扫描电子显微镜及其在材料科学中的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描电子显微镜及其在材料科学中的应用班级:12级材料物理姓名:王小辉学号:2

摘要:介绍了目前常被用于固体结构观测及其表征的主要仪器扫描电子显微镜(SEM)的简单概况和基本原理以及其在材料科学中的应用。

关键词:扫描电子显微镜原理材料科学应用

引言

无论是X射线衍射确定晶体的三维结构还是低能电子衍射确定晶体表面的二维结构,都是以原子的周期性排列为前提的。但是近年来学术界对于不具有周期性的局域性原子位置的结构表现出越来越浓厚的兴趣,而且这种局域性结构的线度又往往很小,常在微米以下甚至纳米级。显然,传统的衍射手段对此无能为力,而且光学显微镜由于分辨本领的限制也无法分辨尺度在100纳米数量级的局域性结构细节。至目前为止已发展出各种基于电子的发射和传播的显微方法。本文主要介绍了扫描电子显微镜和扫描隧穿显微镜的工作原理以及对固体材料形貌和结构观察方面的应用。

1.SEM简介

扫描电子显微镜(Scanning Electron Microscope,SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。扫描电镜如下图1。

图1扫描电子显微镜

2.原理

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得试样表面性貌的观察。SEM是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术.扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小的电子束.在试样表面进行扫描,激发出各种信息,通过对这些信息的接收、放大和显示成像,以便对试样表面进行分析.入射电子与试样相互作用产生如图1所示的信息种类。

图2 电子束探针照射试样产生的各种信息

这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图.如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储.各信息如下表1。

收集信号类型功能

二次电子形貌观察

背散射电子成分分析

特征X射线成分分析

俄歇电子成分分析

表1 扫描电镜中主要信号及其功能

扫描电镜可做如下观察:

(1)试样表面的凹凸和形状;

(2)试样表面的组成分布;

(3)可测量试样晶体的晶向及晶格常数;

(4)发光性样品的结构缺陷,杂质的检测及生物抗体的研究;

(5)电位分布;

(6)观察半导体器件结构部分的动作状态;

(7)强磁性体的磁区观察等.

传统扫描电镜的主要结构如图3所示

图3 扫描电子显微镜原理和结构示意图

3.扫描电镜在材料研究中的应用

3.1.超微尺寸材料的研究

纳米材料是纳米科学技术最基本的组成部分.现在可以用物理、化学及生物学的方法制备出只有个纳米的/颗粒0.由于纳米材料表面上的原子只受到来自内部一侧的原子的作用,十分活泼,所以使用纳米金属颗粒粉作催化剂,可加快化学反应过程.纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,但又具有脆性和难以加工等缺点,纳米陶瓷在一定的程度上却可增加韧性,改善脆性.复合纳米固体材料亦是一个重要的应用领域.例如含有20%超微钴颗粒的金属陶瓷是火箭喷气口的耐高温材料;金属铝中含进少量的陶瓷超微颗粒,可制成重量轻、强度高、韧性好、耐热性强的新型结构材料[21~29].纳米

材料的一切独特性能主要源于它的超微尺寸,因此必须首先切确地知道其尺寸,否则对纳米材料的研究及应用便失去了基础.目前该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜(STM),原子力显微镜(AFM)等技术,但高分辨率的扫描电镜(SEM)在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势,也被大量采用.

3.2 镀层表面形貌分析和深度检测

金属材料零件在使用过程中不可避免地会遭受环境的侵蚀,容易发生腐蚀现象.为保护母材,成品件,常常需要进行诸如磷化、达克罗等表面防腐处理.有时为利于机械加工,在工序之间也进行镀膜处理.由于镀膜的表面形貌和深度对使用性能具有重要影响,所以常常被作为研究的技术指标.镀膜的深度很薄,由于光学显微镜放大倍数的局限性,使用金相方法检测镀膜的深度和镀层与母材的结合情况比较困难,而扫描电镜却可以很容易完成.使用扫描电镜观察分析镀层表面形貌是方便、易行的最有效的方法,样品无需制备,只需直接放入样品室内即可放大观察。

3.3 微区化学成分分析

在样品的处理过程中,有时需要提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析.为此,相继出现了扫描电子显微镜)电子探针多种分析功能的组合型仪器.扫描电子显微镜如配有X射线能谱(EDS)和X射线波谱成分分析等电子探针附件,可分析样品微区的化学成分等信息.材料内部的夹杂物等,由于它们的体积细小,因此,无法采用常规的化学方法进行定位鉴定.扫描电镜可以提供重要的线索和数据.工程材料失效分析常用的电子探针的基本工作方式为:

(1)对样品表面选定微区作定点的全谱扫描定性;

(2)电子束沿样品表面选定的直线轨迹作所含元素浓度的线扫描分析;

(3)电子束在样品表面作面扫描,以特定元素的X射线讯号调制阴极射线管荧光屏亮度,给出该元素浓度分布的扫描图像.

一般而言,常用的X射线能谱仪能检测到的成分含量下限为0. 1% (质量分数).可以应用在判定合金中析出相或固溶体的组成、测定金属及合金中各种元素的偏析、研究电镀等工艺过程形成的异种金属的结合状态、研究摩擦和磨损过程中的金属转移现象以及失效件表面的析出物或腐蚀产物的鉴别等方面.

3.4 材料的组织形貌观察

材料剖面的特征、零件内部的结构及损伤的形貌,都可以借助扫描电镜来判断和分析.反射式的光学显微镜直接观察大块试样很方便,但其分辨率、放大倍数和景深都比较低.而扫描电子显微镜的样品制备简单,可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析;扫描电子显微图像因真实、清晰,并富有立体感,在金属断口(图4)的观察研究方面获得了广泛地应用.

相关文档
最新文档