数学建模经典案例详解

合集下载

数学建模-第四篇-典型案例分析课件

数学建模-第四篇-典型案例分析课件

问题
☞ (1)请制定一个主管道钢管的订购和运输计 划, 使总费用最小(给出总费用).
☞ (2)请就(1)的模型分析: 哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个 钢厂钢管的产量的上限的变化对购运计划和总 费用的影响最大,并给出相应的数字结果.
☞ (3)如果要铺设的管道不是一条线, 而是一 个树形图, 铁路、公路和管道构成网络, 请就 这种更一般的情形给出一种解决办法, 并对图 二按(1)的要求给出模型和结果.
§2.4 流量估计 1. 拟合水位~时间函数.
2. 确定流量~时间函数.
3. 一天总用水量的估计.
§2.5 算法设计与编程
1.拟合第1.2时段的水位,并导出流量.
2. 拟合供水时段的流量.
3. 一天总用水量的估计. 4. 流量及总用水量的检验.
Watertower.m
32Biblioteka 302826
24
22
20
★ 空气阻力的影响 对不同出手速度和出手高度的出手角度和入射角度
v(m/s)
8.0 8.5 9.0
h (m)
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1度
2度
60.7869 61.6100 62.3017 62.9012
43.5424 41.5693 39.7156 37.9433
§1.2 问题的分析 d
d
球心偏前
0
△x
0 D
篮球入框
D
☞不考虑篮球和篮框大小,讨论球心命中框心的条件 ☞考虑篮球和篮框大小,讨论球心命中框心且入框条件 ☞保证球入框,出手角度和出手速度允许的最大偏差 ☞考虑空气阻力的影响

数学建模规划问题的经典案例

数学建模规划问题的经典案例

s.t.

x13 x34 x36 0; x12 x24 x25 0; x24 x34 x45 x47 0; x25 x45 x56 x57 0; x47 x57 x67 Q x36 x56 x67 0; xij 0, i , j 1,2,,7.
§2.4 案例
建立优化模型的一般步骤
1.确定决策变量 2.确定目标函数的表达式 3.寻找约束条件 例1:设某厂生产电脑和手机两种产品,这两种产品的生产需要 逐次经过两条装配线进行装配。电脑在第一条装配线每台需要2 小时,在第二条装配线每台需要3小时;手机在第一条装配线每 台需要4小时,在第二条装配线每台需要1小时。第一条装配线每 天有80个可用工时,第一条装配线每天有60个可用工时,电脑和 手机每台的利润分别为100元和80元。问怎样制定生产计划?
问题1
不允许缺货的存贮模型
配件厂为装配线生产若干种部件,轮换生产不
同的部件时因更换设备要付生产准备费(与生产数
量无关),同一部件的产量大于需求时因积压资金、 占用仓库要付存贮费。今已知某一部件的日需求量 100件,生产准备费5000元,存贮费每日每件1元。 如果生产能力远大于需求,并且不允许出现缺货,
A
T1
B
T
t
允许缺货模型的存贮量q(t)
一个周期内存贮费
c2
T1
0
Q2 QT1 c2 q(t )dt c2 2r 2
( rT Q )(T T1 ) 一个周期内缺货损失费 c3 q(t )dt c3 T1 2 ( rT Q )2 c3 一个周期的总费用 2r
T
Q ( rT Q ) C c1 c2 c3 2r 2r

数学建模案例精选

数学建模案例精选

数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。

在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。

下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。

案例一,交通拥堵问题。

在城市交通管理中,交通拥堵一直是一个严重的问题。

如何合理规划道路和交通流量,是一个复杂的问题。

数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。

案例二,股票价格预测。

股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。

数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。

案例三,物流配送优化。

在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。

数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。

案例四,环境污染监测。

环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。

数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。

通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。

数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。

因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。

希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。

数学建模与应用案例

数学建模与应用案例

数学建模与应用案例数学建模是一种将数学方法和技巧应用于实际问题求解的过程。

它通过建立数学模型,对问题进行抽象和描述,然后利用数学工具进行分析和求解,最终得出问题的解决方案。

数学建模在各个领域都有广泛的应用,本文将介绍几个数学建模与应用的案例。

案例一:交通流量预测交通流量预测是城市交通规划和管理中的重要问题。

通过对交通流量进行预测,可以合理安排交通资源,提高交通效率。

数学建模可以通过分析历史交通数据,建立交通流量预测模型。

例如,可以利用时间序列分析方法,对历史交通数据进行拟合和预测,从而得出未来交通流量的趋势和变化规律。

同时,还可以考虑其他因素的影响,如天气、节假日等,进一步提高预测的准确性。

案例二:股票价格预测股票价格的波动对投资者来说是一个重要的信息。

通过对股票价格进行预测,可以帮助投资者做出更明智的投资决策。

数学建模可以通过分析历史股票价格数据,建立股票价格预测模型。

例如,可以利用时间序列分析方法,对历史股票价格进行拟合和预测,从而得出未来股票价格的趋势和变化规律。

同时,还可以考虑其他因素的影响,如宏观经济指标、公司财务状况等,进一步提高预测的准确性。

案例三:物流配送优化物流配送是一个复杂的问题,涉及到货物的运输路径、运输方式、运输成本等多个因素。

数学建模可以通过建立物流配送优化模型,帮助企业降低物流成本、提高物流效率。

例如,可以利用线性规划方法,对物流网络进行优化,确定最优的运输路径和运输方式,从而降低运输成本。

同时,还可以考虑其他因素的影响,如货物的重量、体积、运输时间等,进一步提高配送的效果。

案例四:疾病传播模型疾病传播是一个重要的公共卫生问题。

通过建立疾病传播模型,可以帮助政府和卫生部门制定有效的防控策略。

数学建模可以通过分析疾病传播的规律和机制,建立传染病传播模型。

例如,可以利用传染病动力学模型,对疾病的传播过程进行描述和分析,从而预测疾病的传播趋势和规模。

同时,还可以考虑其他因素的影响,如人口流动、社交网络等,进一步提高预测的准确性。

数学建模经典案例分析以葡萄酒质量评价为例

数学建模经典案例分析以葡萄酒质量评价为例

数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。

我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。

文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。

我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。

通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。

本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。

二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。

在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。

这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。

在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。

然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。

接下来,我们可以选择适合的模型进行训练。

在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。

我们需要根据数据的特性和问题的需求,选择最合适的模型。

同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。

我们需要对模型进行评估和优化。

这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。

如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。

数学建模案例分析【精选文档】

数学建模案例分析【精选文档】

案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。

它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。

但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。

扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。

为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。

这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。

产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。

我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。

寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。

本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。

如换成自行车的路程寿命来比较,就好得多。

产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。

弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。

自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。

8.27课上数学建模案例分析解析

8.27课上数学建模案例分析解析
数学建模案例
微分方程模型
实验目的
1.学会用MATLAB分析求解微分方程模型.
实验内容
1. 数学建模实例. 鸭子过河问题 慢跑者与狗的问题 导弹追踪问题
2.实验作业.
Байду номын сангаас 为什么要建立模型来解决 问题呢?
• 我认为可用“曹冲称象”的例子来说明,如图3。 变
大 象
• •
石 头
小称
大象重量
图 3
dx dt dy dt

X x , Y y
0
(2)
消去参数 ,可得狗的运动轨迹的参数方程
w dx (10 20cos t x) dt 2 2 (10 20cos t x ) (20 15sin t y ) w dy (20 15sin t y ) dt 2 2 (10 20cos t x ) (20 15sin t y ) y(0) 0 x(0) 0,
15 16
17 18 19 20 21 22
1.9217 1.8160 1.6721 1.4913 1.2759 1.0300 0.7591 0.4702
2.0937 1.6516 1.2479 0.8891 0.5818 0.3329 0.1484 0.0333
计算(1.3)的Matlab代码
a=1;b=2;h=10;dt=0.3; i=1; p=[0,h]; while p(2)>0 i=i+1; v=[a-b.*p(1)./sqrt(p(1).^2+p(2).^2),-b.*p(2)./sqrt(p(1).^2+p(2).^2)]; p=p+v.*dt; hold on plot(p(1),p(2),'p') end p

数学建模经典案例最优截断切割问题

数学建模经典案例最优截断切割问题

建模案例:最优截断切割问题一、 问 题从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍。

且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。

二、 假 设1、假设水平切割单位面积的费用为r,垂直切割单位面积费用为1;2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e;3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割.三、 模型的建立与求解设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b 0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M 4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式。

当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.由此准则,只需考虑 P 6622290!!!⨯⨯=种切割方式.即在求最少加工费用时,只需在90个满足准则的切割序列中考虑.不失一般性,设u 1≥u2,u3≥u 4,u5≥u6,故只考虑M1在M2前、M 3在M 4前、M5在M6前的切割方式。

1、 e=0 的情况为简单起见,先考虑e=0 的情况.构造如图9—13的一个有向赋权网络图G(V,E)。

为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.图9—13 G(V,E)图G(V,E)的含义为:(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0)表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
评注和思考 建模的关键 ~ θ和 f(θ), g(θ)的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
数学建模.
数学模型概述; 微积分模型;随机模型
P16
1.3.2 如何预报人口的增长
背景
世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
x(2000) = 274.5 实际为281.4 (百万)
模型应用——预报美国2010年的人口
加入2000年人口数据后重新估计模型参数
r=0.2490, xm=434.0
x(2010)=306.0
数学建模.
数学模型概述; 微积分模型;随机模型
P23
1.4 数学建模的方法和步骤
数学建模的基本方法
•机理分析 •测试分析
• 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
数学建模.
数学模型概述; 微积分模型;随机模型
P19
阻滞增长模型(Logistic模型)
-弗尔哈斯特(Verhulst,荷兰),1838提出
人口增长到一定数量后,增长率下降的原因:
资源、环境等因素对人口增长的阻滞作用


作出合理的、简化的假设
设 在合理与简化之间作出折中
用数学的语言、符号描述问题 模
型 构
发挥想像力 使用类比法
成 尽量采用简单的数学工具
P25
数学建模.
数学模型概述; 微积分模型;随机模型
P26
数学建模的一般步骤
模型 求解
各种数学方法、软件和计算机技术
模型 分析
如结果的误差分析、统计分析、 模型对数据的稳定性分析
k年后人口
x = x (1 + r) k
k
0
指数增长模型
——马尔萨斯(Malthus,英国)提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
x(t + ∆t) − x(t) = r∆t x(t)
dx dt
= rx ,
x(0) = x0
x(t ) = x e rt 0
数学模型概述; 微积分模型;随机模型
P13
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 椅子位置 利用正方形(椅脚连线)的对称性
用θ(对角线与x轴的夹角)表示椅子位置 B ´ B A ´
• 四只脚着地 椅脚与地面距离为零
距离是θ的函数
C
四个距离
两个距离
(四只脚) 正方形

对称性
θA
O
模型集中反映了原型中人们需要的那一部分特征
数学建模.
数学模型概述; 微积分模型;随机模型
P7
你碰到过的数学模型——“航行问题”
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?
用 x 表示船速,y 表示水速,列出方程:
( x + y ) × 30 = 750 ( x − y ) × 50 = 750
x
D´ D
A,C 两脚与地面距离之和 ~ f(θ) B,D 两脚与地面距离之和 ~ g(θ)
正方形ABCD 绕O点旋转
数学建模.
数学模型概述; 微积分模型;随机模型
P14
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
地面为连续曲面
f(θ) , g(θ)是连续函数
椅子在任意位置 至少三只脚着地
对任意θ, f(θ), g(θ)
至少一个为0
数学 问题
已知: f(θ) , g(θ)是连续函数 ; 对任意θ, f(θ) • g(θ)=0 ;
且 g(0)=0, f(0) > 0.
证明:存在θ0,使f(θ0) = g(θ0) = 0.
数学建模.
数学模型概述; 微积分模型;随机模型
P15
模型求解 给出一种简单、粗糙的证明方法
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
数学建模.
数学模型概述; 微积分模型;随机模型
P10
数学软件
• 实际问题一般需要利用计算机技术,并借 助一定的数学软件和算法(平台),对所 建立的模型进行求解(数值或解析)。
• Mathematica (强大的符号演算、图形处理和计算能力)
基本信息 华北电力大学数理系信息与计
算科学教研室 马新顺 .
联系方式:maxs@ 数学实验网站:
《数学建模》
1.数学建模概述(1) 2.微积分基本模型(2) 3.随机数学模型(2)
教材、参考书 姜启源等:《数学模型》(清华,2003) 陈恩水等:《数学建模与实验 》(科学,2008)
作业
数学建模.
数学模型概述; 微积分模型;随机模型
P32
供大于求
价格下降
减少产量

数量与价格在振荡

增加产量
价格上涨
供不应求
描述商品数量与价格的变化规律
问 商品数量与价格的振荡在什么条件下趋向稳定 题
当不稳定时政府能采取什么干预手段使之稳定
数学建模.
数学模型概述; 微积分模型;随机模型
P33
xk~第k时段商品数量;yk~第k时段商品价格
将数学语言表述的解答“翻译”回实际对象 用现实对象的信息检验得到的解答
实践 理论 实践
数学建模.
数学模型概述; 微积分模型;随机模型
P28
1.5 数学模型的特点和分类
数学模型的特点
模型的逼真性和可行性 模型的非预制性
模型的渐进性 模型的强健性
模型的条理性 模型的技艺性
模型的可转移性
模型的局限性
数学建模.
数学模型概述; 微积分模型;随机模型
P24
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个

比较清晰
备 搜集有关信息 掌握对象特征 的‘问题’
数学建模.
数学模型概述; 微积分模型;随机模型
数学建模的一般步骤

针对问题特点和建模目的
消费者的需求关系 需求函数 yk = f (xk ) 减函数
生产者的供应关系
y
f
g
y0
P0
供应函数 xk +1 = h ( y k ) 增函数 yk = g ( xk +1 )
f与g的交点P0(x0,y0) ~ 平衡点 一旦xk=x0,则yk=y0,
0
x0
xk+1,xk+2,…=x0, yk+1,yk+2, …=y0
x =20 求解 y =5
答:船速每小时20千米/小时.
数学建模.
数学模型概述; 微积分模型;随机模型
P8
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速);
• 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(π/2)=0 , g(π/2)>0.
令h(θ)= f(θ)–g(θ), 则h(0)>0和h(π/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在θ0 , 使h(θ0)=0, 即f(θ0) = g(θ0) . 因为f(θ) • g(θ)=0, 所以f(θ0) = g(θ0) = 0.
x(t) = x0 (er )t ≈ x0(1+ r)t
随着时间增加,人口按指数规律无限增长
数学建模.
数学模型概述; 微积分模型;随机模型
P18
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代 • 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律
根据对客观事物特性的认识, 找出反映内部机理的数量规律 将对象看作“黑箱”,通过对量测数据的 统计分析,找出与数据拟合最好的模型
•二者结合 用机理分析建立模型结构, 用测试分析确定模型参数
机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。
数学建模.
且阻滞作用随人口数量增加而变大
r是x的减函数
假设 r(x) =r −sx (r,s >0) r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
r(xm ) = 0
s = r r ( x) = r (1 − x )
xm
xm
数学建模.
数学模型概述; 微积分模型;随机模型
P20
阻滞增长模型(Logistic模型)
中国人口增长概况
年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0
研究人口变化规律
控制人口过快增长
数学建模.
数学模型概述; 微积分模型;随机模型
P17
常用的计算公式 今年人口 x0, 年增长率 r
dx = rx dt
dx/dt
dx = r(x)x = rx(1− x )
dt
xm
x
xm
0
相关文档
最新文档