数学模型经典例题
数学建模例题

例1 怎样使饮料罐制造用材最省的问题.首先,把饮料罐假设为正圆柱体(实际上由于制造工艺等要求,它不可能正好是数学上的正圆柱体,但这样简化确实是近似的、合理的).在这种简化下,我们就可以来明确变量和参数了,例如可以假设:V一罐装饮料的体积,r一半径,h一圆柱高,b一制罐铝材的厚度,l一制造中工艺上必须要求的折边长度。
上面的诸多因素中,我们先不考虑l这个因素.于是:由于易拉罐上底的强度必须要大一点,因而在制造上其厚度为罐的其他部分厚度的3倍.因而制罐用材的总面积A=,每罐饮料的体积V是一样的,因而V可以看成是一个常数(参数),解出A:代入A得:从而知道,用材最省的问题就是求半径r使A(r)达到最小。
A(r)的表达式就是一个数学模型。
可以用多种精确的或近似的方法求A(r)最小时相应的r。
从而求得例3 数据拟合模型在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。
但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。
只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是统计学中的拟合回归方程问题。
“人口问题”是我国最大社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础。
有人口统计年鉴,可查的我国从1949年至1994年人口数据智料如下:年份1949 1954 1959 1964 1969 1974 1979 1984 1989 1994人口数(百万)541.67602.66672.09704.99806.71908.59975.421106.761176.74分析:(1)在直角坐标系上作出人口数的图象。
(2)估计出这图象近似地可看做一条直线。
(3)用以下几种方法(之一)确定直线方程,并算出1999年人口数。
方法一:先选择能反映直线变化的两个点,如(1949,541.67),(1984,1034.75)二点确定一条直线,方程为N = 14.088 t – 26915.842代入t =1999,得N »12.46亿方法二:可以多取几组点对,确定几条直线方程,将t = 1999代入,分别求出人口数,在取其算数平值。
初中数学模型大全及解析

初中数学模型大全及解析数学模型是数学知识在实际问题中的应用,是数学与实际问题结合的一种形式。
在中学阶段,数学模型应用较为广泛。
下面是初中数学模型大全及解析,供大家参考。
1. 等差数列模型等差数列是一组数,其中每一项与它的前一项的差值相等。
在实际问题中,等差数列模型可以用来描述增长、减少、变化等情况。
例题:某学校的学生人数从2015年到2019年的变化情况如下表所示,若学生人数呈等差数列增长,求2019年的学生人数。
| 年份 | 学生人数 ||------|----------|| 2015 | 1000 || 2016 | 1100 || 2017 | 1200 || 2018 | 1300 |解析:设2015年的学生人数为a,每年增加的人数为d,则有: a + 3d = 1200a + 4d = 1300解方程得a=900,d=100,故2019年的学生人数为a+4d=1300人。
2. 利润模型利润是企业经营的重要指标之一,它是指企业销售收入与成本之差。
利润模型可以用来计算企业的销售目标、成本控制等问题。
例题:某工厂生产一种产品,每件售价为100元,生产一件产品的成本为70元。
如果该工厂每月销售量为5000件,求该工厂每月的利润。
解析:每件产品的利润为100-70=30元,每月的销售收入为100×5000=500000元,每月的成本为70×5000=350000元,故该工厂每月的利润为500000-350000=150000元。
3. 百分数模型百分数模型常用于比例问题的解决。
在实际问题中,可以用百分数模型计算增减比例、税率、折扣等。
例题:某商场打折促销,打8折后,一件原价500元的商品现在售价为多少?解析:打8折即为原价的80%,故售价为500×80%=400元。
4. 平均数模型平均数模型可以用来求一组数据的平均值,常用于统计分析中。
例题:某班级10名学生的语文成绩为60、70、80、85、90、88、77、75、79、83,求该班级的平均分。
数学建模例题题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。
社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。
一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。
要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、线性规划模型—销售计划问题某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。
要求:若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型,并用软件求解。
【注】线性规划在MATLAB的库函数为:linprog。
语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划目标函数的系数:f = [-5; -4; -6]约束方程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调用线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。
数学建模经典例题

A题机组组合问题当前的科学技术还不能有效地存储电力,所以电力生产和消费在任何时刻都要相等,否则就会威胁电力系统安全运行。
又由于发电机组的物理特性限制,发电机组不能够随心所欲地发出需要的电力。
为了能够实时平衡变化剧烈的电力负荷,电力部门往往需要根据预测的未来电力负荷安排发电机组起停计划,在满足电力系统安全运行条件下,追求发电成本最小。
在没有电力负荷损耗以及一个小时之内的电力负荷和发电机出力均不变的前提下,假定所有发电机组的发电成本都是由3部分组成,它们是启动成本(Startup Cost),空载成本(No load cost)和增量成本(Incremental Cost)。
需要考虑的约束有:1.负荷平衡约束:任何小时,电力负荷之和必须等于发电机发电出力之和。
2.系统备用约束:处于运行状态的发电机的最大发电能力减去其出力称为该发电机的备用容量,处于停运状态的发电机的备用容量为0。
任何小时,发电机的备用容量之和必须大于系统备用要求。
3.输电线路传输容量约束:线路传输的电能必须在它的传输容量范围内。
4.发电机组出力范围约束:处于运行状态的发电机组的发电出力必须小于其最大发电能力(Pmax, MW)。
5.机组增出力约束(Ramp Up, MW/h):发电机组在增加发电出力时,不能太快,有一个增加出力的速度上限,在一定时间内(通常是10分钟,为简单起见,本题取1个小时)不能超过额定范围。
6.机组降出力约束(Ramp Down, MW/h):与机组增出力约束类似,发电机组在减少发电出力时也有一个减少出力的速度上限。
问题1:3母线系统有一个3母线系统,其中有2台机组、1个负荷和3条输电线路,已知4个小时的负荷和系统备用要求。
请求出这4个小时的最优机组组合计划。
最终结果应该包括总成本、各小时各机组的状态、各小时各机组的发电出力和各小时各机组提供的备用。
所有数据请见下面图及表格,“3BusData”目录中还有包含了本题所有表格数据的5个xml文件。
(完整版)初中常用数学模型

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长)【例题1】(2014 深圳某模拟)【例题2】(2014 深圳)答案:1.32;2.D如图,若∠B=∠C=∠DEF=α(0<α≤90)则一定有△BDE与△CEF相似。
十分好证(外角和什么一大堆),并且也很实用。
经常在矩形里出题。
【例题1】(2009 太原)【例题2】(2006 河南)【例题3】(原创)答案:1. 2或3-24或25 2.(5453-,) 【3】巧造旋转模型在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。
巧造旋转往往要有一定的等量关系和特殊角度,如下题:通过观察可得∠ABC=∠C=45°,AB=AC 。
我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。
那么就有EB ⊥BC ,而在RT △AED 中,DE ²=2AD ²(等腰直角三角形) 所以BE ²+BD ²=DE ²,即BD ²+CD ²=2AD ²是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 武汉)【例题2】【例题3】(2014 菏泽改编)答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略【4】等腰模型这是一个很基础的模型——什么样的结构会生成等腰三角形首先:平行+角平分线,如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。
其次:垂直+角平分这个不难理解,因为等腰三角形三线合一。
这种模型很常用,常常需要做辅助线(延长之类)【例题1】(原创)AB‖CD【例题2】(原创)【例题3】(改编)1.112.33.延长CD交AB于M,利用中位线,证明略【5】倍长中线法常考,选填大证明都可能会用。
数学建模例题和答案

数学建模例题和答案
题目:
一个汽车公司拥有两个工厂,分别生产两种型号的汽车,A型和B型,每种型号的汽车都有一定的销售价格。
现在,该公司需要在两个工厂中生产A型和B型汽车,使得总收入最大。
答案:
1、建立数学模型
设A型汽车在第一个工厂生产的数量为x,在第二个工厂生产的数量为y,A型汽车的销售价格为a,B型汽车的销售价格为b,则该公司的总收入可以表示为:
总收入=ax+by
2、确定目标函数
由于题目要求使得总收入最大,因此可以将总收入作为目标函数,即:
最大化Z=ax+by
3、确定约束条件
由于两个工厂的生产能力有限,因此可以设置约束条件:
x+y≤M,其中M为两个工厂的总生产能力
4、求解
将上述模型转化为标准的数学规划模型:
最大化Z=ax+by
s.t. x+y≤M
x≥0,y≥0
由于该模型是一个线性规划模型,可以使用数学软件进行求解,得到最优解:
x=M,y=0
即在第一个工厂生产M件A型汽车,在第二个工厂不生产B型汽车,此时该公司的总收入最大,为Ma。
中学数学建模经典例题

中学数学建模经典例题中学数学建模经典例题包括:1.最大利润问题:某公司生产一种产品,每件成本为3元,售价为10元,年销售量为10万件。
为了扩大销售量,公司计划通过广告宣传来增加销售量。
经调查发现,广告费用与年销售量之间的关系可以近似地用函数y=−0.2x+10来表示,其中x为广告费用(单位:万元)。
问:广告费用为多少时,公司可获得最大年利润?2.最小费用问题:某公司需要将货物从甲地运往乙地,由于路途遥远,需要采用飞机、火车、汽车三种运输方式来完成。
运输方式的费用分别为x万元、y万元、z万元。
三种运输方式的单程运输能力分别为10万吨、15万吨、5万吨,而货物的总重量为35万吨。
为确保运输过程顺利进行,单程运输能力不能超过总重量。
请为该公司设计一个总费用最少的运输方案,并求出最少的总费用。
3.最小路径问题:某城市有若干个居民小区,每个小区有一定数量的居民。
为了方便居民出行,市政府计划修建地铁连接这些小区。
已知任意两个小区之间的距离可以近似地用欧几里得距离来表示,而修建地铁的费用与小区之间的距离成正比。
问:市政府应该如何规划地铁线路,使得总费用最低?4.人口预测问题:某城市的人口数量在过去几年里呈现出指数增长的趋势。
已知该城市的人口数量在过去的几年中每年以10%的速度增长,并且目前该城市的人口数量为50万。
我们要预测未来5年该城市的人口数量。
5.资源分配问题:某公司拥有一定的资源,需要将其分配给若干个项目以获得最大的收益。
每个项目的收益与分配到的资源数量成正比,而不同项目之间的收益增加率是不同的。
问:公司应该如何分配资源,使得总收益最大?这些例题涵盖了中学数学建模的多个方面,包括函数模型、最优化问题、线性规划等。
通过这些例题的解答,可以帮助学生提高数学建模的能力和解题技巧。
12345模型的经典例题

12345模型的经典例题12345模型是一种常见的数学模型,其基本思想是将一个问题分成五个步骤,分别是:问题描述、建立假设、分析模型、解决问题、检验结果。
下面是一道经典的12345模型例题:某公司生产两种产品,产品A和产品B,它们的生产成本分别是每个单位120元和150元。
市场需求量为每天2000个单位。
在市场需求满足的情况下,为了获得最大的利润,应该生产多少个产品A和多少个产品B?1. 问题描述:该公司需要在市场需求满足的情况下,生产最大利润的产品A和产品B的数量。
2. 建立假设:假设产品A和产品B的售价相同,都为每个单位200元。
假设市场需求量为每天2000个单位。
3. 分析模型:设产品A和产品B分别生产a个和b个,利润可表示为:利润 = 总收入 - 总成本总收入 = 200(a+b)总成本 = 120a + 150b利润 = 80a + 50b4. 解决问题:为了获得最大利润,需要求出利润函数的极值。
可以将利润函数对a和b求偏导数,得到:利润/a = 80利润/b = 50因此,利润函数在a和b的取值都为0时取得最小值,而在其他取值时取得极值。
由于生产的产品数量必须是非负整数,利润函数的极值点只能取整数值。
可以通过求解利润函数的整数线性规划问题,得到最大利润对应的生产量。
5. 检验结果:假设生产a=800个产品A和b=1200个产品B,总收入为320000元,总成本为228000元,利润为92000元。
如果生产其他数量的产品A和产品B,利润都不会超过92000元。
因此,生产a=800个产品A和b=1200个产品B是获得最大利润的最佳方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。
(15分) 解:一、模型假设:1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。
2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。
3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。
(3分) 二、建立模型:以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定:()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和由假设3可得,()f θ、()g θ中至少有一个为0。
由假设2知()f θ、()g θ是θ的连续函数。
(3分) 问题归结为:已知()f θ和()g θ是θ的连续函数,对任意θ,()()0f g θθ=,且设()()00,00g f =>。
证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。
(3分)由f g 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在()000θθπ<<使000()0,()()h f g θθθ==即。
最后,因为00()()0f g θθ=,所以00()()0f g θθ==。
(3分)图 5二、给出7支队参加比赛的循环比赛赛程安排,要求各参赛队的每两场比赛之间的休息场次尽可能均衡,并列出表格说明。
解:设(1,2,7)i A i =表示7支参赛队。
根据单循环赛的要求,得到7支队的比赛总场次为:27762121C ⨯==⨯(场),总轮次为7轮,且每一轮都有一支队轮空。
具体如下: (2分)1A 23A A 45A A 67A A 12A A 34A A 56A A 7A 1A 35A A 27A A 46A A 13A A 52A A 74A A 6A 1A 57A A 36A A 24A A 15A A 73A A 62A A 4A (4分)场队 队 次 A1 A2 A3 A4 A5 A6 A7 休息场次 休息总场次 A1 1 8 18 15 11 4 2+3+2+3+2 12 A2 1 5 21 9 17 13 3+3+3+3+3 15 A3 852 12 20 162+2+3+3+3 13 A4 18 21 2 6 14 10 3+3+3+3+2 14 A5 15 9 12 63 192+2+2+2+3 11 A6 11 17 20 14 3 7 3+3+2+2+2 12 A74 13 16 10 19 72+2+2+2+210 (4分)从以上的表格可以看出各参赛队的每两场比赛之间的休息场次是比较均匀的。
(2分) 三、假设人口的增长服从这样的规律:t 时刻的人口为()x t ,t 时刻的单位时间的增量与()m x x t -成正比(其中的m x 为最大人口容量),试建立模型求解并作出解的图形. 解:由t 时刻的单位时间的增量与()m x x t -成正比,即有()m x r x x =-( )m r x 其中比例系数为固有增长率,为最大人口容量。
(3分)令0(0)x x =得到0(),(0)m dx x r x x x x dt ==-= (2分)解得图10()rt m m x x x x e -=-- (3分)其图象为图1 (2分)四、学校共500名学生,其中118人住在A 宿舍,167人住在B 宿舍,215人住在C 宿舍,学生们要组织一个由20人组成的委员会,使用下述方法分配各宿舍的委员数(1)按比例分配方法; (2)Q 值法。
如果委员人数由20人增至21人,各宿舍的委员人数将如何变化?由上表可知,依惯例法,20人时,三个宿舍分别为5人,7人,8人;21人时为5人,7人,9人。
(5分)Q 值法分配:20人时先A 宿舍4人,B 宿舍6人,C 宿舍8人,剩下2个名额根据Q 值法:第19个名额222118167215696,664,642456789Q Q Q ======⨯⨯⨯A B C有Q Q Q >>A B C则应当把第19个名额分给A 宿舍。
(4分) 第20个名额211846456Q '==⨯A ,其他Q 值不变。
有Q Q Q '>>B C A,则应当把第20个名额分给B 宿舍。
即三个宿舍分别为5人,7人,8人。
(2分)21人时先A 宿舍4人,B 宿舍7人,C 宿舍9人,剩下1个名额根据Q 值法:222118167215696,498,5134578910Q Q Q ======⨯⨯⨯A B C有Q Q Q >>A C B则应当把最后1个名额分给A 宿舍。
即三个宿舍分别为5人,7人,9人。
(4分) 五、长l 、吃水深度h 的船以速度v 航行,若不考虑风的影响,那么航船受的阻力f 除依赖于船的诸变量,,l h v 以外,还与水的参数——密度ρ、粘性系数μ,以及重力加速度g 有关,其中粘性系数的定义是:运动物体在流体中受的摩擦力与速度梯度(即vv x∂∆=∂)和接触面积的乘积成正比,比例系数为粘性系数。
用量刚分析方法给出阻力f 与这些物理量之间的关系。
解:一、有关的物理量为船长l ,吃水深度h ,船速v ,阻力f ,水的密度ρ,粘性系数μ和重力加速度g 。
二、各物理量的量纲(2分)123211[],[],[],[],[],[],[]l L h L v LT f LMT L M g LT vf S L MT xρμμ------======∂=⇒=∂ (2分) 三、关系式(),,,,,,0f l h v g ϕρμ= 由此得到量纲矩阵A111131110001102001012L A MT f l h v gρμ--⎛⎫ ⎪= ⎪ ⎪----⎝⎭ ()3R A ⇒= (4分)得到A 的4个基本解()()()()12340110000010200101011101202100T TT Ty y y y ⎧=-⎪⎪=-⎪⎨=-⎪⎪=---⎪⎩ (4分)()11221322141234,,,0,lh lv g lv fl v ππρμπρπππππ------⎧=⎪=⎪⇒⎨=⎪⎪=⎩Φ=Φ为未定函数(*) 由(*)式可得()()222241234123,,,,,,f l v l v ρπρπππππππ==ψ=ψψ其中为未定函数。
3分) 六、建立不允许缺货的存储模型:设生产能力无限,一次性的订货费为1c 元,每天每吨货物的储存费为2c 元,每天货物的需要量为r ,确定最佳订货周期*T 和每次订货量*Q 。
解:由已知可得:不允许缺货的存储模型,一个周期内的总费用()C T 为()C T =订货费+储存费 (3分)t 时刻的储存量()q t 为(),q t Q rt Q Q rT =-=其中为总的储存量,且从而一个周期内总的储存量为01()2T q t dt QT =⎰ (3分) 则总费用为2121211()22C T c c QT c c rT =+=+ (3分)于是每天的平均费用()C T 是1212()()22c c rT C T C T c c r T T ==+≥ (3分) 当且仅当12122,2c c rT c T T c r ==即时,()C T 才能取到最小值,此时 122c r Q c = 所以,最佳订货周期*122c T c r= (3分)图2七、建立不允许缺货的生产销售模型。
设生产速率为常数k ,销售速率为常数r ,k r >。
在每一个生产周期内,开始的一段(00t T ≤≤)一边生产一边销售,后来一段时间()0T t T ≤≤只销售不生产,画出贮存量()q t 的图形。
设每次生产的开工费为1c 元,单位时间每件产品的储存费为2c 元,试以每天费用最小为原则确定最佳周期。
讨论kr 和r k ≈的情况。
解:由右图可知:00();0()();k r t t T q t b r t T T t T -≤≤⎧=⎨--≤≤⎩ 其中0()b k r T =- 总的贮存量Q 为0011()()22TQ q t dt bT k r T T ===-⎰ (3分)则每一个周期内每天平均费用c 为212100()()1()22c c c k r c T c c k r T T T T T T -⎡⎤==+-=+⎢⎥⎣⎦(3分) 而00r kT rT T T k =⇒=1212()2()2c c r k r c c r k r c T T kk--⇒=+≥当且仅当1212(-)22(-)c c r k r c k T T T k c r k r ==时,即时,每天费用最省,即最佳周期为*122(-)c kT c r k r =(3分)① 当kr 时,得*112222,c k c k r k T c rk c r -≈≈=则 (1分) ② 当r k ≈时,得*1220,()c kk r T c r k r -→=→∞-则 (1分)图4k-rr图: (4分)八、某公司有三个工厂生产某种商品并运往四个调拨站。
工厂1,2,3每月分别生产12、17、11批商品,而每一个调拨站每月均需接受10批商品。
各厂至各调拨站的运输距离(公里)如下表所示。
已知每批商品的运费为100元加上每公里0.50元。
问应如何调运使总运费最少?解:设ij x 表示从第i 个工厂每月运往第j 个调拨站的批量,目标是获得总运费最小的调运方案。
根据假设条件,各工厂到各调拨站每批商品的运费可总结为下表:根据单位运费可得目标函数的解析表达式为111213142122232431323334500750300450650800400600400700500550z x x x x x x x x x x x x =+++++++++++(3分)综合可得其规划模型为111213142122232431323334500750300450650800400600400700500550Min z x x x x x x x x x x x x =+++++++++++s.t . 1112131421222324313233343112171110,1,2,3,41,2,3;1,2,3,4ij i ij x x x x x x x x x x x x x j x j =⎧⎪+++=⎪⎪+++=⎪+++=⎨⎪⎪==⎪⎪===⎩∑非负整数,i (8分,每个约束1分)。