【精品】2021年全国高校自主招生数学模拟试卷含答案15

合集下载

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1答案:B、C2. 已知函数f(x) = 2x - 3,求f(5)的值。

A. 7B. 4C. 1D. 2答案:A3. 若a > b > 0,下列不等式中正确的是:A. a^2 > b^2B. a + b > 2√(ab)C. a/b > b/aD. a^3 > b^3答案:D4. 已知等差数列的首项为1,公差为2,求第10项的值。

A. 19C. 17D. 16答案:A5. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。

A. 5B. 6C. 7D. 8答案:A7. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A8. 已知正弦函数sin(x)的周期为2π,求余弦函数cos(x)的周期。

B. 2πC. 4πD. 8π答案:B9. 根据勾股定理,直角三角形的斜边长度是两直角边长度的平方和的平方根。

设a和b是直角边,c是斜边,下列哪个表达式是正确的?A. c = √(a^2 + b^2)B. a = √(c^2 + b^2)C. b = √(c^2 - a^2)D. c = √(b^2 - a^2)答案:A10. 已知一个数列的前三项为1, 1, 2,且每一项都是前两项的和,求第5项的值。

A. 4B. 5C. 6D. 7答案:C二、填空题(每题4分,共20分)11. 根据二项式定理,展开式(a + b)^3的通项公式是________。

答案:T_{r+1} = C_{3}^{r}a^{3-r}b^{r}12. 如果一个函数是奇函数,那么f(-x)等于________。

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。

A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。

A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。

6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。

7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。

8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。

三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。

10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。

求工厂的盈亏平衡点。

答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。

2021年数学高中自主招生考试数学试卷

2021年数学高中自主招生考试数学试卷

高中自主招生考试数学试卷1、试卷分试题卷和答题卷两部分。

满分为100分;考试时间为70分钟。

2、答题时;应该在答题卷密封区内写明姓名、学校和准考证号码。

3、所有答案都必须做在答题卷标定的位置上;请务必注意试题序号和答题序号相对应。

一、选择题:(每个题目只有一个正确答案;每题4分;共32分) 1.计算tan 602sin 452cos30︒+︒-︒的结果是( )A .2B .2C .1D .32.如图;边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''';图中阴影部分的面积为( )A .313-B .33C .314-D .123.已知b a ,为实数;且1=ab ;设11+++=b b a a M ;1111+++=b a N ;则N M ,的大小关系是( )A .N M >B .N M =C .N M <D .无法确定 4. 一名考生步行前往考场; 10分钟走了总路程的41;估计步行不能准时到达;于是他改乘出租车赶往考场;他的行程与时间关系如图所示(假定总路程为1);则他到达考场所花的时间比一直步行提前了( )A .20分钟 B.22分钟 C.24分钟 D .26分钟5.二次函数1422++-=x x y 的图象如何移动就得到22x y -=的图象( ) A. 向左移动1个单位;向上移动3个单位。

B. 向右移动1个单位;向上移动3个单位。

C. 向左移动1个单位;向下移动3个单位。

D. 向右移动1个单位;向下移动3个单位。

6.下列名人中:①比尔•盖茨 ②高斯 ③刘翔 ④诺贝尔 ⑤陈景润 ⑥陈省身 ⑦高尔基 ⑧爱因斯坦;其中是数学家的是( )A .①④⑦B .②④⑧C .②⑥⑧D .②⑤⑥7.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品;这三件物品的原价和优惠方欲购买的 商品原价(元)优惠方式一件衣服 420 每付现金200元;返购物券200元;且付款时可以使用购物券 一双鞋 280 每付现金200元;返购物券200元;但付款时不可以使用购物券 一套化妆品300付款时可以使用购物券;但不返购物券ABC DB 'D 'C '请帮张阿姨分析一下;选择一个最省钱的购买方案. 此时;张阿姨购买这三件物品实际所付出的钱的总数为( )A . 500元B . 600元C . 700元D . 800元 8.向高为H 的水瓶中注水;注满为止;如果注水量V 与水深h 的函数关系的图象如上图所示;那么水瓶的形状是( )二、填空题:(每题6分;共30分)9. 若关于x 的分式方程3131+=-+x ax 在实数范围内无解;则实数=a _____. 10.三角形的两边长为4cm 和7cm ;则这个三角形面积的最大值为_____________cm 2. 11.对正实数b a ,作定义b a ab b a +-=*;若444=*x ;则x 的值是________.12.已知方程()0332=+-+x a x 在实数范围内恒有解;并且恰有一个解大于1小于2;则a 的取值范围是 .13.如果有2007名学生排成一列;按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1……的规律报数;那么第2007名学生所报的数是 .三、解答题:(本题有4个小题;共38分)解答应写出文字说明, 证明过程或推演步骤。

最新全国高校自主招生数学模拟试卷15(含答案解析)

最新全国高校自主招生数学模拟试卷15(含答案解析)

全国高校自主招生数学模拟试卷十五一.选择题(每小题5分,共30分)1.若M={(x,y)| |tanπy|+sin2πx=0},N={(x,y)|x2+y2≤2},则M∩N地元素个数是()(A)4 (B)5 (C)8 (D)92.已知f(x)=a sin x+b3x+4(a,b为实数),且f(lglog310)=5,则f(lglg3)地值是()(A)-5 (B)-3 (C)3 (D)随a,b取不同值而取不同值3.集合A,B地并集A∪B={a1,a2,a3},当A≠B 时,(A,B)与(B,A)视为不同地对,则这样地(A,B)对地个数是()(A)8 (B)9 (C)26 (D)274.若直线x=π4被曲线C:(x-arcsin a)(x-arccos a)+(y-arcsin a)(y+arcco s a)=0所截地弦长为d,当a变化时d地最小值是( )(A) π4(B)π3(C)π2(D)π5.在△ABC中,角A,B,C地对边长分别为a,b,c,若c-a等于AC边上地高h,则sin C-A2+cosC+A2地值是( )(A )1 (B ) 12 (C ) 13(D )-16.设m ,n 为非零实数,i 为虚数单位,z ∈C ,则方程|z +ni |+|z -mi |=n 与|z +ni |-|z -mi |=-m 在同一复平面内地图形(F 1,F 2为焦点)是( ) 二、填空题(每小题5分,共30分)1.二次方程(1-i )x 2+(λ+i )x +(1+i λ)=0(i 为虚数单位,λ∈R )有两个虚根地充分必要条件是λ地取值范围为________.(A)(B)(C)(D)2.实数x ,y 满足4x 2-5xy +4y 2=5,设 S=x 2+y 2,则1S max +1S min=_______.3.若z ∈C ,arg(z 2-4)= 5π6,arg(z 2+4)= π3,则z 地值是________.4.整数⎣⎢⎡⎦⎥⎤10931031+3地末两位数是_______.5.设任意实数x 0>x 1>x 2>x 3>0,要使log x 0x 11993+log x 1x 21993+log x 2x 31993≥k ·log x 0x 31993恒成立,则k 地最大值是_______.6.三位数(100,101, ,999)共900个,在卡片上打印这些三位数,每张卡片上打印一个三位数,有地卡片所印地,倒过来看仍为三位数,如198倒过来看是861;有地卡片则不然,如531倒过来看是,因此,有些卡片可以一卡二用,于是至多可以少打印_____张卡片.三、(本题满分20分)三棱锥S-ABC中,侧棱SA、SB、SC两两互相垂直,M为三角形ABC地重心,D为AB地中点,作与SC平行地直线DP.证明:(1)DP与SM相交;(2)设DP与SM地交点为D',则D'为三棱锥S-ABC地外接球球心.四、(本题满分20分)设0<a<b,过两定点A(a,0)和B(b,0)分别引直线l和m,使与抛物线y2=x有四个不同地交点,当这四点共圆时,求这种直线l与m地交点P地轨迹.五、(本题满分20分)设正数列a0,a1,a2,…,a n,…满足a n a n-2-a n-1a n-2=2a n-1,(n≥2)且a0=a1=1,求{a n}地通项公式.全国高校自主招生数学模拟试卷十五参考答案一、选择题(每小题5分,共30分)1.若M={(x,y)| |tanπy|+sin2πx=0},N={(x,y)|x2+y2≤2},则M∩N地元素个数是()(A)4 (B)5 (C)8 (D)9解:tanπy=0,y=k(k∈Z),sin2πx=0,x=m(m∈Z),即圆x2+y2=2及圆内地整点数.共9个.选D.2.已知f(x)=a sin x+b3x+4(a,b为实数),且f(lglog310)=5,则f(lglg3)地值是()(A)-5 (B)-3 (C)3 (D)随a,b取不同值而取不同值10=m,则lglg3=-lglog310=-m,解:设lglog3则f(m)=a sin m+b3m+4=5,即a sin m+b3m=1.∴f(-m)=-(a sin m+b3m)+4=-1+4=3.选C.3.集合A,B地并集A∪B={a1,a2,a3},当A≠B 时,(A,B)与(B,A)视为不同地对,则这样地(A,B)对地个数是()(A)8 (B)9 (C)26 (D)27解:a 1∈A 或∉A ,有2种可能,同样a 1∈B 或∉B ,有2种可能,但a 1∉A 与a 1∉B 不能同时成立,故有22-1种安排方式,同样a 2、a 3也各有22-1种安排方式,故共有(22-1)3种安排方式.选D .4.若直线x =π4被曲线C :(x -arcsin a )(x -arccos a )+(y -arcsin a )(y +arccos a )=0所截地弦长为d ,当a 变化时d 地最小值是( )(A ) π4 (B ) π3 (C ) π2(D )π解:曲线C 表示以(arcsin a ,arcsin a ),(arccos a ,-arccos a )为直径端点地圆.即以(α,α)22及(π2-α,-π2+α)(α∈[-π2,π2])为直径端点地圆.而x=π4与圆交于圆地直径.故d=(2α-π2)2+(π2)2≥π2.故选C.5.在△ABC中,角A,B,C地对边长分别为a,b,c,若c-a等于AC边上地高h,则sin C-A2+cosC+A2地值是( )(A)1 (B) 12(C)13(D)-1解:2R(sin C-sin A)=c sin A=2R sin C sin A,⇒sin C -sin A=sin C sin A,⇒2cos C +A 2sin C -A2=-12[cos(C +A )-cos(C -A )]=12[1-2sin 2C -A 2-2cos 2C +A 2+1]. ⇒(sinC -A2+cosC +A2)2=1,但sinC -A2+cosC +A2>0,故选A .6.设m ,n 为非零实数,i 为虚数单位,z ∈C ,则方程|z +ni |+|z -mi |=n 与|z +ni |-|z -mi |=-m 在同一复平面内地图形(F 1,F 2为焦点)是( ) 解:方程①为椭圆,②为双曲线地一支.二者地(A)(B)(C)(D)焦点均为(-ni,mi),由①n>0,故否定A,由于n为椭圆地长轴,而C中两个焦点与原点距离(分别表示|n|、|m|)均小于椭圆长轴,故否定C.由B与D知,椭圆地两个个焦点都在y轴负半轴上,由n为长轴,知|OF1|=n,于是m<0,|OF2|=-m.曲线上一点到-ni距离大,否定D,故选B.二、填空题(每小题5分,共30分)1.二次方程(1-i)x2+(λ+i)x+(1+iλ)=0(i为虚数单位,λ∈R)有两个虚根地充分必要条件是λ地取值范围为________.解:即此方程没有实根地条件.当λ∈R时,此方程有两个复数根,若其有实根,则x2+λx+1=0,且x2-x-λ=0.相减得(λ+1)(x+1)=0.当λ=-1时,此二方程相同,且有两个虚根.故λ=-1在取值范围内.当λ≠-1时,x=-1,代入得λ=2.即λ=2时,原方程有实根x=-1.故所求范围是λ≠2.2.实数x,y满足4x2 5xy+4y2=5,设S=x2+y2,则1S max+1S min=_______.解:令x=r cosθ,y=r sinθ,则S=r2得r2(4-5sinθcosθ)=5.S=54-52sin2θ.∴1S max+1S min=4+525+4-525=85.3.若z ∈C ,arg(z 2-4)= 5π6,arg(z 2+4)= π3,则z 地值是________.解:如图,可知z 2表示复数4(cos120°+i sin120°). ∴ z=±2(cos60°+i sin60°)=±(1+3i ).4.整数⎣⎢⎡⎦⎥⎤10931031+3地末两位数是_______.解:令x=1031,则得x 3x +3=x 3+27-27x +3=x 2-3x +9-27x +3.由于0<27x +3<1,故所求末两位数字为09-1=08.5.设任意实数x 0>x 1>x 2>x 3>0,要使log x 0x 11993+log x 1x 21993+log x 2x 31993≥k ·log x 0x 31993恒成立,则k地最大值是_______.解:显然x0x3>1,从而log x0x31993>0.即1lg x0-lg x1+1lg x1-lg x2+1lg x2-lg x3≥klg x0-lg x3.就是[(lg x0-lg x1)+(lg x1-lg x2)+(lg x2-lg x3)]( 1lg x0-lg x1+1lg x1-lg x2+1lg x2-lg x3)≥k.其中lg x0-lg x1>0,lg x1-lg x2>0,lg x2-lg x3>0,由Cauchy不等式,知k≤9.即k地最大值为9.6.三位数(100,101, ,999)共900个,在卡每张卡片上打印一个三位数,有地卡片所印地,倒过来看仍为三位数,如198倒过来看是861;有地卡片则不然,如531倒过来看是,因此,有些卡片可以一卡二用,于是至多可以少打印_____张卡片.解:首位与末位各可选择1,6,8,9,有4种选择,十位还可选0,有5种选择,共有4×5×4=80种选择.但两端为1,8,中间为0,1,8时,或两端为9、6,中间为0,1,8时,倒后不变;共有2×3+2×3=12个,故共有(80-12)÷2=34个.三、(本题满分20分)三棱锥S-ABC中,侧棱SA、SB、SC两两互相垂直,M为三角形ABC地重心,D为AB地中点,作与SC平行地直线DP .证明:(1)DP 与SM 相交;(2)设DP 与SM 地交点为D ',则D '为三棱锥S —ABC 地外接球球心.⑴ 证明:∵ DP ∥SC ,故DP 、CS 共面. ∴ DC ⊆面DPC ,∵ M ∈DC ,⇒M ∈面DPC ,SM ⊆面DPC .∵ 在面DPC 内SM 与SC 相交,故直线SM 与DP 相交.⑵ ∵ SA 、SB 、SC 两两互相垂直,∴ SC ⊥面SAB ,SC ⊥SD .∵ DP ∥SC ,∴ DP ⊥SD .△DD 'M ∽△CSM , ∵ M 为△ABC 地重心,∴ DM ∶MC=1∶2.∴ DD '∶SC=1∶2.取SC 中点Q ,连D 'Q .则SQ=DD ',⇒平面四边形D‘QM S AD CB PDD 'QS 是矩形.∴ D 'Q ⊥SC ,由三线合一定理,知D 'C=PS . 同理,D 'A= D 'B= D 'B= D 'S .即以D '为球心D 'S 为半径作球D '.则A 、B 、C 均在此球上.即D '为三棱锥S —ABC 地外接球球心. 四、(本题满分20分)设0<a <b ,过两定点A (a ,0)和B (b ,0)分别引直线l 和m ,使与抛物线y 2=x 有四个不同地交点,当这四点共圆时,求这种直线l 与m 地交点P 地轨迹. 解:设l :y=k 1(x -a ),m :y=k 2(x -b ).于是l 、m 可写为(k 1x -y -k 1a )(k 2x -y -k 2b )=0.∴ 交点满足⎩⎨⎧y 2=x , (k 1x -y -k 1a )(k 2x -y -k 2b )=0.若四个交点共圆,则此圆可写为(k1x-y-k1a)(k2x -y-k2b)+ (y2-x)=0.此方程中xy项必为0,故得k1=-k2,设k1=-k2=k ≠0.于是l、m方程分别为y=k(x-a)与y=-k(x-b).消去k,得2x-(a+b)=0,(y≠0)即为所求轨迹方程.五、(本题满分20分)设正数列a0、a1、a2、…、a n、…满足a n a n-2-a n-1a n-2=2a n-1,(n≥2)且a0=a1=1,求{a n}地通项公式.解:变形,同除以a n-1a n-2得:a na n-1=2a n-1a n-2+1,令a na n -1+1=b n ,则得b n =2b n -1. 即{b n }是以b 1=11+1=2为首项,2为公比地等比数列.∴ b n =2n.∴ a n a n -1=(2n -1)2.故∴ ⎩⎨⎧a 0=1, a n =(2n -1)2(2n -1-1)2…(21-1)2.(n ≥1)。

2021年新高考数学全国卷模拟(附参考答案和详解)

2021年新高考数学全国卷模拟(附参考答案和详解)

绝密★启用前2021年普通高等学校招生模拟考试(全国卷Ⅰ)数学(适用新高考地区)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数2(2i)-对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{|3213}A x x =-≤-≤,集合B 为函数lg(1)y x =-的定义域,则A B =( )A.(1,2)B.[1,2]C.[1,2)D.(1,2]3.已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( ) A.92-B.0C.3D.1524.使3nx⎛+ ⎝()n +∈N 的展开式中含有常数项的最小的n 为( )A.4B.5C.6D.75.容量为20的样本数据,分组后的频数如下表:A.0.35B.0.45C.0.55D.0.656.已知过点(2,2)P 的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则a =( ) A.12-B.1C.2D.127.命题"存在一个无理数,它的平方是有理数"的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数8.已知50,log ,lg ,510db b a bc >===,则下列等式一定成立的是( )A.d ac =B.a cd =C.c ad =D.d a c =+二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数大于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差10.如果双曲线的离心率51e +=有( )A.双曲线221251x =-是黄金双曲线 B.双曲线22151y -=+是黄金双曲线 C.在双曲线22221x y a b-=中,1F 为左焦点,2A 为右顶点,1(0,)B b ,若11290F B A ∠=,则该双曲线是黄金双曲线D.在双曲线22221x y a b-=中,过焦点2F 作实轴的垂线交双曲线于M ,N 两点,O 为坐标原点,若120MON ∠=,则该双曲线是黄金双曲线11.已知m ,n 为两条不同的直线,α,β为两个不同的平面,给出下列4个命题,其中真命题有( ) A.若m α⊂,n α,则m n B.若m α⊥,n α,则m n ⊥ C.若m α⊥,m β⊥,则αβD.若m α,n α,则m n12.已知()f x 为定义在R 上的偶函数,当0x ≥时,有(1)()f x f x +=-,且当[0,1)x ∈时,2()log (1)f x x =+.给出下列命题,其中正确的命题的为( )A.(2016)(2017)0f f +-=B.函数()f x 在定义域上是周期为2的周期函数C.直线y x =与函数()f x 的图像有1个交点D.函数()f x 的值域为(1,1)-第Ⅱ卷本卷包括填空题和解答题两部分,共90分. 三、填空题:本题共4小题,每小题5分。

自主招生数学试题及答案

自主招生数学试题及答案

2021年自主招生数学试题(分值: 100分 时间:90分钟)一、选择题〔本大题共6小题,每题5分,共30分,在每题给出的四个选项中,只有一个选项是正确的〕1、假设对于任意实数a ,关于x 的方程0222=+--b a ax x 都有实数根,那么实数b的取值围是〔 〕 A b ≤0 B b ≤21-C b ≤81- D b ≤-1 2、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,S △BDE ∶S △CDE =1∶3,那么S △DOE ∶S △AOC 的值为〔 〕A .1∶3B .1∶4C .1∶9D .1∶16 3、某校吴教师组织九(1)班同学开展数学活动,带着同学们测量学校附近一电线杆的高(如下图)。

电线杆直立于地面上,某天在太的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为300,在C 处测得电线杆顶端A 得仰角为450,斜坡与地面成600角,CD=4m ,那么电线杆的高(AB)是〔 〕 A .)344(+mB .)434(-mC .)326(+mD .12m4、如图,矩形ABCD 中,AB=8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过〔 〕秒时,直线MN 和正方形AEFG 开场有公共点。

A .53B .12C .43D .23(第2题图) (第3题图) (第4题图)5、如图,在反比例函数xy 2-=的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第一象限有一点C ,满足AC=BC ,当点A 运动时,点C 始终在函数xky =的图象上运动,假设tan ∠CAB=2,那么k 的值为() A. 2B. 4C. 6D. 86、如图,O 是等边三角形ABC 一点,且OA=3,OB=4,OC=5.将线段OB 绕点B 逆时针旋转600得到线段O ′B ,那么以下结论:①△AO ′B 可以由△COB 绕点B 逆时针旋转600得到;②∠AOB=1500;③633AOBO'S =+四边形;④9364AOB AOC S S +=+△△。

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像经过点(1, 2)和(2,3),则下列哪个选项是正确的?A. a + b + c = 2B. 4a + 2b + c = 3C. a + 2b + c = 3D. 4a + b + c = 5答案:C2. 已知数列{an}是等差数列,且a1 + a2 + a3 = 12,a2 + a3 + a4 = 18,则a1 + a5的值是多少?A. 18B. 20C. 24D. 26答案:B3. 若复数z满足|z - 1| = |z + i|,则z对应的点在复平面上位于哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B4. 已知函数f(x) = ln(x) + 1/x,若f(x)在区间(0, +∞)上单调递增,则实数k的取值范围是?A. k > 0B. k ≥ 1C. k ≤ -1D. k ≤ 0答案:B二、填空题(每题5分,共20分)5. 若一个圆的直径为10,则该圆的面积为_______。

答案:25π6. 已知向量a = (3, -1),b = (2, 4),则向量a与向量b的数量积为_______。

答案:57. 若函数f(x) = x^3 - 3x^2 + 2在区间[1, 2]上单调递增,则实数k的取值范围是_______。

答案:k ≤ -18. 已知等比数列{an}的前三项分别为1,2,4,则该数列的通项公式为an = _______。

答案:2^(n-1)三、解答题(每题15分,共40分)9. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调区间,并说明理由。

答案:函数f(x)的单调递增区间为[2, +∞),单调递减区间为(-∞, 2)。

理由是f(x)的导数为f'(x) = 2x - 4,令f'(x) > 0得x > 2,令f'(x) < 0得x < 2。

自主招生考试数学试卷及参考答案

自主招生考试数学试卷及参考答案

自主招生考试数学试卷及参考答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22第2自主招生考试 数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。

2.全卷由试题卷和答题卷两部分组成。

试题的答案必须做在答题卷的相应位置上。

做在试题卷上无效。

3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。

4.答题过程不准使用计算器。

祝你成功!一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则 A S S S 123<< B S S S 213<< C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是33第5A π-1B π-2C 121-πD 221-π4.由325x y a x y a x y a m-=+⎧⎪+=⎪⎨>⎪⎪>⎩得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是 A 0 B 1 C 2 D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =ax 2+(a -b )x —b 的图象如图所示,44那么化简222||a ab b b -+-的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S 正方形ABCD = ▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:(1)第4个图案中有白色纸片 ▲ 张 (2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张第10题 第7题第8题5511.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答: ▲ . (2)作DE ∥AB 的目的是: ▲ .(3) 判断四边形ABED 为平行四边形的依据是: ▲ . (4)判断四边形ABCD 是等腰梯形的依据是 ▲ .(5)若题设中没有AD ≠BC ,那么四边形ABCD 一定是等腰梯形吗为什么 答 ▲ .自主招生考试第11题第12题66数学标准答案一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8. 256 9. 57610.(1) 13 (2) 3n+1 (3) 15250 11. a b12.(1)没有错误 (2)为了证明AD ∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义 (5) 不一定,因为当AD =BC 时,四边形ABCD 是矩形 三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年全国高校自主招生数学模拟试卷十五含答案一.选择题(每小题5分,共30分)1.若M={(x ,y )| |tan πy |+sin 2πx=0},N={(x ,y )|x 2+y 2≤2},则M ∩N 的元素个数是( )(A )4 (B )5 (C )8 (D )92.已知f (x )=a sin x +b 3x +4(a ,b 为实数),且f (lglog 310)=5,则f (lglg3)的值是( ) (A )-5 (B )-3 (C )3 (D )随a ,b 取不同值而取不同值3.集合A ,B 的并集A ∪B={a 1,a 2,a 3},当A ≠B 时,(A ,B )与(B ,A )视为不同的对,则这样的(A ,B )对的个数是( )(A )8 (B )9 (C )26 (D )274.若直线x =π4被曲线C :(x -arcsin a )(x -arccos a )+(y -arcsin a )(y +arccos a )=0所截的弦长为d ,当a 变化时d 的最小值是( )(A ) π4 (B ) π3 (C ) π2(D )π5.在△ABC 中,角A ,B ,C 的对边长分别为a ,b ,c ,若c -a 等于AC 边上的高h ,则sinC -A2+cosC +A2的值是( )(A )1 (B ) 12 (C ) 13(D )-16.设m ,n 为非零实数,i 为虚数单位,z ∈C ,则方程|z +ni |+|z -mi |=n 与|z +ni |-|z -mi |=-m 在同一复平面内的图形(F 1,F 2为焦点)是( )二、填空题(每小题5分,共30分)1.二次方程(1-i )x 2+(λ+i )x +(1+i λ)=0(i 为虚数单位,λ∈R )有两个虚根的充分必要条(A)(B)(C)(D)件是λ的取值范围为________.2.实数x ,y 满足4x 2-5xy +4y 2=5,设 S=x 2+y 2,则1S max +1S min=_______.3.若z ∈C ,arg(z 2-4)= 5π6,arg(z 2+4)= π3,则z 的值是________.4.整数⎣⎢⎡⎦⎥⎤10931031+3的末两位数是_______.5.设任意实数x 0>x 1>x 2>x 3>0,要使log x 0x 11993+log x 1x 21993+log x 2x 31993≥k ·log x 0x 31993恒成立,则k 的最大值是_______.6.三位数(100,101, ,999)共900个,在卡片上打印这些三位数,每张卡片上打印198倒过来看是861;有的卡片则不然,如531倒过来看是 ,因此,有些卡片可以一卡二用,于是至多可以少打印_____张卡片. 三、(本题满分20分)三棱锥S -ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 的中点,作与SC 平行的直线DP .证明:(1)DP 与SM 相交;(2)设DP 与SM 的交点为D ',则D '为三棱锥S -ABC 的外接球球心.四、(本题满分20分)设0<a <b ,过两定点A (a ,0)和B (b ,0)分别引直线l 和m ,使与抛物线y 2=x 有四个不同的交点,当这四点共圆时,求这种直线l 与m 的交点P 的轨迹.五、(本题满分20分)设正数列a 0,a 1,a 2,…,a n ,…满足a n a n -2 -a n -1a n -2 =2a n -1,(n ≥2) 且a 0=a 1=1,求{a n }的通项公式.参考答案一、选择题(每小题5分,共30分)1.若M={(x ,y )| |tan πy |+sin 2πx =0},N={(x ,y )|x 2+y 2≤2},则M ∩N 的元素个数是( )(A )4 (B )5 (C )8 (D )9解:tan πy=0,y=k (k ∈Z ),sin 2πx =0,x=m (m ∈Z ),即圆x 2+y 2=2及圆内的整点数.共9个.选D .2.已知f (x )=a sin x +b 3x +4(a ,b 为实数),且f (lglog 310)=5,则f (lglg3)的值是( ) (A )-5 (B )-3 (C )3 (D )随a ,b 取不同值而取不同值解:设lglog 310=m ,则lglg3=-lglog 310=-m ,则f (m )=a sin m +b 3m +4=5,即a sin m +b 3m=1.∴ f (-m )=-(a sin m +b 3m )+4=-1+4=3.选C .3.集合A ,B 的并集A ∪B={a 1,a 2,a 3},当A ≠B 时,(A ,B )与(B ,A )视为不同的对,则这样的(A ,B )对的个数是( )(A )8 (B )9 (C )26 (D )27解:a 1∈A 或∉A ,有2种可能,同样a 1∈B 或∉B ,有2种可能,但a 1∉A 与a 1∉B 不能同时成立,故有22-1种安排方式,同样a 2、a 3也各有22-1种安排方式,故共有(22-1)3种安排方式.选D .4.若直线x =π4被曲线C :(x -arcsin a )(x -arccos a )+(y -arcsin a )(y +arccos a )=0所截的弦长为d ,当a 变化时d 的最小值是( )(A ) π4 (B ) π3 (C ) π2(D )π解:曲线C 表示以(arcsin a ,arcsin a ),(arccos a ,-arccos a )为直径端点的圆.即以(α,α)及(π2-α,-π2+α)(α∈[-π2,π2])为直径端点的圆.而x=π4与圆交于圆的直径.故d=(2α-π2)2+(π2)2≥π2.故选C .5.在△ABC 中,角A ,B ,C 的对边长分别为a ,b ,c ,若c -a 等于AC 边上的高h,则22sinC -A2+cosC +A2的值是( )(A )1 (B ) 12 (C ) 13(D )-1解:2R (sin C -sin A )=c sin A=2R sin C sin A ,⇒sin C -sin A=sin C sin A , ⇒2cos C +A2sinC -A 2=-12[cos(C +A )-cos(C -A )]= 12[1-2sin 2C -A 2-2cos 2C +A 2+1].⇒(sinC -A2+cosC +A2)2=1,但sinC -A2+cosC +A2>0,故选A .6.设m ,n 为非零实数,i 为虚数单位,z ∈C ,则方程|z +ni |+|z -mi |=n 与|z +ni |-|z -mi |=-m 在同一复平面内的图形(F 1,F 2为焦点)是( )解:方程①为椭圆,②为双曲线的一支.二者的焦点均为(-ni ,mi ),由①n >0,故否定A ,由于n 为椭圆的长轴,而C 中两个焦点与原点距离(分别表示|n |、|m |)均小于椭圆长轴,故否定C . 由B 与D 知,椭圆的两个个焦点都在y 轴负半轴上,由n 为长轴,知|OF 1|=n ,于是m <0,|OF 2|=-m .曲线上一点到-ni 距离大,否定D ,故选B . 二、填空题(每小题5分,共30分)1.二次方程(1-i )x 2+(λ+i )x +(1+i λ)=0(i 为虚数单位,λ∈R )有两个虚根的充分必要条件是λ的取值范围为________.解:即此方程没有实根的条件.当λ∈R 时,此方程有两个复数根,若其有实根,则 x 2+λx +1=0,且x 2-x -λ=0.相减得(λ+1)(x +1)=0.当λ=-1时,此二方程相同,且有两个虚根.故λ=-1在取值范围内.当λ≠-1时,x=-1,代入得λ=2.即λ=2时,原方程有实根x=-1.故所求范围是λ≠2.2.实数x ,y 满足4x 2-5xy +4y 2=5,设 S=x 2+y 2,则1S max +1S min=_______.解:令x=r cos θ,y=r sin θ,则S=r 2得r 2(4-5sin θcos θ)=5.S=54-52sin2θ.(A)(B)(C)(D)∴1S max +1S min =4+525+4-525=85. 3.若z ∈C ,arg(z 2-4)= 5π6,arg(z 2+4)= π3,则z 的值是________.解:如图,可知z 2表示复数4(cos120°+i sin120°). ∴ z=±2(cos60°+i sin60°)=±(1+3i ).4.整数⎣⎢⎡⎦⎥⎤10931031+3的末两位数是_______. 解:令x=1031,则得x 3x +3=x 3+27-27x +3=x 2-3x +9-27x +3.由于0<27x +3<1,故所求末两位数字为09-1=08.5.设任意实数x 0>x 1>x 2>x 3>0,要使log x 0x 11993+log x 1x 21993+log x 2x 31993≥k ·log x 0x 31993恒成立,则k 的最大值是_______.解:显然x 0x 3>1,从而log x 0x31993>0.即1lg x 0-lg x 1+1lg x 1-lg x 2+1lg x 2-lg x 3≥klg x 0-lg x 3.就是[(lg x 0-lg x 1)+(lg x 1-lg x 2)+(lg x 2-lg x 3)](1lg x 0-lg x 1+1lg x 1-lg x 2+1lg x 2-lg x 3)≥k .其中lg x 0-lg x 1>0,lg x 1-lg x 2>0,lg x 2-lg x 3>0,由Cauchy 不等式,知k ≤9.即k 的最大值为9. 6.三位数(100,101, ,999)共900个,在卡片上打印这些三位数,每张卡片上打印一个三位数,有的卡片所印的,倒过来看仍为三位数,如198倒过来看是861;有的卡片则倒过来看是 ,因此,有些卡片可以一卡二用,于是至多可以少打印_____张卡片.解:首位与末位各可选择1,6,8,9,有4种选择,十位还可选0,有5种选择,共有4×5×4=80种选择.但两端为1,8,中间为0,1,8时,或两端为9、6,中间为0,1,8时,倒后不变;共有2×3+2×3=12个,故共有(80-12)÷2=34个. 三、(本题满分20分)三棱锥S -ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 的中点,作与SC 平行的直线DP .证明:(1)DP 与SM 相交;(2)设DP 与SM 的交点为D ',则D '为三棱锥S —ABC 的外接球球心.⑴ 证明:∵ DP ∥SC ,故DP 、CS 共面.∴ DC ⊆面DPC ,∵ M ∈DC ,⇒M ∈面DPC ,SM ⊆面DPC .∵ 在面DPC 内SM 与SC 相交,故直线SM 与DP 相交.⑵ ∵ SA 、SB 、SC 两两互相垂直,∴ SC ⊥面SAB ,SC ⊥SD . ∵ DP ∥SC ,∴ DP ⊥SD .△DD 'M ∽△CSM ,D‘Q M SA DCBP∵ M 为△ABC 的重心,∴ DM ∶MC=1∶2.∴ DD '∶SC=1∶2. 取SC 中点Q ,连D 'Q .则SQ=DD ',⇒平面四边形DD 'QS 是矩形. ∴ D 'Q ⊥SC ,由三线合一定理,知D 'C=PS . 同理,D 'A= D 'B= D 'B= D 'S .即以D '为球心D 'S 为半径作球D '.则A 、B 、C 均在此球上.即D '为三棱锥S —ABC 的外接球球心.四、(本题满分20分)设0<a <b ,过两定点A (a ,0)和B (b ,0)分别引直线l 和m ,使与抛物线y 2=x 有四个不同的交点,当这四点共圆时,求这种直线l 与m 的交点P 的轨迹.解:设l :y=k 1(x -a ),m :y=k 2(x -b ).于是l 、m 可写为(k 1x -y -k 1a )(k 2x -y -k 2b )=0.∴ 交点满足⎩⎨⎧y 2=x , (k 1x -y -k 1a )(k 2x -y -k 2b )=0.若四个交点共圆,则此圆可写为(k 1x -y -k 1a )(k 2x -y -k 2b )+λ(y 2-x )=0. 此方程中xy 项必为0,故得k 1=-k 2,设k 1=-k 2=k ≠0. 于是l 、m 方程分别为y=k (x -a )与y=-k (x -b ). 消去k ,得2x -(a +b )=0,(y ≠0)即为所求轨迹方程. 五、(本题满分20分)设正数列a 0、a 1、a 2、…、a n 、…满足a n a n -2 -a n -1a n -2 =2a n -1,(n ≥2) 且a 0=a 1=1,求{a n }的通项公式. 解:变形,同除以a n -1a n -2 得:a na n -1=2a n -1a n -2+1, 令a na n -1+1=b n ,则得b n =2b n -1. 即{b n }是以b 1=11+1=2为首项,2为公比的等比数列. ∴ b n =2n. ∴a na n -1=(2n -1)2.故 ∴ ⎩⎨⎧a 0=1,a n =(2n -1)2(2n -1-1)2…(21-1)2.(n ≥1)。

相关文档
最新文档