 2+24y -16=0,⇒2x 2+2y 2+3y -2=0.或25y 2-16x 2+(3y -4)2=0,⇒16x 2-34y 2+24y -16=0,⇒8x 2-17y 2+12y -8=0.∴ 所求轨迹为圆:2x 2+2y 2+3y -2=0, ④或双曲线:8x 2-17y 2+12y -8=0. ⑤但应去掉点(-1,0)与(1,0).⑵ ∆ABC 的内心D (0,12):经过D 的直线为x=0或y=kx +12. ⑥(a ) 直线x=0与圆④有两个交点,与双曲线⑤没有交点;(b ) k=0时,直线y=12与圆④切于点(0,12),与双曲线⑤交于(±582,12),即k=0满足要求.(c ) k=±12时,直线⑥与圆只有1个公共点,与双曲线⑤也至多有1个公共点,故舍去.(c ) k ≠0时,k ≠12时,直线⑥与圆有2个公共点,以⑥代入⑤得:(8-17k 2)x 2-5kx -254=0.当8-17k 2=0或(5k )2-25(8-17k 2)=0,即得k=±23417与k=±22.∴ 所求k 值的取值范围为{0,±23417,±22}.15.已知α,β是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )= 2x -t x 2+1的定义域为[α,β].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,π2)(i=1,2,3),若sin u 1+sin u 2+sin u 3=1,则1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364.解:⑴ α+β=t ,αβ=-14.故α<0,β>0.当x 1,x 2∈[α,β]时,∴ f '(x )= 2(x 2+1)-2x (2x -t )(x 2+1)2=-2(x 2-xt )+2(x 2+1)2.而当x ∈[α,β]时,x 2-xt <0,于是f '(x )>0,即f (x )在[α,β]上单调增.∴ g (t )= 2β-t β2+1-2α-t α2+1=(2β-t )(α2+1)-(2α-t )(β2+1)(α2+1)(β2+1)=(β-α)[t (α+β)-2αβ+2]α2β2+α2+β2+1=t 2+1(t 2+52)t 2+2516=8t 2+1(2t 2+5)16t 2+25 ⑵ g (tan u )= 8sec u (2sec 2u +3)16sec 2u +9=16+24cos 2u 16cos u +9cos 3u ≥16616+9cos 2u,∴ 1g (tan u 1)+1g (tan u 2)+1g (tan u 3)≤1166[16⨯3+9(cos 2u 1+cos 2u 2+cos 2u 3)]= 1166[75-9(sin 2u 1+sin 2u 2+sin 2u 3)]而13(sin 2u 1+sin 2u 2+sin 2u 3)≥(sin u 1+sin u 2+sin u 33)2,即9(sin 2u 1+sin 2u 2+sin 2u 3)≥3. ∴1g (tan u 1)+1g (tan u 2)+1g (tan u 3)≤1166(75-3)= 364.由于等号不能同时成立,故得证.。