数学建模典型例题(二)
数学建模遗传算法例题

数学建模遗传算法例题数学建模中,遗传算法是一种基于进化思想的优化算法,可以应用于复杂的优化问题中。
本文将介绍一些遗传算法的例题,帮助读者更好地理解遗传算法的应用。
例题一:背包问题有一个体积为V的背包和n个物品,第i个物品的体积为vi,价值为wi。
求这个背包最多能装多少价值的物品。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在背包问题中,适应度函数可以定义为:背包中物品的总价值。
交叉操作可以选择单点交叉或多点交叉,变异操作可以选择随机变异或非随机变异。
例题二:旅行商问题有n个城市,旅行商需要依次经过这些城市,每个城市之间的距离已知。
求旅行商经过所有城市的最短路径。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群,每个个体代表一种旅行路线。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在旅行商问题中,适应度函数可以定义为:旅行商经过所有城市的总距离。
交叉操作可以选择顺序交叉或部分映射交叉,变异操作可以选择交换或反转基因序列。
总结:遗传算法是一种强大的优化算法,可以应用于多种复杂的优化问题中。
在数学建模中,遗传算法的应用也越来越广泛。
本文介绍了背包问题和旅行商问题的遗传算法解决步骤,希望对读者有所帮助。
数学建模经典例题

1 数学建模经典例题某学校有三个系共200名学生,其中甲系100名,乙系60名,丙系40名.若学生代表会议设20各级席位,公平而又简单的席位分配方法是按学生人数的比例分配,显然甲乙丙三系分别应占有10,6,4个席位,现在丙系有6名学生转入甲乙两系,各系人数如表第二列所示,仍按比例(表中第三列)分配席位时出现了小数(表中第四列),在将取得整数的19席分配完毕后,三席同意剩下的1席参照所谓惯例分给比例中小数最大的系,于是三系分别占有10,6,4席(表中第5列)因为有20个代表会议在表决的时候可能出现10:10的局面,会议决定下一届增加一席,他们按照上述方法重新分配席位,计算结果见表6,7列,显然这个结果对丙系太不公平了.因为总席位增加一席,而丙系却由4席减为3席.按照比例并参照惯例的席位分配系别学生学生人数 20个席 20个席位 21个席位 21个席位人数的比例(% 的分配的分配的分配的分配比例分配参照惯例比例分配参照惯例的席位的结果的席位的结果甲 103 51.5 10.3 10 10.815 11乙 63 31.5 6.3 6 6.615 7丙 34 17.0 3.4 4 3.570 3总和 200 100.0 20.0 20 21.000 21要解决这个问题必须舍弃所谓惯例,找到衡量公平分配席位的指标,并由此建立新的分配分配方法解答:Pī/Nī表示第ī个单位每个代表名额代表的人数采用相对标准,引入相对不公平概念.如果P1/n1>P2/n2,则说明A方是吃亏的,或说对A方不公平.对A的相对不公平度:rA(n1,n2)=(p1/n1-p2/n2)/(p2/n2)=(p1n2)/(p2n1)-1对B的相对不公平度:rB(n1,n2)=(p2n1)/(p1n2)-1情形1:P1/(n1+1)>p2/n2,表明即使A方再增加一个名额,仍然对A方不公平,所以这个名额当然给A方情形2:P1/(n1+1)<p2/n2,表明A增加一个名额后,就对B方不公平,这时B的相对不公平度为:rB(n1+1,n2)=p2(n1+1)/p1n2-1情形3:(P1/n1)>p2/(n2+1) ,表明B增加一个名额后,就对A方不公平,这时A的相对不公平度为:rA(n1,n2+1)=p1(n2+1)/p2n1-1由以上三种情形可知,若情形1发生,名额给A方.否则须考查rB(n1+1,n2)和rA(n1,n2+1)的大小关系.如果rB<rA,则名额给方,否则给B方.由于rB(n1+1,n2)<rA(n1,n2+1)等价于P2*P2/n2(n2+1)< P1*P1/n1(n1+1)若情形1发生,上式仍成立,记作Qi=pi*pi/ni(ni+1)增加名额给Q值较大一方.Q甲=103*103/10(10+1)=96.445Q乙=63*63/6(6+1)=94.5Q丙=34*34/4(4+1)=57.8因此名额加给甲班。
数学建模传染病模型例题

数学建模传染病模型例题(最新版)目录一、引言二、数学建模传染病模型的基本概念1.SEIR 模型2.SIS 模型3.SIR 模型三、数学建模传染病模型的例题1.模型假设2.模型建立3.模型求解四、结论正文一、引言随着全球化的发展,传染病的传播越来越引起人们的关注。
为了更好地预测和控制传染病的传播,数学建模传染病模型被广泛应用。
本文将以数学建模传染病模型为例,介绍相关的模型概念和例题。
二、数学建模传染病模型的基本概念(1)SEIR 模型SEIR 模型是传染病数学模型中最基本的模型之一,它将人群分为四类:易感者 (Susceptibles)、暴露者 (Exposed)、感染者 (Infectives) 和抵抗者 (Resistances)。
该模型假设人群数量不变,感染者会以一定的速率传染给易感者,同时易感者会以一定的速率转变为暴露者,暴露者在一定时间后转为感染者,感染者又会在一定时间后转为抵抗者。
(2)SIS 模型SIS 模型是 SEIR 模型的一种特殊形式,它将人群分为易感者(Susceptibles)、感染者 (Infectives) 和恢复者 (Recovered) 三类。
该模型假设易感者与感染者的接触会导致疾病传播,感染者会在一定时间后恢复为易感者,恢复者则具有免疫力。
(3)SIR 模型SIR 模型是另一种常见的传染病数学模型,它将人群分为易感者(Susceptibles)、感染者 (Infectives) 和恢复者 (Recovered) 三类。
与 SIS 模型不同的是,SIR 模型假设感染者会以一定的速率恢复为易感者,而恢复者则具有免疫力。
SIR 模型适用于短期传染病,例如流感。
三、数学建模传染病模型的例题假设某个地区有 10000 人,其中易感者占 80%,感染率为 0.01,恢复率为 0.9。
我们需要建立一个数学模型来预测疾病传播的过程。
(1)模型假设我们假设疾病传播满足 SEIR 模型,人群分为易感者、暴露者、感染者和恢复者四类。
数学建模迪杰斯特拉算法例题

min
v js
{T
(v
j
)}
min{
T
(v3
),
T
(v4
),
T
(v5
),
T
(v6
)}
T (v3 ) 4, 所以有, p(v3) 4
v2 2
3
v1
1
2
v4
4
2
v6
5 v3 4
2 v5
(5)T (v5 ) min[ T (v5 ), P(v3) l35 ] min[ 5, 4 4] 5
从v1到v8的路。
P3=最短…路…问题中,不考虑有向环、并行弧。
旅行路线总费用
路上所有弧权之和。
最短路问题
给定有向网络D=(V,A,W),任意弧
aij∈A,有权w( aij )=wij,给定D中的两个顶点
vs,vt。设P是D中从vs到vt的一条路,定义路P的权 (长度)是P中所有弧的权之和,记为w(P)。最短
p1=0
p2=2
2
6
1
2
3
1 p4=1 10
5
9
3
4
7
5
6
5
2
3
4
6
7
8
4
8
p6=3
p7=3
min {d23,d25,c47,d67}=min {2+6,2+5,1+2,3+4}=min {8,7,3,7}=3
X={1,2,4,6,7}, p7=3
X={1,2,4,6,7}
p1=0
p2=2
2
6
1
2
v1
3 v3 6
数学建模例题和答案

数学建模例题和答案
题目:
一个汽车公司拥有两个工厂,分别生产两种型号的汽车,A型和B型,每种型号的汽车都有一定的销售价格。
现在,该公司需要在两个工厂中生产A型和B型汽车,使得总收入最大。
答案:
1、建立数学模型
设A型汽车在第一个工厂生产的数量为x,在第二个工厂生产的数量为y,A型汽车的销售价格为a,B型汽车的销售价格为b,则该公司的总收入可以表示为:
总收入=ax+by
2、确定目标函数
由于题目要求使得总收入最大,因此可以将总收入作为目标函数,即:
最大化Z=ax+by
3、确定约束条件
由于两个工厂的生产能力有限,因此可以设置约束条件:
x+y≤M,其中M为两个工厂的总生产能力
4、求解
将上述模型转化为标准的数学规划模型:
最大化Z=ax+by
s.t. x+y≤M
x≥0,y≥0
由于该模型是一个线性规划模型,可以使用数学软件进行求解,得到最优解:
x=M,y=0
即在第一个工厂生产M件A型汽车,在第二个工厂不生产B型汽车,此时该公司的总收入最大,为Ma。
中学数学建模经典例题

中学数学建模经典例题中学数学建模经典例题包括:1.最大利润问题:某公司生产一种产品,每件成本为3元,售价为10元,年销售量为10万件。
为了扩大销售量,公司计划通过广告宣传来增加销售量。
经调查发现,广告费用与年销售量之间的关系可以近似地用函数y=−0.2x+10来表示,其中x为广告费用(单位:万元)。
问:广告费用为多少时,公司可获得最大年利润?2.最小费用问题:某公司需要将货物从甲地运往乙地,由于路途遥远,需要采用飞机、火车、汽车三种运输方式来完成。
运输方式的费用分别为x万元、y万元、z万元。
三种运输方式的单程运输能力分别为10万吨、15万吨、5万吨,而货物的总重量为35万吨。
为确保运输过程顺利进行,单程运输能力不能超过总重量。
请为该公司设计一个总费用最少的运输方案,并求出最少的总费用。
3.最小路径问题:某城市有若干个居民小区,每个小区有一定数量的居民。
为了方便居民出行,市政府计划修建地铁连接这些小区。
已知任意两个小区之间的距离可以近似地用欧几里得距离来表示,而修建地铁的费用与小区之间的距离成正比。
问:市政府应该如何规划地铁线路,使得总费用最低?4.人口预测问题:某城市的人口数量在过去几年里呈现出指数增长的趋势。
已知该城市的人口数量在过去的几年中每年以10%的速度增长,并且目前该城市的人口数量为50万。
我们要预测未来5年该城市的人口数量。
5.资源分配问题:某公司拥有一定的资源,需要将其分配给若干个项目以获得最大的收益。
每个项目的收益与分配到的资源数量成正比,而不同项目之间的收益增加率是不同的。
问:公司应该如何分配资源,使得总收益最大?这些例题涵盖了中学数学建模的多个方面,包括函数模型、最优化问题、线性规划等。
通过这些例题的解答,可以帮助学生提高数学建模的能力和解题技巧。
2020年数学建模国赛题目

2020年数学建模国赛题目
以下是2020年数学建模国赛题目:
题目一:某县遭受水灾,县领导需要带领有关部门负责人到全县各乡(镇)、村巡视,以考察灾情、组织自救。
假设巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。
要求在24小时内完成巡视。
请回答以下问题:
1. 要在24小时内完成巡视,至少应分几组?给出这种分组下你认为最佳的巡视路线。
2. 假定巡视人员足够多,完成巡视的最短时间是多少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。
3. 改变对最佳巡视路线的影响。
题目二:一家电子商务公司需要对交易数据进行深入分析,以便预测未来的销售额和用户行为,从而制定相应的经营策略。
请构建一个数学模型,以分析历史交易数据并预测未来的销售额和用户行为。
题目三:某燃煤发电厂需要进行烟气脱硫处理,以减少二氧化硫的排放。
请建立一个数学模型,以找出最佳的脱硫工艺和操作参数。
题目四:网络流量优化问题:请通过调整网络拓扑结构和设置合适的流量控制策略,优化网络中的流量分布,并提高网络的传输效率。
题目五:地铁运行优化问题:通过对城市地铁线路的时空数据进行分析,优化地铁列车的发车间隔和运行速度,以提高乘客满意度和运行效率。
以上题目仅供参考,具体赛题及要求以数学建模国赛官网为准。
数学建模简单例题

数学建模简单例题
近年来,数学建模迅速发展,成为数学教育的重要组成部分。
不仅如此,数学建模也在实际应用中扮演着重要角色。
以下是举出的一些简单例题,介绍如何应用数学建模解决实际问题。
例1:汽车路线优化
假设有A、B、C三个城市,从A到B需要经历200公里,从B到C需要经历300公里。
同时,存在有限路段,要求尽可能明确最短路径。
此时,可以建立一个图,将A、B、C三个城市看作三个顶点,再建立若干边,表示每条路径的距离,再使用迪杰斯特拉算法,计算出最短路径。
例2:工厂设备调配
假想一家公司有3台生产设备,每台设备有不同的生产能力和每日最大生产量,要求给出每天各台设备的最优配置,以达到每日最大生产量。
给定三台设备的生产能力和每日最大生产量,建立这个问题的数学模型,可以采用最短路径算法的思想,建立一张图,把每台设备看成一个顶点,再建立若干边,表示每台设备的最大生产能力,最后根据路径的长度,计算出各台设备的最优配置。
以上是两个简单的数学建模例题,为了解决具体实际问题,数学建模不仅仅可以使用上述算法,还可以使用线性规划、最优化、反问题等方法来解决实际问题。
本文就介绍了数学建模的一些基础原理,
并举出了几个例子,希望能对读者有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 小行星的轨道模型问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1.表6.1 坐标数据由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为012225423221=+++++y a x a y a xy a x a .问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据:(x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5).由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定系数,将五个点的坐标分别代入上面的方程,得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++++-=++++-=++++-=++++-=++++.1222122212221222122255542535522514544243442241353423333223125242232222211514213112211y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11111222222222222222543215525552544244424332333232222222211211121a a a a a y x y y x x y x y y x x y x y y x x y x y y x x y x y y x x 求解这一线性方程组,所得的是一个二次曲线方程.为了知道小行星轨道的一些参数,还必须将二次曲线方程化为椭圆的标准方程形式:12222=+b Y a X 由于太阳的位置是小行星轨道的一个焦点,这时可以根据椭圆的长半轴a 和短半轴b 计算出小行星的近日点和远日点距离,以及椭圆周长L .根据二次曲线理论,可得椭圆经过旋转和平移两种变换后的方程如下:[].02221=++C DY X λλ 所以,椭圆长半轴:C D a 1λ=;椭圆短半轴: CDb 2λ=;椭圆半焦矩:22b ac -=.计算求解 首先由五个点的坐标数据形成线性方程组的系数矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=7200.69600.142896.112656.509504.550520.53360.143807.62127.363802.516460.35180.133233.36433.246841.454040.25720.124448.11115.155138.39292.1528.114199.04701.72237.33A使用计算机可求得).2165.0,6351.1,6942.0,3440.0,6143.0(),,,,(54321---=a a a a a从而⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=6942.03440.03440.06143.03221a a a a C C C ,3081.0=的特征值.0005.1,3080.021==λλ.12165.06351.12165.06942.03440.06351.13440.06143.0154532321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a a a a a a a a D .8203.1-=D于是,椭圆长半轴1834.19=a ,短半轴9045.5=b ,半焦距2521.18=c .小行星近日点距和远日点距为.4355.37,039313=+==-=c a H c a h最后,椭圆的周长的准确计算要用到椭圆积分,可以考虑用数值积分解决问题,其近似 值为84.7887.7 人口迁移的动态分析问题 对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势:每年农村居民的2.5%移居城镇,而城镇居民的1%迁出.现在总人口的60%位于城镇.假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,那么一年以后住在城镇人口所占比例是多少?两年以后呢?十年以后呢?最终呢?解 设开始时,令乡村人口为,0y 城镇人口为,0z 一年以后有乡村人口,10011000975100y z y =+ 城镇人口,10099100025100z z y =+ 或写成矩阵形式⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡00111009910002510011000975z y z y . 两年以后,有.100991000251001100097510099100025100110009750021122⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y z y . 十年以后,有.100991000251001100097500101010⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y事实上,它给出了一个差分方程:k k Au u =+1.我们现在来解这个差分方程.首先,1009910002510011000975⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Ak 年之后的分布(将A 对角化):.75757275100200193115210000⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y A z y k k k k 这就是我们所要的解,而且容易看出经过很长一个时期以后这个解会达到一个极限状态.7572)(00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎦⎤⎢⎣⎡∞∞z y z y 总人口仍是00z y +,与开始时一样,但在此极限中人口的75在城镇,而72在乡村.无论初始分布是什么样,这总是成立的.值得注意这个稳定状态正是A 的属于特征值1的特征向量.上述例子有一些很好的性质:人口总数保持不变,而且乡村和城镇的人口数决不能为负.前一性质反映在下面事实中:矩阵每一列加起来为1;每个人都被计算在内,而没有人被重复或丢失.后一性质则反映在下面事实中:矩阵没有负元素;同样地0y 和0z 也是非负的,从而1y 和21,y z 和2z 等等也是这样.8 常染色体遗传模型为了揭示生命的奥秘,遗传学的研究已引起了人们的广泛兴趣.动植物在产生下一代的过程中,总是将自己的特征遗传给下一代,从而完成一种“生命的延续”.在常染色体遗传中,后代从每个亲体的基因对中各继承一个基因,形成自己的基因对.人类眼睛颜色即是通过常染色体控制的,其特征遗传由两个基因A 和a 控制.基因对是AA 和Aa 的人,眼睛是棕色,基因对是aa 的人,眼睛为蓝色.由于AA 和Aa 都表示了同一外部特征,或认为基因A 支配a ,也可认为基因a 对于基因A 来说是隐性的(或称A 为显性基因,a 为隐性基因).下面我们选取一个常染色体遗传——植物后代问题进行讨论.某植物园中植物的基因型为AA ,Aa ,aa .人们计划用AA 型植物与每种基因型植物相结合的方案培育植物后代.经过若干年后,这种植物后代的三种基因型分布将出现什么情形?我们假设),2,2,0(,, =n c b a n n n 分别代表第n 代植物中,基因型为AA ,Aa 和aa 的植物占植物总数的百分率,令),,()('=n n n n c b a x 为第n 代植物的基因分布, ),,(000)0('=c b a x 表示植物基因型的初始分布,显然,我们有.1000=++c b a (8.1)先考虑第n 代中的AA 型,第1-n 代AA 型与AA 型相结合,后代全部是AA 型;第1-n 代的Aa 型与和与AA 相结合,后代是AA 型的可能性为21;1-n 代的aa 型与AA 型相结合,后代不可能是AA 型。
因此,我们有.0211111---∙++∙=n n n n c b a a (8.2) 同理,我们有,2111--+=n n n c b b (8.3) .0=n c (8.4)将(8.2),(8.3),(8.4)式相加,得.111---++=++n n n n n n c b a c b a (8.5)将(8.5)式递推,并利用(8.1)式,易得.1=++n n n c b a我们利用矩阵表示(8.2),(8.3)及(8.4)式,即,2,1,)1()(==-n Mx x n n (8.6)其中.00012100211⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=M 这样,(8.6)式递推得到.)0()1(2)1()(x M x M Mx x n n n n ====-- (8.7)(8.7)式即为第n 代基因分布与初始分布的关系.下面,我们计算nM .对矩阵M 做相似变换,我们可找到非奇异矩阵P 和对角阵D ,使,1-=PDP M其中.100210111,00012100011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-P P D这样,经(8.7)得到.)()0()1()0()(1x P PD x PDP x n n n -==-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000210001100210111c b a n.021*********010000⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+--++=--c b c b c b a n n n n 最终有⎢⎢⎢⎢⎢⎢⎣⎡=+=--=--.0,2121,21211010010n n n n n n nc c b b c b a 显然,当+∞→n 时,由上述三式,得到.0,0,1→→→n n n c b a即在足够长的时间后,培育出的植物基本上呈现AA 型.通过本问题的讨论,可以对许多植物(动物)遗传分布有一个具体的了解,同时这个结果也验证了生物学中的一个重要结论:显性基因多次遗传后占主导因素,这也是之所以称它为显性的原因.。