数学建模离散问题建模方法和案例分析
数学建模简单13个例子全解

数学建模简单13个例子全解数学建模是一种将数学方法和技术应用于实际问题解决的过程。
它是数学领域的一个重要分支,具有广泛的应用和重要的研究价值。
数学建模能够帮助我们理解和解决许多复杂的现实问题,对于推动科学研究和技术开发具有重要作用。
在现代科学和工程领域,数学建模被广泛运用于各种领域,包括物理、生物、经济、环境、社会等。
通过数学建模,我们可以通过数学方法对问题进行抽象和化简,然后利用数学工具和技术进行分析和求解。
数学建模的过程通常包括问题定义、模型构建、模型分析和模型验证等步骤,其中数学模型的选择和建立是关键的一步。
数学建模的重要性在于它能够帮助我们更好地理解和解决复杂的现实问题。
通过数学建模,我们可以用精确的数学语言和方法描述问题,通过数学分析和计算实现对问题的量化和定量化,为问题的解决提供科学的依据和方法。
数学建模还能够帮助我们发现问题中的规律和关联,提供新的洞察和预测,促进科学的发展和技术的创新。
本文将介绍数学建模的概念和重要性,并给出简单13个例子的全解。
通过这些例子,我们可以更加深入地了解数学建模的基本方法和技巧,培养和提高自己的数学建模能力,为解决实际问题提供有益的借鉴和参考。
描述如何利用数学建模解决鱼群聚集问题,并阐述模型的步骤和应用在鱼群聚集模型中,我们希望通过数学建模来解释鱼群在水中聚集的现象,并找到一种合适的模型来描述鱼群的行为。
步骤:收集数据:首先,我们需要收集关于鱼群聚集的现实数据。
这些数据可以包括鱼群的数量、鱼群的密度、鱼群的移动速度等。
建立模型:基于收集到的数据,我们可以建立一个数学模型来描述鱼群的聚集行为。
常用的模型包括离散模型和连续模型。
离散模型:离散模型将鱼群视为一组个体,每个个体根据一定的规则进行移动和相互作用。
常见的离散模型包括离散元胞自动机模型和离散粒子模型等。
连续模型:连续模型将鱼群视为一个连续的流体,采用偏微分方程来描述鱼群密度的演化。
常见的连续模型包括Navier-Stokes方程和Birds模型等。
数学建模竞赛案例分析

数学建模竞赛案例分析数学建模竞赛是一项旨在培养学生创新思维、动手能力和团队合作精神的活动。
参与竞赛的学生需要运用数学理论和方法解决实际问题,并通过建立模型、分析数据和验证结果等步骤,最终得出科学可行的结论。
本文将从一个具体的数学建模竞赛案例出发,进行深入分析。
案例介绍该案例是关于城市交通流量优化的问题。
某城市的交通拥堵问题日益严重,市政府决定通过优化交通信号灯的配时方案来减轻拥堵程度。
但是,在使用传统方式设置配时方案时,往往难以真实反映实际交通状况,造成传统方式不够准确和高效的问题。
因此,这个案例要求参赛队伍通过建模分析,给出一种更科学、更精确的交通信号灯优化方案。
建模分析团队成员首先分析了交通拥堵问题的原因,确定了车流量和信号灯配时之间的关系。
然后,他们在分析的基础上建立了一个数学模型,将交通信号灯的配时问题转化为优化问题。
针对所建模型,他们设计了相应的算法,并利用计算机进行模拟实验。
结果验证为了验证模型的准确性和有效性,他们选择了某主干道进行实地测试。
对于测试数据的采集,他们设计了专门的采样方案并进行了多次采样。
通过对数据的统计分析,他们得出了不同交通流量下的最优配时方案,并与之前的传统方案进行了对比。
结果表明,他们提出的优化方案在减轻拥堵程度、提高道路通行效率方面效果明显,证明了所建模型的准确性和可行性。
问题讨论在结果验证过程中,团队成员对模型的局限性和可扩展性进行了深入讨论。
他们提出了一些可能改进的方案,如增加交通流量的动态性、考虑多种车辆类型等。
同时,他们还针对模型的实用性进行了讨论,提出了一些具体的应用建议。
同时,他们也意识到建模过程中的一些假设和限制条件,比如忽略行人的影响等,需要在实际应用中进行进一步研究。
结论通过这个案例的分析,团队成员不仅提高了数学建模的能力,还学会了如何团队合作和实际应用建模成果。
同时,他们也发现了数学建模在实际问题解决中的潜力和局限性。
这个案例为他们提供了一个宝贵的学习机会,使他们的数学建模水平得到全面提升。
数学建模及典型案例分析

数学模型是人们为了认识客观对象在数量方面的特 征、定量地分析对象的内在规律、用数学的语言和符号 去近似地刻画要研究的那一部分现象时,所得到的一个 数学表述。 例如在牛顿力学中的公式f=ma, s=vt. 爱因斯坦 的质能方程E=mc2. 这些都是数学模型. 数学建模就是建立数学模型的过程。
数学模型的分类
按应用领域分类: 人口模型,环境模型、交通模型、生
态模型…… 按建模方法分类:初等模型、微分方程模型、差分方 法模型、统计回归模型、数学规划模型…… 按是否考虑随机因素分类:确定性模型和随机模型 按变量的连续性分类:连续模型和离散模型 按对对象内部规律了解程序分类:白箱模型、灰箱模 型和黑箱模型 按变量的基本关系分类:线性模型和非线性模型 按是否考虑时间变化分类:静态模型和动态模型
李志林,欧宜贵编著
化学工业出版社
广西民族大学数学与计算机科学学院
曹敦虔制作
目录
数学建模导言 2. 插值与拟合 3. 微分方程建模方法 4. 差分法建模 5. 计算机模拟 6. 层次分析法 7. 数据的统计描述与分析 8. 回归分析方法 9. 优化模型 10. 确定型时间序列预测法 11. 随机型时间序列预测法
示例1 鸭子过河
有只鸭子想游到河对岸的某个位置O,如果它的方向
始终朝着目标O。求这只鸭子的游动曲线。
示例1 鸭子过河
模型假设
1. 假设河的两岸为平行直线,河宽为h; 2. 鸭子游水的速率为b, 水流速率为a, 均为常数;
3. 初始时鸭子的位置为A;
4. 鸭子游动的方向始终指向O.
示例1 鸭子过河
数学建模的基本方法和步骤
实现对象
假设、抽象、表达
数学模型
验 证 、 应 用
数学建模的基本方法与实例

数学建模的基本方法与实例数学建模是一种通过数学模型来解决实际问题的方法。
它在现代科学研究和工程实践中扮演着重要的角色。
本文将介绍数学建模的基本方法,并通过实例来详细说明。
一、问题分析在进行数学建模之前,首先需要对问题进行分析和理解。
这包括明确问题的背景、确定问题的目标以及收集问题所需数据等。
通过充分了解问题,我们可以更加准确地进行建模和求解。
二、建立模型在问题分析的基础上,我们需要建立适当的数学模型来描述和解决问题。
数学模型是对实际问题的抽象和简化,它包括变量、参数、约束条件和目标函数等要素。
常见的数学模型包括线性规划模型、非线性规划模型、动态规划模型等。
以线性规划模型为例,其数学形式为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ分别为模型的目标函数系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的右侧常数。
三、求解模型建立完数学模型后,下一步是求解模型以得到问题的最优解。
对于不同类型的模型,可以使用不同的数学方法和工具来求解。
常见的方法包括线性规划的单纯形法、非线性规划的梯度法、动态规划的最优控制理论等。
四、模型验证与分析求解完模型后,需要对结果进行验证和分析。
这包括检验模型的可行性、灵敏度分析以及结果的解释和实际应用等。
通过对模型结果的分析,可以判断模型的有效性和可靠性。
接下来,让我们通过一个实例来具体说明数学建模的过程。
实例:某物流公司的货物配送问题某物流公司需要合理安排货物的配送路线,以最小化配送时间并满足客户的需求。
假设有n个客户需要送货,每个客户的货物量不同,同时每个客户的配送时间窗口也不同。
数学建模的基础概念及举例

数学建模的基础概念及举例一、数学建模的基本概念数学建模及其数学建模过程数学模型:数学模型是对于现实中的原型问题,为了某个特定的目的,作出一定的必要简化和假设,运用恰当的数学工具,得到的一个具体的数学结构。
也可以这样说讲,数学建模是利用数学特有的语言,例如利用符号、式子和图象来模拟现实的问题模型。
把现实问题模型进行抽象简化,使之成为为某种数学结构,这是数学模型的基本属性特征。
数学模型一方面能够解释特定现象,或是特定的现实状态,能够预测到模型蕴含问题中的隐含的状况,另一方面能够提供处理问题的最优决策,或者是对问题的控制。
数学建模:数学建模是把现实世界中的实际问题加以提炼简化,使之抽象为较为明了数学模型。
通过多种方法和途径,求出模型的解的答案,再加以验证模型存在的合理性,并利用该数学模型所提供的解答,用以解释现实问题。
我们通常把数学知识的这一合理应用过程称之为数学建模。
数学建模的七个过程:1.模型的准备:了解分析问题的实际背景,明确其中的实际意义,掌握问题对象的各种信息,并用数学符号语言来描述问题本质。
2.模型的假设:根据实际对象的特征属性及建模的目的,对模型问题进行必要的简化,并利用精确的语言,提出一些恰当的假设条件。
3.模型的建立:在假设条件的基础上,利用恰当的数学工具,来刻划各个具体变量之间的数学关系,尽量利用简单的数学用具,建立相应的数学结构。
4.模型的求解:在利用获取数据资料的过程中,对模型的所有参数做出较为精确的计算。
5.模型的分析:经过以上四步,再对所得的结果进行精确的数学上的分析。
6.模型的检验:经过上述五步操作,再将模型分析的结果,与实际情形进行对比,以此来验证模型的合理性,精准性,和实用性。
如果问题模型与实际较为吻合,我们就要对计算的结果给出其实际意义,并进行适当详细的解释。
如果问题模型与实际吻合较为一般,我们就应该修改假设条件,再次操作模型建立过程。
7.模型的应用:数学模型建立的应用方式多种多样,会因具体问题的性质和个人建模的目的而不同。
数学建模案例分析--线性代数建模案例20例

线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。
案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。
数学建模的创新案例与思考

数学建模的创新案例与思考在现代社会中,数学建模已经成为解决复杂问题和开展科学研究的重要方法之一。
通过数学建模,我们可以将现实问题抽象化、分析化,找到问题的本质,并通过数学方法进行求解和优化。
本文将介绍一些数学建模的创新案例,并对其进行思考和总结。
案例一:交通路径规划随着城市交通问题的日益凸显,优化交通路径规划成为一项重要任务。
基于数学建模的方法,我们可以借助图论、最短路径算法等工具,对城市路网和交通流量进行建模和分析,从而为交通管理者提供最佳路径规划方案。
以某城市为例,我们可以通过收集该城市的交通数据,包括道路长度、道路拓扑结构、交通流量等信息。
然后,我们可以建立数学模型,将城市道路网络抽象为图,并根据交通流量分布情况确定边的权重。
接下来,可以使用最短路径算法,如迪杰斯特拉算法或A*算法,从而求解出最优路径。
通过该数学建模方法,我们能够准确评估交通路线的效率,并提出改进建议。
在实践中,这种方法已经被应用于公交车路径优化、快递员配送路线规划等方面,取得了显著的效果。
案例二:股票价格预测股票价格的预测一直是金融领域的热门研究课题之一。
传统的技术分析和基本面分析方法存在局限性,而数学建模方法则可以更准确地预测股票价格的走势。
在这种情况下,我们可以使用时间序列分析和回归分析等方法来构建数学模型。
首先,我们需要收集大量的历史股票数据,包括价格、交易量、市场指标等信息。
然后,利用统计学方法对数据进行分析,并建立相应的模型。
最后,通过模型的拟合和预测,我们可以得到对股票价格走势的预测结果。
值得注意的是,股票市场的复杂性使得股票价格的预测存在一定的不确定性。
因此,在实际应用中,我们需要结合多种建模方法和技术指标,综合考虑各种因素,提高预测的准确性和可靠性。
总结与思考数学建模作为一种创新的思维方式和工具,已经在各个领域展现出了巨大的潜力和广泛的应用前景。
通过数学建模,我们可以更好地理解和解决现实问题,并推动科学研究的发展。
数学建模简介课件

数据质量的可靠性
在数据驱动的数学建模中,如何保证 数据的质量和可靠性是一个重要的问 题,需要采取一系列的数据清洗和预 处理技术。
多学科交叉的数学建模
数学与其他学科的结合
数学建模已经不再局限于传统的数学领域,而是与其他学 科如物理、化学、生物、工程等相结合,形成多学科交叉 的数学建模。
跨学科知识的整合
它涉及到对问题的深入理解、相关数 据的收集和分析、选择合适的数学方 法和工具、建立数学模型、求解模型 并解释结果等步骤。
数学建模的应用领域
01
02
03
04
自然科学
物理、化学、生物等学科中的 问题可以通过数学建模进行定
量分析和模拟。
工程和技术
在机械、电子、航空航天、计 算机等领域,数学建模被广泛 应用于设计、优化和预测。
详细描述
传染病传播是一个动态的过程,受到个体行 为、环境因素和疾病特性等多种因素的影响 。通过建立数学模型,我们可以模拟疾病的 传播过程,预测疫情的发展趋势,并提供有 效的防控措施。常见的模型包括SIR模型和
SEIR模型。
物流优化模型
要点一
总结词
描述了如何使用数学模型来优化物流网络,提高运输效率 并降低成本。
总结词
微分方程建模是利用微分方程来描述和解决实际问题的数学 建模方法。
详细描述
微分方程建模通过建立数学模型来描述现实世界中变量之间 的关系,特别是那些随时间变化的变量之间的关系。例如, 人口增长模型、传染病传播模型等都是通过微分方程来建立 的。
微分方程建模
总结词
微分方程建模是利用微分方程来描述和解决实际问题的数学 建模方法。
跨学科知识的整合
在多学科交叉的数学建模中,如何有效地整合不同学科的 知识是一个重要的问题,需要具备跨学科的知识和视野。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 截断切割是指将物体沿某个切割平面切成两部分。
• 从一个长方体内加工出一个已知尺寸、位置预定的 长方体(两个长方体对应的平面相互平行),通常要经 过6次切割。
• 假定切割费用与切割时扫过的面积成正比,则需要 考虑的不同切割方案的总数是多少?
记作B(k,λ; n)。
• 平衡不完全区组设计的存在性:
• 容易见到, B(k,λ; n)存在的必要条件是:
1)
; k(k1)n(n1)
2)
(k1)(n1) 。
• 有人证明了,除了少数情况,以上条件也是充分的。
回到原问题:由于董事会人数的关系,任意两位董事分在同组 的次数不可能做到完全平衡。只能力求平衡。以九名在职董事为 例 ,可以安排如下:
2) 将“唯一的”推广到大家重复λ次。
• 于是就有了平衡不完全区组设计的概念: • 设S是一个n元集合,B是由S的一些k元子集(或称k元 组) 组成的集合。如果S中的任意一对不同的元素,都
恰好同时包含在B的λ个 k 元子集中,则称(S, B)组成 一个区组长度为k, 相遇数为λ的平衡不完全区组设计。
• 2. Steiner三元系 设S是一个n元集合,B是由S的一些三元子集组成的 集合。如果S中的任意一对不同的元素,都恰好同时包
含在B的唯一的一个三元子集中, 则称( S, B )组成一个
n 阶的Steiner三元系, 记作STS(n)。 • 例如:
• (1,2,3), (1,4,5), (1,6,7), (2,4,6), (2,5,7), (3,4,7), (3,5,6) 组成一个7阶的Steiner三元系。
组别
1
2
3
4
5
6
上午第一节 15
29Βιβλιοθήκη 48367
--
上午第二节 39
68
1
--
24 57
上午第三节
4
--
27
18
35 69
组别
1
2
3
4
下午第一节 123 49 58 67
下午第二节 19 456 37 28
下午第三节 25 34 789 16
下午第四节 26 38 59 147
2.计数问题案例---- 截断切割(CMCM1997-B)
1.
3
n 2
2. 2(n1)
• 1847年,Kirkman证明了: STS(n)存在当且仅当 n6k1或者 6k3 。
Steiner三元系的图形表示:
3. Steiner三元系的推广—平衡不完全区组设计
• Steiner三元系还可以向两个方向推广: 1) 将“三元子集”推广到k元子集;
• 关于算法复杂性(complexity) • 问题—算法—结果 • An algorithm is considered “good” if the
required number of elementary computational steps is bounded by a polynomial in the size of the problem.
• (1,2,3), (4,5,6), (7,8,9);(1,4,7), (2,5,8), (3,6,9); (1,5,9), (2,6,7), (3,4,8);(1,6,8), (2,4,9), (3,5,7)。 组成一个9阶的Steiner三元系。
• Steiner三元系的存在性:
•
容易见到:
假设A和B都是n阶拉丁方,A(aij),B(bij)。如果 n 2 个有序对 (aij , bij ) 各不相同。则称该两个拉丁方正 交。
• 正交拉丁方的存在性
• 1782年,Euler猜测,当 n2(mo4d) 时,n阶正交拉丁 方都不存在。
其中,2阶的不存在性是显然的。6阶的不存在性是 Tarry在1900年证明的。也就是说,36军官问题确实没 有解。 • 直到1960年, Euler的猜想最终被推翻。Shrikhande, Bose, Parker证明了:除了2和6两种特殊情况, n阶正交 拉丁方都存在。
为让董事们充分发表意见,应如何安排各节各组的 董事名单?
二. 分析和建模 关于组合设计
1. Euler36军官问题和正交拉丁方
设 S{a1,a2,,an}是一个n元集合。A是一个 nn阶
矩阵,它的元素为S中的元素。如果S 中的每一个元素都 恰好在A的每一行中出现一次,同时在A的每一列中出现 一次, 那么就称A为S上的一个n阶拉丁方。
排序(ordering)、选择(selection)等。
• 变量的“离散性” —对象通常是以个体形式
出现……
• 问题的“离散性” — 二分问题、七桥问题、
八后问题、二十问问题……
• 方法的“离散性” — 由问题的离散性带来
方法上的离散性。不存在统一的求解模式:常 用的有整数规划、图论、数理逻辑等方法。更 大量的则是枚举法以及所谓的启发式算法……
1. 存在性问题案例---- 董事会会议安排
Mix Well For Fruitful Discussion (MCM1997-B)
一. 问题的提出 An Tostal 公司董事会由29名董事(其中9名在职)组成。
公司要召开为期一天的董事会会议。 上午分3节(sessions), 每节分成6组(groups) 下午4 节, 每节分成4组。
---- J.Edmonds & R.M.Karp (1960) • P --- NP --- NP-C
二. 离散问题建模方法
根据许多数学家的描述,离散问题通常 以以下三种形式出现:
“ Does the arrangement exist? ” “ How many arrangements are there? ” “ What is a best arrangement? ” 这就是存在性问题、计数问题和最优性 问题。
一. 离散数学的研究对象
• 离散数学是“研究离散变量相互关 系和结构的数学理论的总称。包括集 合论、数论、有限群论、组合数学、 图论、数理逻辑、可行计算理论等。”
-----《辞海》
• 离散数学研究的对象是有限集合。 该集合的大小又是与某些参数的组合数 有关。因此,也常常被称为组合结构。
• 讨论的问题类型很多,主要有: • 安排(arrangement)、分类(grouping)、