2013年全国高校自主招生数学模拟试卷十七
2013年全国高校自主招生数学模拟试卷三

2013年全国高校自主招生数学模拟试卷三一、选择题(36分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )A .0B .1C .2D .32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3)3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 () A.24181 B. 26681 C. 27481D. 670243 4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( ) A. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( ) A. 1 B. 2 C. 3 D. 4 6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( )A. (0,)+∞B.C.D. )+∞二、填空题(54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n = ,若7()128381f x x =+,则a b += .8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a =.题15图9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n = ,则通项n a =.11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =.12.一个半径为1的小球在一个内壁棱长为则该小球永远不可能接触到的容器内壁的面积是. 12.一个半径为1的小球在一个内壁棱长为则该小球永远不可能接触到的容器内壁的面积是. 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.2013年全国高校自主招生数学模拟试卷三参考答案1[解]当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.[解法一] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a -且42a , 解之得03a ≤<.[解法二](特殊值验证法)令3,[1,4],a B B A ==-⊄,排除C ,令171,]a B =-=,B A ⊄排除A 、B ,故选D 。
2013年全国高校自主招生数学模拟试卷及答案

2013年全国高校自主招生数学模拟试卷一 参考答案一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( B ) A.71 B. 71-C.21 D. 21-解:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
连结CM 、AC ,则∠AMC 为二面角A −PB −C 的平面角。
不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。
在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。
2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( A)A. ]31,31[-B. ]21,21[-C. ]31,41[- D. [−3,3] 解:令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对k ∈R ,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的k ∈R 成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( D ) A.8152 B.8159 C.8160 D.8161 解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。
2013年全国高校自主招生数学模拟试卷13 (3)

2013年全国高校自主招生数学模拟试卷十三一、选择题(本题满分36分,每题6分)1. 把圆x 2+(y -1)2=1与椭圆9x 2+(y +1)2=9的公共点,用线段连接起来所得到的图形为( )(A )线段 (B )不等边三角形 (C )等边三角形 (D )四边形2. 等比数列{a n }的首项a 1=1536,公比q=-12,用πn 表示它的前n 项之积。
则πn (n ∈N *)最大的是( )(A )π9 (B )π11 (C )π12 (D )π133. 存在整数n,使p +n +n 是整数的质数p ( ) (A )不存在 (B )只有一个 (C )多于一个,但为有限个 (D )有无穷多个4. 设x ∈(-12,0),以下三个数α1=cos(sin xπ),α2=sin(cos xπ),α3=cos(x +1)π的大小关系是( )(A )α3<α2<α1 (B )α1<α3<α2 (C )α3<α1<α2 (D )α2<α3<α15. 如果在区间[1,2]上函数f (x )=x 2+px +q 与g (x )=x +1x 2在同一点取相同的最小值,那么f (x )在该区间上的最大值是( )(A ) 4+11232+34 (B ) 4-5232+34 (C ) 1-1232+34 (D )以上答案都不对6. 高为8的圆台内有一个半径为2 的球O 1,球心O 1在圆台的轴上,球O 1与圆台的上底面、侧面都相切,圆台内可再放入一个半径为3的球O 2,使得球O 2与球O 1、圆台的下底面及侧面都只有一个公共点,除球O 2,圆台内最多还能放入半径为3的球的个数是( ) (A ) 1 (B ) 2 (C ) 3 (D ) 4 二、填空题(本题满分54分,每小题9分)1. 集合{x |-1≤log 1x10<-12,x ∈N *}的真子集的个数是 .2. 复平面上,非零复数z 1,z 2在以i 为圆心,1为半径的圆上,_z 1·z 2的实部为零,z 1的辐角主值为π6,则z 2=_______.3. 曲线C 的极坐标方程是ρ=1+cos θ,点A 的极坐标是(2,0),曲线C 在它所在的平面内绕A 旋转一周,则它扫过的图形的面积是_______.4. 已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.5. 从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每 面恰染一种颜色,每两个具有公共棱的面染成不同的颜色。
2013年全国高校自主招生数学模拟试卷12

2013年全国高校自主招生数学模拟试卷十二一、选择题(36分)1.已知数列{x n }满足x n +1=x n -x n -1(n ≥2),x 1=a , x 2=b , 记S n =x 1+x 2+ +x n ,则下列结论正确的是(A )x 100=-a ,S 100=2b -a (B )x 100=-b ,S 100=2b -a (C )x 100=-b ,S 100=b -a (D )x 100=-a ,S 100=b -a2.如图,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使得AE EB =CFFD =λ (0<λ<+∞),记f (λ)=αλ+βλ其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则(A ) f (λ)在(0,+∞)单调增加(B ) f (λ)在(0,+∞)单调减少(C ) f (λ) 在(0,1)单调增加,而在(1,+∞单调减少 (D ) f (λ)在(0,+∞)为常数3.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有(A )2个 (B )3个 (C )4个 (D )5个4.在平面直角坐标系中,若方程m (x 2+y 2+2y +1)=(x -2y +3)2表示的曲线为椭圆,则m 的取值范围为(A )(0,1) (B )(1,+∞) (C )(0,5) (D )(5,+∞)5.设f (x )=x 2-πx ,α = arcsin 13,β=arctan 54,γ=arcos(-13),δ=arccot(-54),则 (A )f (α)>f (β)>f (δ)>f (γ) (B ) f (α)> f (δ)>f (β)>f (γ) (C ) f (δ)>f (α)>f (β)>f (γ) (D ) f (δ)>f (α)>f (γ)>f (β)6.如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有 (A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条二.填空题(每小题9分,共54分)1.设x ,y 为实数,且满足⎩⎨⎧(x -1)3+1997(x -1)=-1,(y -1)3+1997(y -1)=1.则x +y = . 2.过双曲线x 2-y 22=1的右焦点作直线l 交双曲线于A 、B 两点,若实数λ使得|AB | =λ的直线l 恰有3条,则λ= .3.已知复数z 满足⎪⎪⎪⎪2z +1z =1,则z 的幅角主值范围是 .4.已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S 、A 、B 、C 四点均在以O 为球心的某个球面上,则点O 到平面ABC 的距离为 .5.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶EFB CD A点之一.若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共 种.6.设a =log z +log[x (yz )-1+1],b =log x -1+log(xyz +1),c =log y +log[(xyz )-1+1],记a ,b ,c 中最大数为M ,则M 的最小值为 . 三、(20分)设x ≥y ≥z ≥π12,且x +y +z =π2,求乘积cos x sin y cos z 的最大值和最小值.四、(20分)设双曲线xy =1的两支为C 1,C 2(如图),正三角形PQR 的三顶点位于此双曲线上. (1)求证:P 、Q 、R 不能都在双曲线的同一支上;(2)设P (-1,-1)在C 2上, Q 、R 在C 1上,求顶点Q 、R 的坐标.五、(20分)设非零复数a 1,a 2,a 3,a 4,a 5满足⎩⎨⎧a 2a 1=a 3a 2=a 4a 3=a 5a 4,a 1+a 2+a 3+a 4+a 5=4(1a 1+1a 2+1a 3+1a 4+1a 5)=S .其中S 为实数且|S |≤2.求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.2013年全国高校自主招生数学模拟试卷十二参考答案一、选择题(每小题6分,共36分)1.已知数列{x n }满足x n +1=x n -x n -1(n ≥2),x 1=a , x 2=b , 记S n =x 1+x 2+ +x n ,则下列结论正确的是(A )x 100=-a ,S 100=2b -a (B )x 100=-b ,S 100=2b -a (C )x 100=-b ,S 100=b -a (D )x 100=-a ,S 100=b -a解:x 1=a ,x 2=b ,x 3=b -a ,x 4=-a ,x 5=-b ,x 6=a -b ,x 7=a ,x 8=b ,….易知此数列循环,x n +6=x n ,于是x 100=x 4=-a ,又x 1+x 2+x 3+x 4+x 5+x 6=0,故S 100=2b -a .选A .2.如图,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使得AE EB =CFFD =λ (0<λ<+∞),记f (λ)=αλ+βλ其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则(A ) f (λ)在(0,+∞)单调增加 (B ) f (λ)在(0,+∞)单调减少(C ) f (λ) 在(0,1)单调增加,而在(1,+∞单调减少 (D ) f (λ)在(0,+∞)为常数解:作EG ∥AC 交BC 于G ,连GF ,则AE EB =CG GB =CFFD ,故GF ∥BD .故∠GEF=αλ,∠GFE=βλ,但AC ⊥BD ,故∠EGF=90°.故f (λ)为常数.选D .3.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有(A )2个 (B )3个 (C )4个 (D )5个解:设首项为a ,公差为d ,项数为n ,则na +12n (n -1)d=972,n [2a +(n -1)d ]=2×972,即n 为2×972的大于3的约数.∴ ⑴ n=972,2a +(972-1)d=2,d=0,a=1;d ≥1时a <0.有一解;⑵n=97,2a +96d=194,d=0,a=97;d=1,a=a=49;d=2,a=1.有三解; ⑶n=2×97,n=2×972,无解.n=1,2时n <3..选C4.在平面直角坐标系中,若方程m (x 2+y 2+2y +1)=(x -2y +3)2表示的曲线为椭圆,则m 的取值范围为(A )(0,1) (B )(1,+∞) (C )(0,5) (D )(5,+∞)解:看成是轨迹上点到(0,-1)的距离与到直线x -2y +3=0的距离的比:x 2+(y +1)2|x -2y +3|12+(-2)2=5m <1⇒m >5,选D .5.设f (x )=x 2-πx ,α = arcsin 13,β=arctan 54,γ=arcos(-13),δ=arccot(-54),则 (A )f (α)>f (β)>f (δ)>f (γ) (B ) f (α)> f (δ)>f (β)>f (γ)E FBCDA(C ) f (i )>f (α)>f (β)>f (γ) (D ) f (δ)>f (α)>f (γ)>f (β) 解:f (x )的对称轴为x=π2,易得, 0<α<π6<π4<β<π3<π2<γ<2π3<3π4<δ<5π6.选B .6.如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .二.填空题(每小题9分,共54分)1.设x ,y 为实数,且满足⎩⎨⎧(x -1)3+1997(x -1)=-1,(y -1)3+1997(y -1)=1. 则x +y = . 解:原方程组即⎩⎨⎧(x -1)3+1997(x -1)+1=0,(1-y )3+1997(1-y )+1=0.取 f (t )=t 3+1997t +1,f '(t )=3t 2+1987>0.故f (t )单调增,现x -1=1-y ,x +y=2.2.过双曲线x 2-y 22=1的右焦点作直线l 交双曲线于A 、B 两点,若实数λ使得|AB | =λ的直线l 恰有3条,则λ= .解:右支内最短的焦点弦=2b 2a =4.又2a=2,故与左、右两支相交的焦点弦长≥2a=2,这样的弦由对称性有两条.故λ=4时设AB 的倾斜角为θ,则右支内的焦点弦λ=2ab 2a 2-c 2cos 2θ=41-3cos 2θ≥4,当θ=90°时,λ=4.与左支相交时,θ=±arccos23时,λ=⎪⎪⎪⎪2ab 2a 2-c 2cos 2θ=⎪⎪⎪⎪41-3cos 2θ=4.故λ=4. 3.已知复数z 满足⎪⎪⎪⎪2z +1z =1,则z 的幅角主值范围是 .解:⎪⎪⎪⎪2z +1z =1⇔4r 4+(4cos2θ-1)r 2+1=0,这个等式成立等价于关于x 的二次方程4x 2+(4cos2θ-1)x +1=0有正根.△=(4cos2θ-1)2-16≥0,由x 1x 2=14>0,故必须x 1+x 2=-4cos2θ-14>0. ∴cos2θ≤-34.∴ (2k +1)π-arccos 34≤2θ≤(2k +1)π+arccos 34. ∴ kπ+π2-12arccos 34≤θ≤kπ+π2+12arccos 34,(k=0,1)B‘C’D’A‘CDASQ PR acb4.已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S 、A 、B 、C 四点均在以O 为球心的某个球面上,则点O 到平面ABC 的距离为 .解:SA=SB=SC=2,⇒S 在面ABC 上的射影为AB 中点H ,∴ SH ⊥平面ABC .∴ SH 上任意一点到A 、B 、C 的距离相等. ∵ SH=3,CH=1,在面SHC 内作SC 的垂直平分线MO 与SH 交于O ,则O 为SABC 的外接球球心.SM=1,∴SO=233,∴ OH=33,即为O 与平面ABC 的距离.5.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共 种.解:青蛙跳5次,只可能跳到B 、D 、F 三点(染色可证). 青蛙顺时针跳1次算+1,逆时针跳1次算-1,写5个“□1”,在□中填“+”号或“-”号:□1□1□1□1□1规则可解释为:前三个□中如果同号,则停止填写;若不同号,则后2个□中继续填写符号.前三□同号的方法有2种;前三个□不同号的方法有23-2=6种,后两个□中填号的方法有22种.∴ 共有2+6×4=26种方法.6.设a =log z +log[x (yz )-1+1],b =log x -1+log(xyz +1),c =log y +log[(xyz )-1+1],记a ,b ,c 中最大数为M ,则M 的最小值为 .解:a=log(x y +z ),b=log(yz +1x ),c=log(1yz +y ).∴ a +c=log(1yz +1x +yz +x )≥2log2.于是a 、c 中必有一个≥log2.即M ≥log2,于是M 的最小值≥log2.但取x=y=z=1,得a=b=c=log2.即此时M=log2.于是M 的最小值≤log2. ∴ 所求值=log2. 三、(本题满分20分)设x ≥y ≥z ≥π12,且x +y +z=π2,求乘积cos x sin y cos z 的最大值和最小值. 解:由于x ≥y ≥z ≥π12,故π6≤x ≤π2 -π12×2=π3.∴ cos x sin y cos z=cos x ×12[sin(y +z )+sin(y -z )]=12cos 2x +12cos x sin(y -z )≥12cos 2π3 =18 .即最小值.(由于π6 ≤x ≤π3 ,y ≥z ,故cos x sin(y -z )≥0),当y=z=π12 ,x=π3 时,cos x sin y cos z=18 . ∵ cos x sin y cos z=cos z ×12[sin(x +y )-sin(x -y )]=12cos 2z -12cos z sin(x -y ).O M2HSA B C 212由于sin(x -y )≥0,cos z >0,故cos x sin y cos z ≤12cos 2z=12cos 2π12 =12(1+cos π6)=2+ 38 . 当x= y=5π12 ,z=π12 时取得最大值. ∴ 最大值2+38,最小值18.四、(本题满分20分)设双曲线xy =1的两支为C 1,C 2(如图),正三角形PQR 的三顶点位于此双曲线上. (1)求证:P 、Q 、R 不能都在双曲线的同一支上;(2)设P (-1,-1)在C 2上, Q 、R 在C 1上,求顶点Q 、R 的坐标.解:设某个正三角形的三个顶点都在同一支上.此三点的坐标为P (x 1,1x 1),Q (x 2,1x 2),R (x 3,1x 3).不妨设0<x 1<x 2<x 3,则1x 1>1x 2>1x 3>0.k PQ =y 2-y 1x 2-x 1=-1x 1x 2;k QR =-1x 2x 3;tan ∠PQR=-1x 1x 2 +1x 2x 31+1x 1x 3x 22<0,从而∠PQR 为钝角.即△PQR 不可能是正三角形.⑵ P (-1,-1),设Q (x 2,1x 2),点P 在直线y=x 上.以P 为圆心,|PQ |为半径作圆,此圆与双曲线第一象限内的另一交点R 满足|PQ |=|PR |,由圆与双曲线都是y=x 对称,知Q 与R 关于y=x 对称.且在第一象限内此二曲线没有其他交点(二次曲线的交点个数).于是R (1x 2,x 2).∴ PQ 与y=x 的夹角=30°,PQ 所在直线的倾斜角=75°.tan75°=1+331-33=2+3.PQ 所在直线方程为y +1=(2+3)(x +1),代入xy=1,解得Q (2-3,2+3),于是R (2+3,2-3).五、(本题满分20分)设非零复数a 1,a 2,a 3,a 4,a 5满足⎩⎨⎧a 2a 1=a 3a 2=a 4a 3=a 5a 4,a 1+a 2+a 3+a 4+a 5=4(1a 1+1a 2+1a 3+1a 4+1a 5)=S .其中S 为实数且|S |≤2.求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.证明:设a 2a 1=a 3a 2=a 4a 3=a 5a 4=q ,则由下式得a 1(1+q +q 2+q 3+q 4)=4a 1q 4(1+q +q 2+q 3+q 4).∴ (a 12q 4-4) (1+q +q 2+q 3+q 4)=0,故a 1q 2=±2,或1+q +q 2+q 3+q 4=0.⑴ 若a 1q 2=±2,则得±2(1q 2+1q +1+q +q 2)=S .⇒S=±2[(q +1q )2+(q +1q )-1]=±2[(q +1q +12)2-54]. ∴ 由已知,有(q +1q +12)2-54∈R ,且|(q +1q +12)2-54|≤1.令q +1q +12=h (cos θ+i sin θ),(h >0).则h 2(cos2θ+i sin2θ)-54∈R .⇒sin2θ=0. -1≤h 2(cos2θ+i sin2θ)-54≤1.⇒14≤h 2(cos2θ+i sin2θ)≤94,⇒cos2θ>0.⇒θ=kπ(k ∈Z ) ∴ q +1q ∈R .再令q=r (cos α+i sin α),(r >0).则q +1q =(r +1r )cos α+i (r -1r )sin α∈R .⇒sin α=0或r=1.若sin α=0,则q=±r 为实数.此时q +1q ≥2或q +1q ≤-2.此时q +1q +12≥52,或q +1q +12≤-32.此时,由|(q +1q +12)2-54|≤1,知q=-1.此时,|a i |=2.若r=1,仍有|a i |=2,故此五点在同一圆周上.⑵ 若1+q +q 2+q 3+q 4=0.则q 5-1=0,∴ |q |=1.此时|a 1|=|a 2|=|a 3|=|a 4|=|a 5|,即此五点在同一圆上.综上可知,表示复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.。
2013届高三数学全国高校自主招生模拟试卷(带答案)

2013届高三数学全国高校自主招生模拟试卷(带答案)2013年全国高校自主招生数学模拟试卷四一、选择题(本题满分36分,每小题6分)1.已知△ABC,若对任意t∈R,→BA-t→BC≥→AC,则△ABC一定为A.锐角三角形B.钝角三角形C.直角三角形D.答案不确定2.设logx(2x2+x-1)>logx2-1,则x的取值范围为A.12<x<1B.x>12且x≠1C.x>1D.0<x<13.已知集合A={x|5x-a≤0},B={x|6x-b>0},a,b∈N,且A∩B∩N ={2,3,4},则整数对(a,b)的个数为A.20B.25C.30D.424.在直三棱柱A1B1C1-ABC中,∠BAC=π2,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为A.15,1)B.15,2)C.1,2)D.15,2)5.设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件6.数码a1,a2,a3,…,a2006中有奇数个9的2007位十进制数-2a1a2…a2006的个数为A.12(102006+82006)B.12(102006-82006)C.102006+82006D.102006-82006二、填空题(本题满分54分,每小题9分)7.设f(x)=sin4x-sinxcosx+cos4x,则f(x)的值域是.8.若对一切θ∈R,复数z=(a+cosθ)+(2a-sinθ)i的模不超过2,则实数a的取值范围为.9.已知椭圆x216+y24=1的左右焦点分别为F1与F2,点P在直线l:x-3y+8+23=0上.当∠F1PF2取最大值时,比|PF1||PF2|的值为.10.底面半径为1cm的圆柱形容器里放有四个半径为12cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水cm3.11.方程(x2006+1)(1+x2+x4+…+x2004)=2006x2005的实数解的个数为.12.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为.三、解答题(本题满分60分,每小题20分)13.给定整数n≥2,设M0(x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.14.将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=1≤i <j≤5Σxixj.问:⑴当x1,x2,x3,x4,x5取何值时,S取到最大值;⑵进一步地,对任意1≤i,j≤5有xi-xj≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值.说明理由.15.设f(x)=x2+a.记f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,M={a∈R|对所有正整数n,fn(0)≤2}.证明,M=-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C.解:令∠ABC=α,过A作AD⊥BC于D,由→BA-t→BC≥→AC,推出→BA2-2t→BA•→BC+t2→BC2≥→AC2,令t=→BA•→BC→BC2,代入上式,得→BA2-2→BA2cos2α+→BA2cos2α≥→AC2,即→BA2sin2α≥→AC2,也即→BAsinα≥→AC.从而有→AD≥→AC.由此可得∠ACB=π2.答B.解:因为x>0,x≠12x2+x-1>0,解得x>12且x≠1.由logx(2x2+x -1)>logx2-1,+x2-x)><x<1,2x3+x2-x<2或x>1,2x3+x2-x>2.解得0<x<1或x>1.所以x的取值范围为x>12且x≠1.答C.解:5x-;6x-b>>b6.要使A∩B∩N={2,3,4},则1≤b6<2,4≤a5<5,即6≤b<12,20≤a<25.所以数对(a,b)共有C61C51=30个.答A.解:建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,则F(t1,0,0)(0<t1<1),E(0,1,12),G(12,0,1),D(0,t2,0)(0<t2<1).所以→EF=(t1,-1,-12),→GD=(-12,t2,-1).因为GD⊥EF,所以t1+2t2=1,由此推出0<t2<12.又→DF=(t1,-t2,0),→DF=t12+t22=5t22-4t2+1=5(t2-25)2+15,从而有15≤→DF<1.答A.解:显然f(x)=x3+log2(x+x2+1)为奇函数,且单调递增.于是若a+b≥0,则a≥-b,有f(a)≥f(-b),即f(a)≥-f(b),从而有f(a)+f(b)≥0.反之,若f(a)+f(b)≥0,则f(a)≥-f(b)=f(-b),推出a≥-b,即a+b≥0.答B.解:出现奇数个9的十进制数个数有A=C2006192005+C2006392003+…+C200620059.又由于(9+1)2006=k=0Σ2006C2006k92006-k以及(9-1)2006=k=0Σ2006C2006k(-1)k92006-k从而得A=C2006192005+C2006392003+…+C200620059=12(102006-82006).填0,98].解:f(x)=sin4x-sinxcosx+cos4x=1-12sin2x-12sin22x.令t=sin2x,则f(x)=g(t)=1-12t-12t2=98-12(t+12)2.因此-1≤t≤1ming(t)=g(1)=0,-1≤t≤1maxg(t)=g(-12)=98.故,f(x)∈0,98].填-55,55].解:依题意,得+cosθ)2+(2a--2sinθ)≤3-5a2.-25asin(θ-φ)≤3-5a2(φ=arcsin55)对任意实数θ成立.-,故a的取值范围为-55,55].填3-1..解:由平面几何知,要使∠F1PF2最大,则过F1,F2,P三点的圆必定和直线l相切于点P.直线l交x轴于A(-8-23,0),则∠APF1=∠AF2P,即∆APF1∽∆AF2P,即|PF1||PF2|=|AP||AF2|⑴又由圆幂定理,|AP|2=|AF1|•|AF2|⑵而F1(-23,0),F2(23,0),A(-8-23,0),从而有|AF1|=8,|AF2|=8+43.代入⑴,⑵得,|PF1||PF2|=|AF1||AF2|=88+43=4-23=3-1.填(13+22)π.解:设四个实心铁球的球心为O1,O2,O3,O4,其中O1,O2为下层两球的球心,A,B,C,D分别为四个球心在底面的射影.则ABCD是一个边长为22的正方形。
中学自主招生模拟试卷含答案及答题卡

自主招生模拟试卷(数学卷)题号 一二三总分得分一、选择题(共7题,每题5分,共35分)1.二次函数2y ax bx c =++的图像如右图所示,则化简二次根式22()()a c b c ++-的结果是( )A .a+bB .-a-bC .a-b+2cD .-a+b-2c2.有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。
每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且其中一队获得了三项比赛的第一名,问总分最少的队伍最多得多少分?( )A .7B .8C .9D .103.已知a 是方程3310x x +-=的一个实数根,则直线1y ax a =+-不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.有一种长方体集装箱,其内空长为5米,高4.5米,宽3.4米,用这样的集装箱运长为 5米,横截面的外圆直径为0.8米的圆柱形钢管,最多能运( )根。
A .20根B .21根C .24根D .25根5.将5个相同的球放入位于一排的8个格子中,每格至多放一个球,则3个空格相连的概 率是( ) A .328 B . 528 C . 356 D . 5566.用[x]表示不大于x 的最大整数,则方程[]2230x x --=的解的个数是( ) A .1 B .2 C .3 D .4 7.对每个x ,y 是x y 21=,1223,232+-=+=x y x y 三个值中的最小值,则当x 变化时,函数y 的最大值是( )A . 4B . 6C . 8D . 487二、填空题(共7题,每题5分,共35分) 8. 已知()21()()4b c a b c a -=--,且a ≠0,则b c a += 。
9.G 是△ABC 的重心,过G 的直线交AB 于M ,交AC 于N , 则BM CNAM AN+= 。
10. 已知a 、b 、c 都是实数,且满足a>b>c,a+b+c=0.那么,ca的取值范围是 。
重点高中自主招生考试数学试卷精选全文

可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。
2013年全国高校自主招生数学模拟试卷五

5.设三位数 n=¯¯¯ abc,若以 a,b,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三 位数 n 有( ) A.45 个 B.81 个 C.165 个 D.216 个 6.顶点为 P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面 圆内的点,O 为底面圆圆心,AB⊥OB,垂足为 B,OH⊥PB,垂足为 H,且 PA=4,C 为 PA 的 中 点 , 则 当 三 棱 锥 O - HPC 的 体 积 最 大 时 , OB 的 长 为 ( ) 5 A. 3 2 5 B. 3 6 C. 3 2 6 D. 3
4 14.在平面直角坐标系 xOy 中,给定三点 A(0, ),B(-1,0),C(1,0),点 P 到直线 BC 的距 3 离是该点到直线 AB、AC 距离的等比中项. ⑴ 求点 P 的轨迹方程; ⑵ 若直线 L 经过ABC 的内心(设为 D),且与 P 点轨迹恰好有 3 个公共点,求 L 的斜率 k 的取 值范围.
6
B.
12
5 或 12
5 C. 或 6 12
的 (
2.已知 M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的 m∈R,均有 M∩N,则 b 取 值 范 围 是 ) A.[- 6 6 , ] 2 2 B.(- 6 6 , ) 2 2 2 3 2 3 C.(- , ] 3 3 2 3 2 3 D.[- , ] 3.不 3 3
; 3 . 3
2 2 1 2 1 ∴ AA12=A1M2+MN2+NA2-2A1M·NAcos,12= + + -2 cos,cos= . 3 3 3 3 2 =60. 10.设 p 是给定的奇质数,正整数 k 使得 k2-pk也是一个正整数,则 k= 2 p2 1 2 2 p 解:设 k -pk=n,则(k- ) -n = ,(2k-p+2n)(2k-p-2n)=p2,k= (p+1)2. 2 4 4 1 11. 已知数列 a0, a1, a2, „, an, „满足关系式(3-an+1)(6+an)=18, 且 a0=3, 则∑ 的值是 a i=0 i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题 6 分,共 36 分) 1、设 a,b,c 是实数,那么对任何实数 x, 不等式 asinx+bcosx+c>0 都成立的充要条件 是 (A) a,b 同时为 0,且 c>0 (B) a2+b2=c (C) a2+b2<c (D) a2+b2>c 2、给出下列两个命题:⑴ 设 a,b,c 都是复数,如果 a2+b2>c2,则 a2+b2-c2>0;⑵设 a,b,c 都是复数,如果 a2+b2-c2>0,则 a2+b2>c2.那么下述说法正确的是 (A)命题⑴正确,命题⑵也正确 (B)命题⑴正确,命题⑵错误 (C)命题⑴错误,命题⑵也错误 (D)命题⑴错误,命题⑵正确 3、已知数列{an}满足 3an+1+an=4(n≥1),且 a1=9,其前 n 项之和为 Sn,则满足不等式|Sn 1 -n-6|<125的最小整数 n 是 (A)5 (B)6 (C)7 (D)8 π log sina log cosa log cosa 4、已知 0<b<1,0<a<4,则下列三数:x=(sina) b ,y=(cosa) b ,z=(sina) b (A)x<z<y (B)y<z<x (C)z<x<y (D)x<y<z 5、在正 n 棱锥中,相邻两侧面所成的二面角的取值范围是 n-2 n-1 n-2 n-1 π (A)( n π,π) (B)( n π,π) (C)(0,2) (D)( n π, n π) |x+y| |x-y| 6、在平面直角坐标系中,方程 2a + 2b =1 (a,b 是不相等的两个正数)所代表的曲 线是 (A)三角形 (C)非正方形的长方形 (B)正方形 (D)非正方形的菱形
x3+sinx-2a=0, π π 2.已知 x,y∈[-4,4],a∈R 且 3 则 cos(x+2y) = 4y +sinycosy+a=0
.
解:2a=x3+sinx=(-2y)3-sin(-2y), π π π π 令 f(t)=t3+sint,t∈[-2,2],f (t)=3t2+cost>0,即 f(t)在[-2,2]上单调增.∴ x=-2y. ∴ cos(x+2y)=1. 5 5 3.已知点集 A={(x,y)|(x-3)2+(y-4)2≤(2)2},B={(x,y)|(x-4)2+(y-5)2>(2)2},则点集 A ∩B 中的整点(即横、纵坐标均为整数的点)的个数为 . 解:如图可知,共有 7 个点,即(1,3),(1,4),(1,5),(2,2),(2,3),(3,2),(4, 2)共 7 点. y θ 4.设 0<θ<π, ,则 sin2(1+cosθ)的最大值是 . 解:令 y= sin2 (1+cosθ) >0, 2 则 y2=4 sin22 cos42 =2²2sin22 cos22 cos22 ≤2(3 )3. 4 3 ∴ y≤ 9 2 .当 tan2 = 2 时等号成立.
5.已知一平面与一正方体的 12 条棱的夹角都等于 α,则 sinα= . 6.已知 95 个数 a1,a2,a3,…,a95, 每个都只能取+1 或-1 两个值之一,那么它们 的两两之积的和 a1a2+a1a3+…+a94a95 的最小正值是 .
第1页
三、解答题 一、 (本题满分 25 分) x 的二次方程 x2+z1x+z2+m=0 中,z1, z2, m 均是复数, 且 z1-4z2=16+20i,
1
(4,5) (3,4)
3 2
O
1
23Biblioteka x5.已知一平面与一正方体的 12 条棱的夹角都等于 α,则 sinα= . 解: 12 条棱只有三个方向, 故只要取如图中 AA与平面 ABD所成角即可. 设
A'
D' B' D
C'
C B
A
第4页
3 AA=1,则 AC= 3,AC⊥平面 ABD,AC 被平面 ABD、BDC三等分.于是 sinα= 3 . 6.已知 95 个数 a1,a2,a3,…,a95, 每个都只能取+1 或-1 两个值之一,那么它们 的两两之积的和 a1a2+a1a3+…+a94a95 的最小正值是 . 解:设有 m 个+1,(95-m)个-1.则 a1+a2+…+a95=m-(95-m)=2m-95 ∴ 2(a1a2+a1a3+…+a94a95)=(a1+a2+…+a95)2-(a12+a22+…+a952)=(2m-95)2-95>0. 取 2m-95=±11.得 a1a2+a1a3+…+a94a95=13.为所求最小正值. . 三解答题 一、 (本题满分 25 分) x 的二次方程 x2+z1x+z2+m=0 中,z1, z2, m 均是复数, 且 z1-4z2=16+20i,
2
设这个方程的两个根 α、β,满足|α-β|=2 7,求|m|的最大值和最小值. 解:设 m=a+bi(a,b∈R).则△=z12-4z2-4m=16+20i-4a-4bi=4[(4-a)+(5-b)i].设△ 的平方根为 u+vi.(u,v∈R) 即(u+vi)2=4[(4-a)+(5-b)i]. |α-β|=2 7,|α-β|2=28,|(4-a)+(5-b)i|=7,(a-4)2+(b-5)2=72, 即表示复数 m 的点在圆(a-4)2+(b-5)2=72 上,该点与原点距离的最大值为 7+ 41,最 小值为 7- 41. 二、 (本题满分 25 分) 将与 105 互素的所有正整数从小到大排成数列, 试求出这个数列 的第 1000 项。 1 1 1 解:由 105=3×5×7;故不超过 105 而与 105 互质的正整数有 105×(1-3)(1-5)(1-7)=48 个。1000=48×20+48-8, 105×20=2100.而在不超过 105 的与 105 互质的数中第 40 个数是 86. ∴ 所求数为 2186。
第2页
2013 年全国高校自主招生数学模拟试卷十七
参考答案
一.选择题(每小题 6 分,共 36 分) 1、设 a,b,c 是实数,那么对任何实数 x, 不等式 asinx+bcosx+c>0 都成立的充要条件 是 (A) a,b 同时为 0,且 c>0 (B) a2+b2=c (C) a2+b2<c (D) a2+b2>c 2 2 解:asinx+bcosx+c= a +b sin(x+φ)+c∈[- a2+b2+c, a2+b2+c].故选 C. 2、给出下列两个命题:(1)设 a,b,c 都是复数,如果 a2+b2>c2,则 a2+b2-c2>0.(2)设 a,b,c 都是复数,如果 a2+b2-c2>0,则 a2+b2>c2.那么下述说法正确的是 (A)命题(1)正确,命题(2)也正确 (B)命题(1)正确,命题(2)错误 (C)命题(1)错误,命题(2)也错误 (D)命题(1)错误,命题(2)正确 2 2 2 解:⑴正确,⑵错误;理由:⑴a +b >c ,成立时,a2+b2 与 c2 都是实数,故此时 a2+b2 -c2>0 成立; ⑵ 当 a2+b2-c2>0 成立时 a2+b2-c2 是实数, 但不能保证 a2+b2 与 c2 都是实数, 故 a2+b2>c2 不一定成立.故选 B. 3、已知数列{an}满足 3an+1+an=4(n≥1),且 a1=9,其前 n 项之和为 Sn,则满足不等式|Sn 1 -n-6|<125的最小整数 n 是 (C)7 (D)8 1 1 解:(an+1-1)=-3(an-1),即{ an-1}是以-3为公比的等比数列, 1 1-(-3)n 1 n-1 1n 1 1 ∴ an=8(-3) +1.∴ Sn=8² 1 +n=6+n-6(-3) ,6· 3n<125,n≥7.选 C. 1+3 π log sina log cosa log cosa 4、已知 0<b<1,0<a<4,则下列三数:x=(sina) b ,y=(cosa) b ,z=(sina) b 的大小关系是 (A)x<z<y (B)y<z<x (C)z<x<y 解:0<sina<cosa<1.logbsina>logbcosa>0. (D)x<y<z (A)5 (B)6
二、填空题(每小题 9 分,共 54 分) 1.已知有向线段 PQ 的起点 P 和终点 Q 的坐标分别为(-1,1)和(2,2),若直线 l: x+my+m=0 与 PQ 的延长线相交,则 m 的取值范围是 . x3+sinx-2a=0, π π 2.已知 x,y∈[-4,4],a∈R 且 3 则 cos(x+2y) = . 4y +sinycosy+a=0 5 5 3.已知点集 A={(x,y)|(x-3)2+(y-4)2≤(2)2},B={(x,y)|(x-4)2+(y-5)2>(2)2},则点集 A ∩B 中的整点(即横、纵坐标均为整数的点)的个数为 θ 4.设 0<θ<π, ,则 sin2(1+cosθ)的最大值是 . .