2013年全国高校自主招生数学模拟试卷6
2013年“华约”自主招生数学全真模拟(附详案)

2011 am 2 ,则正整数 m 的最小值为( 2012
A 4025 B 4250 C 3650
8. 用红、黄、蓝三种颜色之一去涂途中标号为 1,2,,9
的 9 个小正方形(如图) ,使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且 “3、5、7”号数字涂相同的颜色,则符合条件的所有涂法共有( ) A 96 B 108 C 112 D120 9.设
2
2
14.(本小题满分 14 分)在△ABC 中,设 A、B、C 的对 边分别为 a、b、c 向量 m ),若 | m n | 2, (1)求角 A 的大小; (2)若 b 4 2 , 且c
2a, 求ABC 的面积.
(I)求 F
1 2 2008 F ... F ; 2009 2009 2009
(II)已知数列 an 满足 a1 2 , an1 F an ,求数列 an 的通项公式; (Ⅲ) 求证: a1a2 a3 ...an 2n 1 .
(1)求双曲线方程; (2)设 Q 为双曲线 C 右支上动点, F 为双曲线 C 的右焦点,在 x 轴负半轴上是否存在定 点 M 使得 QFM 2QMF ?若存在,求出点 M 的坐标;若不存在,请说明理由.
12.(本小题满分 14 分)已知函数 F x
3x 2 1 , x . 2x 1 2
并且 m+n=636,则实数对(m,n)表示平面上不同点的个数为( (A)60 个 (B)70 个 (C)90 个
) . (D)120 个
7 . 数 列 an 定 义 如 下 : a1 1, a 2 2, an 2
2013年全国高校自主招生数学模拟试卷及答案

2013年全国高校自主招生数学模拟试卷一 参考答案一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( B ) A.71 B. 71-C.21 D. 21-解:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
连结CM 、AC ,则∠AMC 为二面角A −PB −C 的平面角。
不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。
在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。
2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( A)A. ]31,31[-B. ]21,21[-C. ]31,41[- D. [−3,3] 解:令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对k ∈R ,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的k ∈R 成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( D ) A.8152 B.8159 C.8160 D.8161 解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。
2013年三大联盟自主招生数学试题及答案

ak al am an
a1 k 1 d a1 l 1 d a1 m 1 d a1 n 1 d k l mn k l mn ≥ mn 2 2 因此命题得证,
b2013 0 ,进而易得 a1 a2
b2013 mx m 2013 x m 2x 2013 .
a2013 0 .
(理科第 9 题,文科第 9 题) 对任意 ,求 32cos6 cos6 6cos 4 15cos 2 的值. 【解析】 32cos6 cos6 6cos 4 15cos 2
1 2 【解析】 B.
AB BC CA 的模等于( A BC
)
A.
B. 1
C. 3
D.不能确定
A B C A B C
A B C A B C
3 AB AC BA BC C A CB
AB BC CA AB BC CA
(理科第 7 题,文科第 8 题) 至多可以找到多少个两两不同的正整数使得它们中任意三个的和都是质数?证明你的结论. 【解析】 至多可以找到 4 个,如 1, 3 , 7 , 9 . 下面证明不能找到 5 个符合题意的正整数. 考虑它们模 3 的余数,设余数为 0 、 1 、 2 的分别有 a 、 b 、 c 个,则 1° 若 a 、 b 、 c 均不为零,则存在三个数,它们的和为 3 的倍数,一定不是质数; 2° 若 a 、 b 、 c 中有零,则根据抽屉原理,至少存在三个数,它们的余数相同. 此时它们的和为 3 的倍数,一定不是质数. 综上,不能找到 5 个符合题意的正整数. (理科第 8 题,文科第 10 题) 实数 a1 , a2 ,
2013年全国高校自主招生数学模拟试卷2

2013年全国高校自主招生数学模拟试卷二一、填空题(64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 . 3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 . 5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn,则数列}{n a 中整数项的个数为 . 二、解答题(56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方. (1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2013年全国高校自主招生数学模拟试卷二参考答案1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)2-∞-+∞. 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u ,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈= u x f .3.-1. 提示:由2211≤+ba ,得ab b a 22≤+.又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是ab b a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式)cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+.又5371)(x x x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故 ∈+<<+k k k (45242ππθππZ ). 因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ. 5.15000. 提示:由题设条件可知,满足条件的方案有两种情形:(1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案; (2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.6提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面A B D 所成角为θ,可求得32s i n ,31c o s ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM . 由余弦定理得231312)3(1222=⋅⋅⋅-+=MN ,故2=MN .四边形DMON 的外接圆的直径3322sin ===θMNOD .故球O 的半径3=R .7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得 BC DOP MN0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x , 11)(24212121=+++⋅=⋅y y y y x x .因为︒=∠90ACB ,所以0=⋅,即有0)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.8.15. 提示:=n a C65400320020023n n n--⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n . 当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数.因此,整数项的个数为15114=+.9.因为)21()(++-=b b f a f ,所以 |)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a , 所以21+=+b a 或1)2)(1(=++b a ,又因为b a <,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a . 从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f . 又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b , 故16210)2(6=+++b b .解得31-=b 或1-=b (舍去). 把31-=b 代入1)2)(1(=++b a 解得52-=a .所以 52-=a ,31-=b .10.(1)由原式变形得112)1)(1(211--++-=++n n n n n t a a t a ,则2111)1(212)1(21111+-+-+=-++=-+++n n n n n n n n n t a t a t a a t a . 记n n n b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b . 又211,211111=+=+b b b n n ,从而有221)1(111n n b b n =⋅-+=, 故 n t a n n 211=-+,于是有 1)1(2--=nt a n n .(2)nt n t a a n n n n )1(21)1(211--+-=-++ [])1)(1()1()1()1(211--++++-+++++-=n n n t t n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n n n n n n t t t t t n n t t t nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n t t t t t t n n t , 显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :m x y +=31,),(),,(2211y x B y x A . 将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y k P B P A . 则PA PB k k +==,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x )2(26)3)(22(2369322----+-⋅=m m m m 0122626312322=+-+--=m m m m ,从而,0=+P B P A k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==P B P A k k . 直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 6021249PAB S PA PB ∆=⋅⋅⋅︒==。
2013届高三数学全国高校自主招生模拟试卷(带答案)

2013届高三数学全国高校自主招生模拟试卷(带答案)2013年全国高校自主招生数学模拟试卷四一、选择题(本题满分36分,每小题6分)1.已知△ABC,若对任意t∈R,→BA-t→BC≥→AC,则△ABC一定为A.锐角三角形B.钝角三角形C.直角三角形D.答案不确定2.设logx(2x2+x-1)>logx2-1,则x的取值范围为A.12<x<1B.x>12且x≠1C.x>1D.0<x<13.已知集合A={x|5x-a≤0},B={x|6x-b>0},a,b∈N,且A∩B∩N ={2,3,4},则整数对(a,b)的个数为A.20B.25C.30D.424.在直三棱柱A1B1C1-ABC中,∠BAC=π2,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为A.15,1)B.15,2)C.1,2)D.15,2)5.设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件6.数码a1,a2,a3,…,a2006中有奇数个9的2007位十进制数-2a1a2…a2006的个数为A.12(102006+82006)B.12(102006-82006)C.102006+82006D.102006-82006二、填空题(本题满分54分,每小题9分)7.设f(x)=sin4x-sinxcosx+cos4x,则f(x)的值域是.8.若对一切θ∈R,复数z=(a+cosθ)+(2a-sinθ)i的模不超过2,则实数a的取值范围为.9.已知椭圆x216+y24=1的左右焦点分别为F1与F2,点P在直线l:x-3y+8+23=0上.当∠F1PF2取最大值时,比|PF1||PF2|的值为.10.底面半径为1cm的圆柱形容器里放有四个半径为12cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水cm3.11.方程(x2006+1)(1+x2+x4+…+x2004)=2006x2005的实数解的个数为.12.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为.三、解答题(本题满分60分,每小题20分)13.给定整数n≥2,设M0(x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.14.将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=1≤i <j≤5Σxixj.问:⑴当x1,x2,x3,x4,x5取何值时,S取到最大值;⑵进一步地,对任意1≤i,j≤5有xi-xj≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值.说明理由.15.设f(x)=x2+a.记f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,M={a∈R|对所有正整数n,fn(0)≤2}.证明,M=-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C.解:令∠ABC=α,过A作AD⊥BC于D,由→BA-t→BC≥→AC,推出→BA2-2t→BA•→BC+t2→BC2≥→AC2,令t=→BA•→BC→BC2,代入上式,得→BA2-2→BA2cos2α+→BA2cos2α≥→AC2,即→BA2sin2α≥→AC2,也即→BAsinα≥→AC.从而有→AD≥→AC.由此可得∠ACB=π2.答B.解:因为x>0,x≠12x2+x-1>0,解得x>12且x≠1.由logx(2x2+x -1)>logx2-1,+x2-x)><x<1,2x3+x2-x<2或x>1,2x3+x2-x>2.解得0<x<1或x>1.所以x的取值范围为x>12且x≠1.答C.解:5x-;6x-b>>b6.要使A∩B∩N={2,3,4},则1≤b6<2,4≤a5<5,即6≤b<12,20≤a<25.所以数对(a,b)共有C61C51=30个.答A.解:建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,则F(t1,0,0)(0<t1<1),E(0,1,12),G(12,0,1),D(0,t2,0)(0<t2<1).所以→EF=(t1,-1,-12),→GD=(-12,t2,-1).因为GD⊥EF,所以t1+2t2=1,由此推出0<t2<12.又→DF=(t1,-t2,0),→DF=t12+t22=5t22-4t2+1=5(t2-25)2+15,从而有15≤→DF<1.答A.解:显然f(x)=x3+log2(x+x2+1)为奇函数,且单调递增.于是若a+b≥0,则a≥-b,有f(a)≥f(-b),即f(a)≥-f(b),从而有f(a)+f(b)≥0.反之,若f(a)+f(b)≥0,则f(a)≥-f(b)=f(-b),推出a≥-b,即a+b≥0.答B.解:出现奇数个9的十进制数个数有A=C2006192005+C2006392003+…+C200620059.又由于(9+1)2006=k=0Σ2006C2006k92006-k以及(9-1)2006=k=0Σ2006C2006k(-1)k92006-k从而得A=C2006192005+C2006392003+…+C200620059=12(102006-82006).填0,98].解:f(x)=sin4x-sinxcosx+cos4x=1-12sin2x-12sin22x.令t=sin2x,则f(x)=g(t)=1-12t-12t2=98-12(t+12)2.因此-1≤t≤1ming(t)=g(1)=0,-1≤t≤1maxg(t)=g(-12)=98.故,f(x)∈0,98].填-55,55].解:依题意,得+cosθ)2+(2a--2sinθ)≤3-5a2.-25asin(θ-φ)≤3-5a2(φ=arcsin55)对任意实数θ成立.-,故a的取值范围为-55,55].填3-1..解:由平面几何知,要使∠F1PF2最大,则过F1,F2,P三点的圆必定和直线l相切于点P.直线l交x轴于A(-8-23,0),则∠APF1=∠AF2P,即∆APF1∽∆AF2P,即|PF1||PF2|=|AP||AF2|⑴又由圆幂定理,|AP|2=|AF1|•|AF2|⑵而F1(-23,0),F2(23,0),A(-8-23,0),从而有|AF1|=8,|AF2|=8+43.代入⑴,⑵得,|PF1||PF2|=|AF1||AF2|=88+43=4-23=3-1.填(13+22)π.解:设四个实心铁球的球心为O1,O2,O3,O4,其中O1,O2为下层两球的球心,A,B,C,D分别为四个球心在底面的射影.则ABCD是一个边长为22的正方形。
2013年自主招生数学考试试题

绝密☆启用前试卷类型:A2013年枣庄市实验中学自主招生考试数 学 试 题 2013.5注意事项:1.本试卷共6页,满分100分,考试用时90分钟。
考试结束时,将本试卷一并交回。
2.答题前,考生务必将自己的姓名、准考证号等信息写在试卷密封线内。
3.必须用黑色签字笔或蓝黑色钢笔作答(作图除外),答案必须写在答题纸各题目指定区域相应的位置,不按要求作答的答案无效。
第Ⅰ卷 选择题(共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.在实数π,2,0,3.14,2-,tan45°,3.1415926,71,1.010010001……(每两个1之 间0的个数依次加1)中,无理数的个数是 ( )A . 2个 B. 3个 C. 4个 D. 5个2.某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( )A .21元B .19.8元C . 22.4元D . 25.2元 3.已知a >b ,c ≠0,则下列关系一定成立的是( )A .c +a >c +bB .a bc c> C .c -a >c -b D . ac >bc4.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是2 5 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14 ,则原来盒中有黑色棋子( )A .8颗B .6颗C .4颗D .2颗5.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是A .12cm 2B .96cm 2C .48cm 2D .24cm 26.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-区市 学校 姓名 准考证号 ——————密————————————————封——————————————————线——————————7.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )8.如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( ) A .3 B .4 C .5 D .69.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( ) A. (45)+ cm B. 9 cm C. 45cm D. 62cm(第9题图)10.如图,AB 是O ⊙的直径,O ⊙交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的个数是( ) AD BC ⊥① EDA B ∠=∠② 12OA AC =③ ④DE 是O ⊙的切线 A .1个 B .2个 C .3个 D .4个(第8题图) F ED C BA CDBAE O(第10题图)第Ⅱ卷 非选择题 (共70分)二、填空题:本大题共7小题,满分21分.只要求填写最后结果,每题填对得3分. 11.平面上一点P 到⊙O 上一点的距离最长6cm ,最短为2cm ,则⊙O 的半径为 _____ 12.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则a 的取值范围是13.右图是一个食品包装盒的侧面展开图,根据图中所标的尺寸,求这个多面体的全面积(侧面积与两个底面体之和)_____14.已知等腰△ABC 中,AD 是BC 边上的高,点D 是垂足,且AD=21BC , 则△ABC 底角的度数为_____。
2013年全国高校自主招生数学模拟试卷

2013年全国高校自主招生数学模拟试卷命题人:南昌二中 高三(01)班 张阳阳一、选择题(本题满分36分,每小题6分)1.已知△ABC ,若对任意t ∈R ,||→BA -t →BC ≥||→AC ,则△ABC 一定为A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定 2.设log x (2x 2+x -1)>log x 2-1,则x 的取值范围为A .12<x <1B .x >12且x ≠1 C . x >1 D . 0<x <13.已知集合A ={x |5x -a ≤0},B ={x |6x -b >0},a ,b ∈N ,且A ∩B ∩N ={2,3,4},则整数对(a ,b )的个数为A .20B .25C .30D .42 4.在直三棱柱A 1B 1C 1-ABC 中,∠BAC =π2,AB =AC =AA 1=1.已知G 与E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD ⊥EF ,则线段DF 的长度的取值范围为A .[15,1)B .[15,2)C .[1,2)D .[15,2)5.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的A . 充分必要条件B . 充分而不必要条件C . 必要而不充分条件D . 既不充分也不必要条件 6.数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数-2a 1a 2…a 2006的个数为A .12(102006+82006)B .12(102006-82006) C .102006+82006 D .102006-82006二、填空题(本题满分54分,每小题9分)7. 设f (x )=sin 4x -sin x cos x +cos 4x ,则f (x )的值域是 .8. 若对一切θ∈R ,复数z =(a +cos θ)+(2a -sin θ)i 的模不超过2,则实数a 的取值范围为 .9.已知椭圆x 216+y 24=1的左右焦点分别为F 1与F 2,点P 在直线l :x -3y +8+23=0上.当∠F 1PF 2取最大值时,比|PF 1||PF 2|的值为 .10.底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3.11.方程(x 2006+1)(1+x 2+x 4+…+x 2004)=2006x 2005的实数解的个数为 . 12. 袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 .三、解答题(本题满分60分,每小题20分)13. 给定整数n ≥2,设M 0(x 0,y 0)是抛物线y 2=nx -1与直线y =x 的一个交点. 试证明对任意正整数m ,必存在整数k ≥2,使(x 0m ,y 0m )为抛物线y 2=kx -1与直线y =x 的一个交点.14.将2006表示成5个正整数x 1,x 2,x 3,x 4,x 5之和.记S =1≤i <j ≤5Σx i x j .问:⑴ 当x 1,x 2,x 3,x 4,x 5取何值时,S 取到最大值;⑵ 进一步地,对任意1≤i ,j ≤5有||x i -x j ≤2,当x 1,x 2,x 3,x 4,x 5取何值时,S 取到最小值.说明理由.15.设 f (x )=x 2+a . 记f 1(x )=f (x ),f n (x )=f (f n -1(x )),n =1,2,3,…,M ={a ∈R |对所有正整数n ,||f n (0)≤2}.证明,M =[-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C .解:令∠ABC =α,过A 作AD ⊥BC 于D ,由||→BA -t →BC ≥||→AC ,推出||→BA 2-2t →BA · →BC +t 2||→BC 2≥||→AC 2,令t =→BA · →BC ||→BC2,代入上式,得||→BA 2-2||→BA 2cos 2α+||→BA 2cos 2α≥||→AC 2,即 ||→BA 2sin 2α≥||→AC 2,也即||→BA sin α≥||→AC .从而有||→AD ≥||→AC .由此可得∠ACB =π2.答B .解:因为⎩⎨⎧x >0,x ≠12x 2+x -1>0,解得x >12且x ≠1.由log x (2x 2+x -1)>log x 2-1,⇒ log x (2x 3+x 2-x )>log x 2⎩⎨⎧0<x <1,2x 3+x 2-x <2或⎩⎨⎧x >1,2x 3+x 2-x >2.解得0<x <1或x >1. 所以x 的取值范围为x >12且x ≠1.答C . 解:5x -a ≤0x ≤a5;6x -b >0x >b6.要使A ∩B ∩N ={2,3,4},则 ⎩⎨⎧1≤b6<2,4≤a 5<5,即⎩⎨⎧6≤b <12,20≤a <25.所以数对(a ,b )共有C 61C 51=30个. 答A .解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,则F (t 1,0,0)(0<t 1<1),E (0,1,12),G (12,0,1),D (0,t 2,0)(0<t 2<1).所以→EF =(t 1,-1,-12),→GD =(-12,t 2,-1).因为GD ⊥EF ,所以t 1+2t 2=1,由此推出0<t 2<12.又→DF =(t 1,-t 2,0),||→DF =t 12+t 22=5t 22-4t 2+1=5(t 2-25)2+15,从而有15≤||→DF <1.答A .解:显然f (x )=x 3+log 2(x +x 2+1)为奇函数,且单调递增.于是若a +b ≥0,则a ≥-b ,有f (a )≥f (-b ),即f (a )≥-f (b ),从而有f (a )+f (b )≥0. 反之,若f (a )+f (b )≥0,则f (a )≥-f (b )=f (-b ),推出a ≥-b ,即a +b ≥0. 答B .解:出现奇数个9的十进制数个数有A =C 20061 92005+C 20063 92003+…+C 200620059.又由于(9+1)2006=k =0Σ2006C 2006k 92006-k以及(9-1)2006=k =0Σ2006C 2006k(-1)k 92006-k 从而得A =C 20061 92005+C 20063 92003+…+C 200620059=12(102006-82006). 填[0,98].解:f (x )=sin 4x -sin x cos x +cos 4x =1-12sin2x -12sin 22x .令t =sin2x ,则f (x )=g (t )=1-12t -12t 2=98-12(t +12)2.因此-1≤t ≤1min g (t )=g (1)=0,-1≤t ≤1max g (t )=g (-12)=98. 故,f (x )∈[0,98].填[-55,55].解:依题意,得|z |≤2(a +cos θ)2+(2a -sin θ)2≤42a (cos θ-2sin θ)≤3-5a 2. -25a sin(θ-φ)≤3-5a 2(φ=arcsin 55)对任意实数θ成立. 25|a |≤3-5a 2|a |≤55,故 a 的取值范围为[-55,55]. 填3-1..解:由平面几何知,要使∠F 1PF 2最大,则过F 1,F 2,P 三点的圆必定和直线l 相切于点P .直线l 交x 轴于A (-8-23,0),则∠APF 1=∠AF 2P ,即∆APF 1∽∆AF 2P ,即|PF 1||PF 2|=|AP ||AF 2|⑴ 又由圆幂定理,|AP |2=|AF 1|·|AF 2|⑵而F 1(-23,0),F 2(23,0),A (-8-23,0),从而有|AF 1|=8,|AF 2|=8+43. 代入⑴,⑵得,|PF 1||PF 2|=|AF 1||AF 2|=88+43=4-23=3-1.填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形。
2013年高考数学模拟试卷含答案

绝密★启用前 试卷类型:A理科数学本试卷分选择题和非选择题两部分,共4页,20小题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kkkn n P k pp -=-第Ⅰ卷 (选择题 满分40分)一、选择题:(本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -12.设全集U 是实数集R ,M={x|x 2>4},N ={x|31≤<x },则图中阴影部分表示的集合是( ) A .{x|-2≤x <1} B .{x|-2≤x ≤2}C .{x|1<x ≤2}D .{x|x <2}3.下列函数中,最小值为2的是( ) A .21222+++=x x yB .xx y 12+=C .)220)(22(<<-=x x x yD .1222++=x x y 4.设a 为函数)(cos 3sin R x x x y ∈+=的最大值,则二项式6)1(xx a -的展开式中含2x项的系数是( )XYOA .192B .182C .-192D .-182 5.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .46.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y2.5t44.5根据上表提供的数据,求出y 关于x 的线性回归方程为 0.70.35y x =+,那么表中t 的值为( )A. 3B. 3.15C. 3.5D. 4.57.已知方程20ax bx c ++= ,其中a 、b 、c 是非零向量,且a 、b不共线,则该方程( )A .至多有一个解B .至少有一个解C .至多有两个解D .可能有无数个解8.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函 数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则11++a b 的取值范围是( )A .)31,51( B .),5()31,(+∞⋃-∞ C .)5,31(D .)3,(-∞第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共6小题,每小题5分,满分30分)9.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .10.在等比数列{}n a 中,首项=1a 32,()44112a x dx =+⎰,则公比q 为 .11.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“ONE”,“WORLD”,“ONE”,“DREAM”的四张卡片随机排成一排,若卡片按从左到右的顺序排成“ONE WORLD ONE DREAM”,则孩子会得到父母的奖励,那么孩子受奖励的概率为 .12.已知三棱锥P ABC -的四个顶点均在半径为3的球面上,且PA 、PB 、PC 两两互相垂直,则三棱锥P ABC -的侧面积的最大值为 .13.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则tan C = .14.设直角三角形的两条直角边的长分别为a ,b ,斜边长为c ,斜边上的高为h ,则有 ①2222h c b a +>+, ②3333h c b a +<+,③4444h c b a +>+,④5555h c b a +<+.其中正确结论的序号是 ;进一步类比得到的一般结论是 .三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.16.(本小题满分12分)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x 、y ,记y x +=ξ; (Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)设“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”为事件A ,求事件A 发生的概率.17.(本小题满分14分)已知几何体BCDE A -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积; (Ⅱ)求异面直线DE 与AB 所成角的余弦值;(Ⅲ)探究在DE 上是否存在点Q ,使得BQ AQ ⊥,并说明理由.开始输入n11=a ,12=a ,1=ii i i a a a 6512-=++n i ≥1+=i i否是输出2+i a结束18.(本小题满分14分)某商场以100元/件的价格购进一批衬衣,以高于进货价的价格出售,销售期有淡季与旺季之分,通过市场调查发现:①销售量)(x r (件)与衬衣标价x (元/件)在销售旺季近似地符合函数关系:1)(b kx x r +=,在销售淡季近似地符合函数关系:2)(b kx x r +=,其中21210,0b b k b b k 、、且、><为常数; ②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中0)(=x r 时的标价x 为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题: (Ⅰ)填出表格中空格的内容:数量关系销售关系标价(元/件)销售量)(x r (件)(含k 、1b 或2b )销售总利润y (元)与标价x (元/件)的函数关系式旺季 x 1)(b kx x r +=淡季x(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元/件? 19.(本小题满分14分)已知数列}{n a 满足如图所示的程序框图. (Ⅰ)写出数列}{n a 的一个递推关系式; (Ⅱ)证明:}3{1n n a a -+是等比数列, 并求}{n a 的通项公式;(Ⅲ)求数列)}3({1-+n n a n 的前n 项和n T .20.(本小题满分14分)已知函数2()2ln .f x x x a x =++ (Ⅰ)若函数()(0,1)f x 在区间上是单调函数, 求实数a 的取值范围;(Ⅱ)当t ≥1时,不等式(21)2()3f t f t -≥- 恒成立,求实数a 的取值范围.正视图 侧视图俯视图55 3 4 34 绝密★启用前 试卷类型:A汕头市2010~2011学年度普通高中毕业班教学质量监测试题文科数学本试卷分选择题和非选择题两部分,共 4 页,20题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷 (选择题 满分50分)一、选择题:(本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -1 2.设{}{}(,),()()cos 2sin 2M a b N f x f x a x b x ==|=+平面内的点,给出M 到N 的映射:(,)()cos 2sin 2f a b f x a x b x →=+,则点(1,3)的象()f x 的最小正周期为( )A .2π B .4πC .πD .2π3.在等差数列{}n a 中,已知5710a a +=,n S 是数列{}n a 的前n 项和,则11S =( )A .45B .50C .55D .604.一个几何体的三视图如图所示,则这个几何体的表面积为( )A .72B .66C .60D .305.在边长为1的等边ABC ∆中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则 ,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则( )A .32-B .0C .32D .3XYO频率组距0.100.25 0.409 10 11 12 13 14时间6.已知函数1()x f x a =,2()a f x x =,3()log a f x x =(其中0a >且1a ≠),在同一坐标系中画出其中两个函数在x ≥0且y ≥0的范围内的大致图象,其中正确的是( )x y O1 Ax y O1 B 1xy O1 C 1xyO 1D17.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( ) A .6万元B .8万元C .10万元D .12万元8.若m 、n 为两条不重合的直线,α、β为两个 不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .49.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第 三项,9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 10.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则22++a b 的取值范围是( )A .)21,31(B .),3()21,(+∞⋃-∞C .)3,21(D .)3,(-∞第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共4小题,每小题5分,满分20分)11.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .12.已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则yx 39+的最小值为 .13.曲线3141,33y x x ⎛⎫=+ ⎪⎝⎭在点处的切线与两坐标轴所围成的三角形面积是 .14.观察以下等式:11=123+= 1236++=123410+++= 1234515++++=311=33129+= 33312336++= 33331234100+++= 3333312345225++++=可以推测3333123...n ++++= (用含有n 的式子表示,其中n 为自然数).三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知不等式()221,(0)x a a -≤>的解集为A ,函数22lg)(+-=x x x f 的定义域为B. (Ⅰ)若φ=⋂B A ,求a 的取值范围;(Ⅱ)证明函数22lg)(+-=x x x f 的图象关于原点对称.16.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.17.(本题满分14分)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀FG BDE AC后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张. (Ⅰ)设(,)i j 表示甲乙抽到的牌的数字,(如甲抽到红桃2,乙抽到红桃3,记为(2,3))写出甲乙二人抽到的牌的所有情况;(Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.18.(本题满分14分)如图,三角形ABC 中,AC=BC=AB 22,ABED 是边长为1 的正方形,平面ABED ⊥底面ABC ,若G 、F 分别是EC 、BD 的中点.(Ⅰ)求证:GF//底面ABC ; (Ⅱ)求证:AC ⊥平面EBC ; (Ⅲ)求几何体ADEBC 的体积V .19.(本题满分14分)某品牌电视生产厂家有A 、B 两种型号的电视机参加了家电下乡活动,若厂家A 、B 对两种型号的电视机的投放金额分别为p 、q 万元,农民购买电视机获得的补贴分别为101p 、52ln q万元,已知A 、B 两种型号的电视机的投放总额为10万元,且A 、B 两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln 4 1.4≈).20.(本题满分14分)已知二次函数2()f x ax bx =+的图像过点(4,0)n -,且'(0)2f n =,n N *∈.(Ⅰ)求()f x 的解析式;(Ⅱ)若数列{}n a 满足'111()n n f a a +='(0)f n ='111()n nf a a +=,且14a =,求数列{}n a 的通项公式;(Ⅲ)记1n n n b a a +=,数列{}n b 的前n 项和n T ,求证:423n T ≤< .汕头市2010——2011学年高中毕业班教学质量监测理科数学参考答案及评分意见一、选择题:本小题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BCDCAAAC二、填空题(本大题共6小题,每小题5分,满分30分)9.20; 10.3; 11.121; 12.18; 13.1; 14.②④, *)(N n h c b a n n n n ∈+<+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高校自主招生数学模拟试卷六一、选择题(36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A. B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A)163(B) 83 (C)1633 (D) 834.若x ∈[-512 ,-3 ],则y=tan(x +23 )-tan(x +6 )+cos(x +6 )的最大值是(A) 1252 (B) 1162 (C) 1163 (D) 12535.已知x ,y 都在区间(-2,2)内,且xy=-1,则函数u=44-x 2+99-y 2的最小值是(A) 85 (B) 2411 (C) 127 (D) 1256.在四面体ABCD 中, 设AB=1,CD=3,直线AB 与CD 的距离为2,夹角为3,则四面体ABCD 的体积等于 (A) 32 (B) 12 (C) 13 (D) 33二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }若A B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .三、(20分)13.设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.四、(20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R ) 与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.五、(本题满分20分)15.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A刚好与点A重合.这样的每一种折法,都留下一条折痕.当A取遍圆周上所有点时,求所有折痕所在直线上点的集合.2013年全国高校自主招生数学模拟试卷六参考答案一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 2049解:452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2003-1980=23项.由2025+23=2048.知选C.2.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是A. B. C. D.解:曲线方程为x2a+y2b=1,直线方程为y=ax+b.由直线图形,可知A、C中的a<0,A图的b>0,C图的b<0,与A、C中曲线为椭圆矛盾.由直线图形,可知B 、D 中的a >0,b <0,则曲线为焦点在x 轴上的双曲线,故选B .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A)163(B) 83 (C)1633 (D) 83解:抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=pk =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P的坐标为163.∴ PF=163.选A .4.若x ∈[-512 ,-3],则y=tan(x +23)-tan(x +6)+cos(x +6)的最大值是(A)1252 (B)1162 (C)1163 (D)1253解:令x +6=u ,则x +23=u +2,当x ∈[-512,-3]时,u ∈[-4,-6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-4,-6]时,sin2u 与cos u都单调递增,从而y 单调递增.于是u=-6时,y 取得最大值1163,故选C .5.已知x ,y 都在区间(-2,2)内,且xy=-1,则函数u=44-x 2+99-y 2的最小值是(A) 85 (B) 2411 (C) 127 (D) 125解:由x ,y ∈(-2,2),xy=-1知,x ∈(-2,-12)∪(12,2),u=44-x 2+9x 29x 2-1=-9x 4+72x 2-4-9x 4+37x 2-4=1+3537-(9x 2+4x2).当x ∈(-2,-12)∪(12,2)时,x 2∈(14,4),此时,9x 2+4x 2≥12.(当且仅当x 2=23时等号成立).此时函数的最小值为125,故选D .6.在四面体ABCD 中, 设AB=1,CD=3,直线AB 与CD 的距离为2,夹角为3,则四面体ABCD 的体积等于 (A) 32 (B) 12 (C) 13 (D) 33解:如图,把四面体补成平行六面体,则此平行六面体的体积=1×3×sin π3×2=3.而四面体ABCD 的体积=16×平行六面体体积=12.故选B .二.填空题(每小题9分,共54分)NMDCBA7.不等式|x |3-2x 2-4|x |+3<0的解集是 .解:即|x |3-2|x |2-4|x |+3<0,(|x |-3)(|x |-5-12)(|x |+5+12)<0.|x |<-5+12,或5-12<|x |<3.∴ 解为(-3,-5-12)∪(5-12,3).8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .解:F 1(-5,0),F 2(5,0);|F 1F 2|=25.|PF 1|+|PF 2|=6,|PF 1|=4,|PF 2|=2.由于42+22=(25)2.故PF 1F 2是直角三角形55.∴ S=4.9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }若A B ,则实数a 的取值范围是 .解:A=(1,3);又,a ≤-21-x ∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x -7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d=解:a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9. ∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .解:由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1. 在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1N MHGF EDC BA出现2n -1次.∴ S n =2n -20.11…1+2n -210-n .∴ lim n →∞S n T n =1219=118. 三、(本题满分20分)13.设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.解:x +1≥0,2x -3≥0,15-3x ≥0.32≤x ≤5.由平均不等式x +1+x +1+2x -3+15-3x4≤x +1+x +1+2x -3+15-3x4≤14+x4. ∴ 2x +1+2x -3+15-3x =x +1+x +1+2x -3+15-3x ≤214+x .但214+x 在32≤x ≤5时单调增.即214+x ≤214+5=219.故证.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.解:曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c sin 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1)y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ① 若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c 0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i . 与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为 4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ② 令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0,此方程在[14,34]内有惟一解: x=12. 以x=12代入②得, y=14(a +2b +c ). ∴ 所求公共点坐标为(12,14(a +2b +c )). 五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A 刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A 取遍圆周上所有点时,求所有折痕所在直线上点的集合.解:对于⊙O 上任意一点A ,连AA ,作AA 的垂直平分线MN ,连OA .交MN 于点P .显然OP +PA=OA =R .由于点A 在⊙O 内,故OA=a <R .从而当点A 取遍圆周上所有点时,点P 的轨迹是以O 、A 为焦点,OA=a 为焦距,R (R >a )为长轴的椭圆C .而MN 上任一异于P 的点Q ,都有OQ +QA=OQ +QA >OA .故点Q 在椭圆C 外.即折痕上所有的点都在椭圆C 上及C 外.反之,对于椭圆C 上或外的一点S ,以S 为圆心,SA 为半径作圆,交⊙O 于A ,则S 在AA 的垂直平分线上,从而S 在某条折痕上.最后证明所作⊙S 与⊙O 必相交. D S'M N S Q P A'O A1当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S),取过S的半径OD,则由点S在椭圆C外,故OS+S A≥R(椭圆的长轴).即S A≥S D.于是D在⊙S内或上,即⊙S与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.。