数学建模优化问题经典练习
数模优化问题作业答案

解 设分别购买饲料A B C D E 各i x 个单位,每单位营养成分为ij a ,单价为j c ,每天对营养成分的需要量为j b 。
⎪⎩⎪⎨⎧=≥===∑∑==5,4,3,2,1,03,2,1,..min 5151i x j b x a t s x c f ii ji ij i ii model : title ex1; sets :s1/1..5/:c,x; s2/1..3/:b; link(s1,s2):a; endsets data :c=2 7 4 3 8; b=700 30 100; a=; enddatamin =@sum (s1:c*x);@for (s2(j):@sum (s1(i):a(i,j)*x(i))>b(j));end每天购买饲料D 39.743kg,E 25.641k ,最少费用324.359元.解 设分别生产三种产品i x 个单位。
model : title ex2;max =3000*x1+2000*x2+2900*x3; 8*x1+2*x2+10*x3<300; 10*x1+5*x2+8*x3<400; 2*x1+13*x2+10*x3<420; end分别生产22.5,23.2,7.3个单位,利润最大,为135266.7元。
设备B 的单位租金为300元,高于影子价格266.67元,所以不合算。
产品Ⅰ的单位利润在(3000-1454.55,3000+333.33)上变化都不用改变生产计划。
3.队员选拔问题 某校篮球队准备从十名预备队员中选择五名作为正式队员,队员的各种情况如下表:队员号码 身高(厘米) 技术分 位置1 185 8.6 中锋2 186 9 中锋3 193 8.4 中锋 4 190 9.5 中锋5 182 9.1 前锋6 184 9 前锋7 188 8.1 前锋 8 186 7.8 后卫9 190 8.2 后卫 10 192 9.2 后卫队员的挑选要满足下面条件: (1)至少补充一名前锋。
数学建模培训-最优化方法练习题

练习1、求解下列线性规划问题。
(1)()131********max 43112.22233332436400,1,2,3,4i f x x x s tx x x x x x x x x x i =--++-=+=-+=≥= (2)()123123123max 23.2222320,1,2i f x x x x s tx x x x x x x i =---+≤-+-≤-≥=(3)()1231212312max 564.22553415100,1,2,3i f x x x x s tx x x x x x x x i =+++≤++≤+≤≥=(4)12312312312123min 33..25231612,,0x x x s t x x x x x x x x x x x -++-+≤-+≤+≤≥ (5)1212312412515max 2..506221,,0x x s t x x x x x x x x x x x +++=-++=++=≥ (6)()123412341234max 30354045..34647043658001,2,3,4i x x x x s t x x x x x x x x x i ++++++≤+++≤≥=2、建立线性规划模型,求解下列问题。
(1)某工厂生产甲、乙两种产品。
已知生产甲种产品t 1需耗A 种矿石t 10、B 种矿石t 5、煤t 4;生产乙种产品t 1需耗A 种矿石t 4、B 种矿石t 4、煤t 9。
每t 1甲种产品的利润是600元,每t 1乙种产品的利润是1000元。
工厂在生产这两种产品的计划中要求消耗A 种矿石不超过t 300、B 种矿石不超过t 200、煤不超过t 360。
甲、乙两种产品应各生产多少,能使利润总额达到最大?(2)设有A 1,A 2两个香蕉基地,产量分别为60吨和80吨,联合供应B 1,B 2,B 3三个销地的销售量经预测分别为50吨、50吨和40吨。
数学建模与优化考试试题

数学建模与优化考试试题题目一:某市的公交公司需要对公交车的发车时间进行调整,以满足市民的出行需求,并尽量减少公交车的等待时间和拥挤情况。
为了有效地解决这个问题,我们使用数学建模和优化的方法进行分析。
1. 问题描述某市公交车的运营时间为早上6点至晚上10点,每天间隔一段固定的时间发车。
公交车站点数量为M,每个站点的上下客时间为Ti。
现有数据显示,在早高峰时段(7点至9点)和晚高峰时段(17点至19点)市民出行需求较大,其他时间段市民出行需求较小。
公交公司希望尽量减少市民的等待时间和公交车的拥挤情况,提高出行效率。
因此,需要调整公交车的发车时间以适应市民的出行需求。
2. 模型建立建立一个数学模型来分析最优的公交车发车时间。
首先,我们将问题简化为一个最小化等待时间和最小化拥挤度的目标函数。
然后,通过对每个站点发车时间的调整,最大限度地优化这个目标函数。
3. 数据收集与分析为了准确建立模型,需要收集和分析以下数据:- 各个站点在早高峰时段和晚高峰时段的平均上下客时间;- 各个站点在各个时间段的客流量统计数据;- 公交车到站时间的统计数据。
4. 模型求解利用收集到的数据和已经建立的数学模型,可以通过数学优化算法求解最优的公交车发车时间。
该算法将最小化等待时间和拥挤度作为目标函数,并考虑到市民出行需求的变化。
5. 结果分析与改进根据模型求解的结果,可以进行结果分析,并对公交车发车时间进行进一步的调整和优化。
同时,还可以对模型进行改进,如引入更多的因素,如天气、节假日等。
题目二:某工厂需要优化生产线的排布和生产策略,以提高生产效率和降低成本。
为了完成这个任务,我们使用数学建模和优化的方法进行分析。
1. 问题描述该工厂的生产线包括多个工作站,每个工作站都有不同的生产能力和工作时间。
目前,生产线的排布和生产策略并不完善,导致生产效率低下和成本较高。
工厂希望通过优化生产线的排布和生产策略,提高生产效率,降低成本。
2. 模型建立建立一个数学模型来分析最优的生产线排布和生产策略。
13.建模作业_优化问题

《数学建模》课程作业题一13第五章优化模型•优化问题1、已知某工厂计划生产I, 11,111三种产品,各产品需要在A, B,C 设备上 加工,有模型得建立及求解:设生产I, 11,111产品xl, x2,x3件z 为所获得得利润。
于就是数学模型如下:利用mail a b 求解(附录一)得到最优值Z =1 3 5、2667(千元), 生产方案如下表.生产I, I I, III 产品分别为2 3 , 23,7利润最大为125、2667千元.(2)若为了增加产量,可租用别得工厂设备B,每月可租用60台,租金1、8万 元,租用B 设备就是否划算? 模型得建立及求解:租用别得工厂设备B 以后模型为:利用matlab 求解(附录二)得到最优值Z 二129(千元), 生产方案如下表。
生产I, II, IH 产品分别为31, 28, 0利润最大为129千元.(3)若另有俩种新产品IV 、V,其中新产品IV 需用设备A 为12台时,B 为 5台时,C 为10台时,单位产品盈利2、1千元;新产品V 需用设备A 为4台时,B 为4台时,C 为12台时,单位产品盈利1、87千元,如A,B, C 得设备台时不 增加,这两种新产品投产在经济上就是否划算? 模型得建立及求解:添加两个新产品IV 、V 后,IV 、V 对应得产品数分别为x4,x5,建立模型如下: 利用ma t lab 求解(附录三)得到最优值Z =136、96 2 5 (千元),生产方案如下告产I, II, III, IV, V产品分别为27, 16, 0, 0, 14利润最大为136、962 5千兀。
(4)对产品工艺重新进行设计,改进结构、改进后生产每件产品I需用设备A为9台时,设备B为12台时,设备C为4台时,单位盈利4、5千元,这时对原计划有何影响?模型得建立及求解:改进结构后,建立得模型如下:利用mat la b求解(附录四)得到最优值Z二1 53、1 618 (千元),生产方案如下表.生产I,II, III产品分别为23, 2 5, 0利润最大为153、1618千元。
3.数学建模之优化模型实例[1]
![3.数学建模之优化模型实例[1]](https://img.taocdn.com/s3/m/8d5354c3bb4cf7ec4afed06d.png)
即按照模式1、2、3分别切割10、10、8根原料钢管,使用 原料钢管总根数为28根。第一种切割模式下一根原料钢管 切割成3根4米钢管和1根6米钢管;第二种切割模式下一根 原料钢管切割成2根4米钢管、1根5米钢管和1根6米钢管; 第三种切割模式下一根原料钢管切割成2根8米钢管。 如果充分利用LINGO建模语言的能力,使用集合和属性 的概念,可以编写以下LINGO程序,这种方法更具有一 般的通用性,并有利于输入更大规模的下料问题的优化模 型:
优化建模
模型建立 决策变量 由于不同切割模式不能超过3种,可以用xi 表 示按照第i种模式(i=1, 2, 3)切割的原料钢管的根数, 显然它们应当是非负整数。设所使用的第i种切割模式 下每根原料钢管生产4米长、5米长、6米长和8米长的 钢管数量分别为r1i, r2i, r3i, r4i(非负整数)。 决策目标 以切割原料钢管的总根数最少为目标,即目标为
优化建模
问题1)的求解
问题分析 首先,应当确定哪些切割模式是可行的。 所谓一个切割模式,是指按照客户需要在原料钢管上 安排切割的一种组合。例如,我们可以将19米长的钢 管切割成3根4米长的钢管,余料为7米显然,可行的 切割模式是很多的。 其次,应当确定哪些切割模式是合理的。通常假设一 个合理的切割模式的余料不应该大于或等于客户需 要的钢管的最小尺寸。在这种合理性假设下,切割 模式一共有7种,如表1所示。
Reduced Cost 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
优化建模
数学建模 优化建模实例1

(10)
应该注意到,只有当以 千元 千元/吨的价格购买 应该注意到,只有当以10千元 吨的价格购买 x1=500(吨)时,才能以8千元 吨的价格购买x2 ( 才能以 千元/吨的价格购买 千元 吨的价格购买 ),这个条件可以表示为 (>0),这个条件可以表示为 ),
§5.1.2建立模型 5.1.2建立模型
问题分析 安排原油采购、加工的目标是利润最大, 安排原油采购、加工的目标是利润最大,题目中给 出的是两种汽油的售价和原油A的采购价, 出的是两种汽油的售价和原油A的采购价,利润为 销售汽油的收入与购买原油A的支出之差。 销售汽油的收入与购买原油A的支出之差。这里的 难点在于原油A的采购价与购买量的关系比较复杂, 难点在于原油A的采购价与购买量的关系比较复杂, 是分段函数关系,能否及如何用线性规划、 是分段函数关系,能否及如何用线性规划、整数规 划模型加以处理是关键所在。 划模型加以处理是关键所在。
( x1 − 500) x 2 = 0
(11)
同理,只有当以8千元/ =500( 同理,只有当以8千元/吨的价格购买x2=500(吨)时, >0), ),于是 才能以6千元/ 才能以6千元/吨的价格购买x3(>0),于是
( x 2 − 500) x3 = 0
(12)
此外, 此外,x1,x2,x3的取值范围是
优化问题实例
• 例 某公司用两种原油(A和B)混合加工成两种汽 某公司用两种原油( 甲和乙)。 )。甲 乙两种汽油含原油A 油(甲和乙)。甲、乙两种汽油含原油A的最低比 例分别为50% 60%,每吨售价分别为4800 50%和 4800元和 例分别为50%和60%,每吨售价分别为4800元和 5600元 该公司现有原油A 的库存量分别为500 5600元。该公司现有原油A和B的库存量分别为500 吨和1000 1000吨 还可以从市场上买到不超过1500 1500吨 吨和1000吨,还可以从市场上买到不超过1500吨 的原油A 原油A的市场价为:购买量不超过500 500吨 的原油A。原油A的市场价为:购买量不超过500吨 时的单价为10000 10000元 购买量超过500 500吨但不超 时的单价为10000元/吨;购买量超过500吨但不超 1000吨时 超过500吨的部分8000 吨时, 500吨的部分8000元 过1000吨时,超过500吨的部分8000元/吨;购买 量超过1000吨时,超过1000吨的部分6000 1000吨时 1000吨的部分6000元 量超过1000吨时,超过1000吨的部分6000元/吨。 该公司应如何安排原油的采购和加工。 该公司应如何安排原油的采购和加工。
最优化问题数学建模作业
最优化问题建模
某农场种植某种作物,全部生产过程中至少需要氮肥32公斤、磷肥24公斤、钾肥42公斤。
市场上有甲、乙、丙、丁四种综合肥料可供选用。
已知这四种肥料每公斤的价格和每公斤所含氮、磷、钾成分的数量如表1所示。
问应该如何配
试建立该问题的数学模型。
现在从另一个方面提出如下问题:
某肥料公司,针对上述类型的农场的需要,计划生产氮、磷、钾三种单成分的化肥。
该公司要为这三种化肥确定单价,既要使获利最大,又要能与市场现有的甲、乙、丙、丁四种综合肥料相竞争,问应如何定价?
使建立该问题的数学模型。
数学建模优化问题经典练习
1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大,max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3;2*x1+4*x2+8*x3<=500;2*x1+3*x2+4*x3<=300;1*x1+2*x2+3*x3<=100;@bin(y1);@bin(y2);@bin(y3);y1+y2+y3>=1;Global optimal solution found.Objective value: 300.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 100.0000 0.000000X2 0.000000 3.000000X3 0.000000 6.000000Y1 1.000000 100.0000Y2 0.000000 150.0000Y3 0.000000 200.0000Row Slack or Surplus Dual Price1 300.0000 1.0000002 300.0000 0.0000003 100.0000 0.0000004 0.000000 4.0000005 0.000000 0.0000002、安排4个人去做4项不同的工作,每个工人完成各项工作所消耗的时间(单位:(2)如果在(1)中在增加一项工作E,甲、乙、丙、丁四人完成工作E的时间分别为17,20,15,16分钟,那么应指派这四人干哪四项工作,使得这四人总的消耗时间为最少?min=20*x11+19*x12+20*x13+28*x14+18*x21+24*x22+27*x23+20*x24+26*x31+16 *x32+15*x33+18*x34+17*x41+20*x42+24*x43+19*x44;x11+x12+x13+x14=1;x21+x22+x23+x24=1;x31+x32+x33+x34=1;x41+x42+x43+x44=1;x11+x21+x31+x41=1;x12+x22+x32+x42=1;x13+x23+x33+x43=1;x14+x24+x34+x44=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x41);@bin(x42);@bin(x43);@bin(x44);Global optimal solution found.Objective value: 71.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX11 0.000000 20.00000X12 1.000000 19.00000X13 0.000000 20.00000X14 0.000000 28.00000X21 0.000000 18.00000X22 0.000000 24.00000X23 0.000000 27.00000X24 1.000000 20.00000X31 0.000000 26.00000X32 0.000000 16.00000X33 1.000000 15.00000X34 0.000000 18.00000X41 1.000000 17.00000X42 0.000000 20.00000X43 0.000000 24.00000X44 0.000000 19.00000Row Slack or Surplus Dual Price1 71.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.000000min=20*x11+19*x12+20*x13+28*x14+17*x15+18*x21+24*x22+27*x23+20*x24+20 *x25+26*x31+16*x32+15*x33+18*x34+15*x35+17*x41+20*x42+24*x43+19*x44+1 6*x45;x11+x12+x13+x14+x15=1;x21+x22+x23+x24+x25=1;x31+x32+x33+x34+x35=1;x41+x42+x43+x44+x45=1;x11+x21+x31+x41<=1;x12+x22+x32+x42<=1;x13+x23+x33+x43<=1;x14+x24+x34+x44<=1;x15+x25+x35+x45<=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x15);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x25);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x35);@bin(x41);@bin(x42);@bin(x43);@bin(x44);@bin(x45);Objective value: 68.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced Cost X11 0.000000 20.00000 X12 1.000000 19.00000 X13 0.000000 20.00000 X14 0.000000 28.00000 X15 0.000000 17.00000 X21 1.000000 18.00000 X22 0.000000 24.00000 X23 0.000000 27.00000 X24 0.000000 20.00000 X25 0.000000 20.00000X31 0.000000 26.00000X32 0.000000 16.00000X33 1.000000 15.00000X34 0.000000 18.00000X35 0.000000 15.00000X41 0.000000 17.00000X42 0.000000 20.00000X43 0.000000 24.00000X44 0.000000 19.00000X45 1.000000 16.00000Row Slack or Surplus Dual Price1 68.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000003、一个公司考虑到北京、上海、广州和武汉四个城市设立库房,这些库房负责向华北、华中、华南三个地区供货,每个库房每月可处理货物1000件。
数学建模作业---优化模型
P104页,复习题题目:考虑以下“食谱问题":某学校为学生提供营养套餐,希望以最小的费用来满足学生对基本营养的需求按照营养学家的建设,一个人一天要对蛋白质,维生素A和钙的需求如下:50g蛋白质、4000IU维生素A和1000mg的钙,我们只考虑以不食物构成的食谱:苹果,香蕉,胡萝卜,枣汁和鸡蛋,其营养含量见下表。
制定食谱,确定每种食物的用量,以最小费用满足营养学家建议的营养需求,并考虑:(1)对维生素A的需求增加一个单位时是否需要改变食谱?成本增加多少?如果对蛋白质的需求增加1g呢?如果对钙的需求增加1mg呢?(2)胡萝卜的价格增加Ⅰ角时,是否需要改变食谱?成本增加多少?问题分析:(1)此优化问题的目标是使花费最小.(2)所做的决策是选择各种食物的用量,即用多少苹果,香蕉,胡萝卜,枣汁,鸡蛋来制定食谱。
(3)决策所受限制条件:最少应摄入的蛋白质、维生素和钙的含量(4)设置决策变量:用x1表示苹果的个数、x2表示香蕉的个数、x3表示胡萝卜的个数、x4表示枣汁的杯数量、x5表示鸡蛋的个数(5)x1个苹果花费10·x1角x2个香蕉花费15·x2角x3个胡萝卜花费5·x3角x4杯枣汁花费60·x4角x5个鸡蛋花费8·x5角目标函数为总花费金额:z=10·x1+15·x2+5·x3+60·x4+8·x5 (角)(6)约束条件为:最少摄入蛋白质的含量:0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥50最少摄入维生素A的含量:73x1+96x2+20253x3+890x4+279x5≥4000最少摄入钙的含量:10x1+15x2+5x3+60x4+8x5≥1000非负约束:x 1,x 2,x 3,x 4,x 5≥0优化模型:minz =10x 1+15x 2+5x 3+60x 4+8x 5s.t. 0.3x 1+1.2x 2+0.7x 3+3.5x 4+5.5x 5≥5073x 1+96x 2+20253x 3+890x 4+279x 5≥4000 9.6x 1+7x 2+19x 3+57x 4+22x 5≥1000 x 1,x 2,x 3,x 4,x 5≥0由线性规划模型的定义,容易得到线性规划的性质:1. 比例性 每个决策变量的对目标函数的“贡献”与该决策变量的取值成正比;每个决策变量对每个约束条件右端项的“贡献”,与该决策变量的取值成正比.2. 可加性 各个决策变量对目标函数的“贡献”,与其他决策变量的取值无关;各个决策变量对每个约束条件右端项的“贡献”,与其他决策变量的取值无关.3. 连续性 每个决策变量的取值是连续的. 考察本题,实际上隐含下面的假设 :1.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与各自的用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素、钙的含量是与各自的用量无关的常数.(线性规划性质1—比例性)2.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与它们相互间用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素A 、钙的含量是与它们相互间的用量无关的常数. (线性规划性质2—可加性)3. 购买苹果、香蕉、胡萝卜、枣汁、鸡蛋的数量都是实数. (线性规划性质3—连续性) 模型求解:(决策变量是5维的,不适用图解法求解模型)软件求解:线性规划模型:min z=10x1+15x2+5x3+60x4+8x5s.t. 0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥5073x1+96x2+20253x3+890x4+279x5≥40009.6x1+7x2+19x3+57x4+22x5≥1000x1,x2,x3,x4,x5≥0模型全局最优解:(Global optimal solution)x1=0x2=0x3=49.38272x4=0x5=2.805836z的最优值为269.3603角用LINGO 软件求解,得到如下输出:结果分析:1. 3个约束条件的右端项可视为3种资源:蛋白质含量、维生素A 含量、钙含量.LINGO 的输出项Row Slack or Surplus ,给出了3种资源在最优解下的剩余.2.目标函数可视为“支出(成本)”,紧约束的“资源”增加1单位时,“支出”的增加由LINGO 的输出项 Dual Price 给出。
数学建模竞赛中的部分优化问题
路、公路运输,铺设一条
火车站 公路 管道
450 里程(km)
A1
钢管管道 A1 A2 A15 (沿管道建有公路)
优化建模
钢厂的产量和销价(1单位钢管=1km管道钢管)
钢厂i
1
2
3
4
产量上限 si 销价 pi (万元)
800 800 160 155
1000 155
2000 160
钢厂产量的下限:500单位钢管 1单位钢管的铁路运价
, tani
D yi0 xi0
or
i
3
2
, tani
yi0 xi0
,
,
yi0
v sin i
, if
i
3
2
, tani
yi0 xi0
or 3
2
i
2 , tani
yi0 D xi0
整理: 其中:
fij (t) zij 2 bij zij cij .
290 30 S7
S2
1200
S3
690 720
S4
690
170 520
160 130 88
A18
160
320 A20
100 70 30
70 260
A21
S6
A19
110
190
62
20 20
A15
500
1100
202
S1
A16
42
20
12
A17
462
70 10
S5 10
220
420
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大,max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3;2*x1+4*x2+8*x3<=500;2*x1+3*x2+4*x3<=300;1*x1+2*x2+3*x3<=100;@bin(y1);@bin(y2);@bin(y3);y1+y2+y3>=1;Global optimal solution found.Objective value: 300.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 100.0000 0.000000X2 0.000000 3.000000X3 0.000000 6.000000Y1 1.000000 100.0000Y2 0.000000 150.0000Y3 0.000000 200.0000Row Slack or Surplus Dual Price1 300.0000 1.0000002 300.0000 0.0000003 100.0000 0.0000004 0.000000 4.0000005 0.000000 0.0000002、安排4个人去做4项不同的工作,每个工人完成各项工作所消耗的时间(单位:(2)如果在(1)中在增加一项工作E,甲、乙、丙、丁四人完成工作E的时间分别为17,20,15,16分钟,那么应指派这四人干哪四项工作,使得这四人总的消耗时间为最少?min=20*x11+19*x12+20*x13+28*x14+18*x21+24*x22+27*x23+20*x24+26*x31+16 *x32+15*x33+18*x34+17*x41+20*x42+24*x43+19*x44;x11+x12+x13+x14=1;x21+x22+x23+x24=1;x31+x32+x33+x34=1;x41+x42+x43+x44=1;x11+x21+x31+x41=1;x12+x22+x32+x42=1;x13+x23+x33+x43=1;x14+x24+x34+x44=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x41);@bin(x42);@bin(x43);@bin(x44);Global optimal solution found.Objective value: 71.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX11 0.000000 20.00000X12 1.000000 19.00000X13 0.000000 20.00000X14 0.000000 28.00000X21 0.000000 18.00000X22 0.000000 24.00000X23 0.000000 27.00000X24 1.000000 20.00000X31 0.000000 26.00000X32 0.000000 16.00000X33 1.000000 15.00000X34 0.000000 18.00000X41 1.000000 17.00000X42 0.000000 20.00000X43 0.000000 24.00000X44 0.000000 19.00000Row Slack or Surplus Dual Price1 71.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.000000min=20*x11+19*x12+20*x13+28*x14+17*x15+18*x21+24*x22+27*x23+20*x24+20 *x25+26*x31+16*x32+15*x33+18*x34+15*x35+17*x41+20*x42+24*x43+19*x44+1 6*x45;x11+x12+x13+x14+x15=1;x21+x22+x23+x24+x25=1;x31+x32+x33+x34+x35=1;x41+x42+x43+x44+x45=1;x11+x21+x31+x41<=1;x12+x22+x32+x42<=1;x13+x23+x33+x43<=1;x14+x24+x34+x44<=1;x15+x25+x35+x45<=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x15);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x25);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x35);@bin(x41);@bin(x42);@bin(x43);@bin(x44);@bin(x45);Objective value: 68.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX11 0.000000 20.00000X12 1.000000 19.00000X13 0.000000 20.00000X14 0.000000 28.00000X15 0.000000 17.00000X21 1.000000 18.00000X22 0.000000 24.00000X23 0.000000 27.00000X24 0.000000 20.00000X25 0.000000 20.00000X31 0.000000 26.00000X32 0.000000 16.00000X33 1.000000 15.00000X34 0.000000 18.00000X35 0.000000 15.00000X41 0.000000 17.00000X42 0.000000 20.00000X43 0.000000 24.00000X44 0.000000 19.00000X45 1.000000 16.00000Row Slack or Surplus Dual Price1 68.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000003、一个公司考虑到北京、上海、广州和武汉四个城市设立库房,这些库房负责向华北、华中、华南三个地区供货,每个库房每月可处理货物1000件。
在北京设库房每月成本为4.5万元,上海为5万元,广州为7万元,武汉为4万元。
每个地区的月平均需求量为:华北每月500件,华中每月800件,华南每月700(1)如果在上海设库房,则必须也在武汉设库房。
(2)最多设两个库房。
(3)武汉和广州不能同时设库房。
请写出一个满足上述要求的整数规划的模型,并求出最优解。
min=200*x11+400*x12+500*x13+w1*45000+300*x21+250*x22+400*x23+w2*50000 +600*x31+350*x32+300*x33+w3*70000+350*x41+150*x42+350*x43+w4*40000; w1+w2+w3+w4<=2;w2<=w4;w3+w4<=1;x11+x12+x13<=1000*w1;x21+x22+x23<=1000*w2;x31+x32+x33<=1000*w3;x41+x42+x43<=1000*w4;x11+x21+x31+x41<=500;x12+x22+x32+x42<=800;x13+x23+x33+x43<=700;@bin (w1);@bin (w2);@bin (w3);@bin (w4);。