数学建模组合优化模型()

合集下载

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。

在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。

本讲将介绍一些简单的优化模型。

一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。

其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。

线性规划模型指的是目标函数和约束条件都是线性的情况。

通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。

二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。

非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。

对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。

这些方法通过迭代的方式逐步靠近最优解。

三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。

整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。

整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。

针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。

四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。

动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。

五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。

模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。

数学建模常用模型方法总结

数学建模常用模型方法总结

数学建模常用模型方法总结无约束优化 线性规划 非线性规划 整数规划组合优化 多目标规划 目标规划 动态规划 网络规划 多层规划等 …运筹学模型 (优化模型)图论模型存 储论模型排 队论模型博 弈论模型可靠性理论模型等 …运筹学应用重点: ①市场销售 ②生产计划 ③库存管理 ④运输问题 ⑤财政和 会计 ⑥人事管理 ⑦设备维修、更新和可靠度、项目选择和评价 ⑧工程的最佳 化设计 ⑨计算器和讯息系统 ⑩城市管理优化模型四要素: ①目标函数 ②决策变量 ③约束条件④求解方法(MATLAB--通用软件 LINGO--专业软件)连续优化离散优化从其他角度分类数学规划模型概率论与数理统计模型多元分析模型假设检验模型相关分析回归分析聚类分析、主成分分析因子分析判别分析典型相关性分析对应分析多维标度法方差分析贝叶斯统计模型时间序列分析模型决策树逻辑回归马尔萨斯人口预测模型Logistic 人口预测模型灰色预测模型回归分析预测模型预测分析模型差分方程模型马尔可夫预测模型时间序列模型插值拟合模型神经网络模型系统动力学模型(SD)模糊综合评判法模型数据包络分析综合评价与决策方法灰色关联度主成分分析秩和比综合评价法理想解读法等旅行商(TSP)问题模型背包问题模型车辆路径问题模型物流中心选址问题模型经典 NP 问题模型路径规划问题模型着色图问题模型多目标优化问题模型车间生产调度问题模型最传染病模型微分方程模型人口预测控制模型经济增长模型优树问题模型二次分配问题模型模拟退火算法(SA)遗传算法(GA)智能算法(启发式)神经网络算法常用算法模型蒙特卡罗算法元胞自动机算法穷蚁群算法(ACA)举搜索算法小波分析算法确定性数学模型三类数学模型随机性数学模型。

数学建模模型案例

数学建模模型案例

数学建模模型案例一、旅行商问题(TSP)旅行商问题是一个典型的数学优化问题,在旅行商问题中,旅行商需要在给定的一系列城市之间找到一条最短路径,使得他能够只经过每个城市一次并最终回到起点城市。

这个问题可以用图论和线性规划等方法来进行建模和求解,可以应用于物流配送、路径规划等领域。

二、股票价格预测模型股票价格预测是金融领域中的一个重要问题。

可以使用时间序列分析、机器学习等方法来建立股票价格预测模型。

模型需要考虑多个因素,如历史股价、经济指标、市场情绪等,以预测未来股票价格的趋势和波动。

三、疫情传播模型疫情传播模型是在流行病学领域中使用的一种数学模型,用于研究疾病在人群中的传播规律。

常见的疫情传播模型有SIR模型、SEIR 模型等,这些模型可以用来预测疫情的传播速度、感染人数以及制定相应的防控策略。

四、能源优化调度模型能源优化调度模型用于优化电力系统、能源系统等中的能源调度问题。

这种模型需要考虑电力需求、能源供应、能源转换效率等因素,以最小化成本或最大化效益,并且满足各种约束条件。

五、机器学习分类模型机器学习分类模型用于将数据集中的样本分为不同的类别。

这种模型可以使用各种机器学习算法,如逻辑回归、决策树、支持向量机等,以根据样本的特征来预测其所属的类别。

六、交通拥堵预测模型交通拥堵预测模型用于预测城市交通网络中的拥堵情况。

这种模型可以使用历史交通数据、天气数据、道路网络数据等进行建模,以预测未来某个时刻某个路段的交通状况,并提供相应的交通管理建议。

七、供应链优化模型供应链优化模型用于优化供应链中的物流和库存管理等问题。

这种模型需要考虑供应商、生产商、分销商之间的关系,以最小化库存成本、运输成本等,并满足客户需求。

八、排课调度模型排课调度模型用于学校或大学的课程安排问题。

这种模型需要考虑教室、教师、学生、课程等因素,以最大化教学效果、减少冲突,并满足各种约束条件。

九、旅行路线规划模型旅行路线规划模型用于帮助旅行者规划旅行路线。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

2023年数学建模c题目

2023年数学建模c题目

2023年数学建模c题目
2023年数学建模竞赛C题是“多阶段投资组合优化问题”。

问题描述:
假设你是一位投资者,在多阶段投资环境中,需要确定在每个阶段应该如何分配你的投资金额。

为了简化问题,我们假设你只有一个投资目标,即在每个阶段最大化预期收益,并且你的投资金额为100万元。

具体来说,你需要确定在每个阶段应该投资多少金额,以及应该选择哪些资产进行投资。

投资环境包括股票、债券和现金等三种资产,每种资产的预期收益率和风险水平不同。

在每个阶段,你都需要考虑过去的历史数据和当前的市场情况来制定投资策略。

例如,在第一阶段,你需要基于过去10年的数据来确定股票、债券和现金的权重。

在第二阶段,你需要根据第一阶段的结果和市场情况来调整你的投资策略。

目标是最大化预期收益,同时考虑风险水平。

你需要确定一个多阶段投资组合优化模型,并使用历史数据和数学方法来解决这个问题。

问题要求:
1. 建立多阶段投资组合优化模型,并使用历史数据来求解该模型。

2. 确定投资策略,包括在每个阶段的投资金额和资产选择。

3. 分析投资结果,包括预期收益和风险水平。

4. 讨论如何根据市场变化调整投资策略。

5. 编写一个Python程序来实现你的模型和算法,并输出结果。

这是一个非常具有挑战性的问题,需要你掌握多阶段投资组合优化、统计分析和Python编程等方面的知识。

希望你能通过解决这个问题,提高自己的数学建模能力和实际应用能力。

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模中经济与金融优化模型分析

数学建模中经济与金融优化模型分析

数学建模中经济与金融优化模型分析在当今复杂多变的经济与金融领域,数学建模已成为一种不可或缺的工具。

通过建立数学模型,我们能够对经济和金融现象进行定量分析,预测趋势,制定优化策略,从而为决策提供有力支持。

本文将深入探讨数学建模中常见的经济与金融优化模型,分析它们的原理、应用以及优缺点。

一、线性规划模型线性规划是数学建模中最基本也是应用最广泛的优化模型之一。

它主要用于解决在一组线性约束条件下,如何使线性目标函数达到最优值的问题。

在经济领域,线性规划常用于生产计划的制定。

例如,一家工厂生产多种产品,每种产品需要不同的原材料、生产时间和劳动力,同时市场对每种产品的需求也有限制。

通过建立线性规划模型,工厂可以确定每种产品的生产数量,以在满足各种约束条件的前提下,实现利润最大化。

在金融领域,线性规划可用于资产配置。

投资者拥有一定的资金,并希望在多种资产(如股票、债券、基金等)之间进行分配,以在风险限制和预期收益目标下,实现投资组合的最优配置。

线性规划模型的优点在于计算简单、易于理解和求解。

然而,它也有局限性,比如只能处理线性关系,无法准确描述现实中许多复杂的非线性现象。

二、整数规划模型整数规划是在线性规划的基础上,要求决策变量取整数值的优化模型。

在经济领域,整数规划常用于项目选择和人员分配问题。

例如,一个企业有多个项目可供投资,但每个项目的投资金额是整数,且资源有限。

通过整数规划模型,可以确定投资哪些项目,以实现企业的长期发展目标。

在金融领域,整数规划可用于股票的买卖决策。

假设投资者只能以整数股买卖股票,且有资金和风险限制,整数规划可以帮助确定购买哪些股票以及购买的数量。

整数规划模型相较于线性规划更加符合实际情况,但求解难度也更大,往往需要更复杂的算法和计算资源。

三、非线性规划模型非线性规划用于处理目标函数或约束条件中包含非线性函数的优化问题。

在经济领域,非线性规划可用于研究成本函数和需求函数为非线性的企业生产决策。

投资组合优化的数学模型与算法

投资组合优化的数学模型与算法

投资组合优化的数学模型与算法第一章:概述投资组合优化是指在投资市场中,选择一系列资产组合,在满足规定约束条件的前提下,最大化投资回报或最小化风险的过程。

这个问题可以被看作一个数学优化问题,需要通过数学建模和算法求解来获得最优解。

本文将介绍投资组合优化的数学模型和算法,涵盖了传统的均值方差模型和更先进的风险预测模型。

第二章:均值方差模型均值方差模型是投资组合优化中最经典的模型。

该模型假设所有资产的收益率服从正态分布,且各资产之间的收益率无相关性。

在这个模型中,资产权重的计算公式如下:minimize: w'Σwsubject to: w'μ=r , w≥0, ∑wi=1其中,w是资产权重的向量,μ是资产收益率的向量,Σ是资产收益率协方差矩阵,r是投资者的预期回报率。

针对这个问题,可以使用基于拉格朗日乘数法的二次规划算法进行求解。

另外,可以使用更加高效的理论,如广义矩阵不等式和半定规划等方法,来求解该问题。

这些方法可以显著提高算法的效率。

第三章:风险预测模型均值方差模型并不考虑资产收益率的非正态性和相关性。

在现实世界中,资产的收益率可能呈现出长尾分布或偏态分布,且资产之间的收益率可能存在相关性。

因此,一些研究者提出了基于如GARCH模型或Copula函数等风险预测模型的投资组合优化方法。

这些模型的公式比较复杂,不再列出。

在实际应用中,通常需要使用极大似然法或贝叶斯方法等来对参数进行估计。

然后,可以使用理论或数值方法来求解最优投资组合。

第四章:多目标优化模型投资组合优化往往需要同时考虑回报和风险这两个目标。

除此之外,不同的投资者还可能有其他的目标,如资金流动性、大宗交易风险等等。

这就涉及到了多目标优化问题。

常见的多目标优化方法包括权重法、约束法和优先级法等等。

这些方法往往需要根据不同的目标制定不同的优化目标函数和约束条件。

一些最优化算法,如NSGA-Ⅱ和Pareto-SC等,可以有效地求解这类问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东财经大学
优化问题建模
马建华
优化问题建模
优化问题概述 数学规划模型 组合优化模型 优化算法介绍 评价方法

山东财经大学
优化问题建模
马建华
组合优化建模
组合优化问题概述 网络优化设计 流量安排问题 路线选择问题

山东财经大学
优化问题建模
马建华
组合优化问题概述
组合优化问题 常见的组合优化问题 组合优化问题建模方法

山东财经大学
优化问题建模
马建华
组合优化问题


有限个可行方案中选择最优方案 最优解一定存在 可行方案的个数非常多,枚举法不可行,往往是 NP-hard问题
山东财经大学
优化问题建模
马建华
组合优化问题


组合计数问题 最小费用最大流问题 最短路问题 网络设计问题 最优匹配问题 装箱问题 旅游售货员问题 车辆路径问题
山东财经大学
优化问题建模
马建华
组合优化问题建模方法
数学规划方法 图与网络优化方法 组合优化算法

山东财经大学
优化问题建模
马建华
图的基本概念
图与子图 图的连通性 图的计算机表示

山东财经大学
优化问题建模
马建华
无向图的基本概念
无向图G:一个有序二元组(N,E),记为G=(N,E) G的点集合: N=(1,2,3,4)是一个无向图 的点的集合 G 的边集合: E={eij} 且eij={ni,nj} 为 无序二元组称 ni 和 nj 为 eij 的端点,且称eij 连接点 ni和nj
返回
山东财经大学
优化问题建模
马建华
子图
图 G ( N , E ) 的子图 G ( N , E ) :N N 和 E E , 对 E 中任意的一条边 eij {ni , n j } ,都有 ni N 和
nj N
G 的子图,且 N N 支撑子图:G 是 N 的一个非空子集N 作为点 点导出子图 G[ N ] :以 集、以两端点均在N 中的所有边为边集的子图 G [ E ] E E 作为边 边导出子图 :以 的一个非空子集 集、以E 中边的所有端点作为点集的子图
1
a 2 c d
b 4 e
3
山东财经大学
优化问题建模
马建华
点边关系
关联:一条边的端点称为这条边的关联点,顶点1与边a和b 邻接:与同一条边关联的端点称为是邻接的,如点 1 和 2 , 同时如果两条边有一个公共端点,则称这两条边是邻接 的,如边a和b。 1 b a
2
c
d 3 e
4
山东财经大学
优化问题建模
马建华
完全图:每一对点之间均有一条边相连的图 二分图 G=(N,E) :存在的一个二分划 (S,T) ,使得 G 的每条边 有一个端点在S中,另一个端点在T中 完全二分图 G=(S,T,E):S中的每个点与T中的每个点都相连 的简单二分图 简单图G的补图 :与G有相同顶点集合的简单图,且 G 中的两个 点相邻当且仅当它们在G中不相邻
1, 当弧aik以点i为尾 bik 1, 当弧aik以点i为头 0, 否则
山东财经大学
优化问题建模
马建华
关联矩阵示例
2 1 3 4 5 2 1 3 4
1 1 2 1 3 0 4 0 5 0
返回
1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1
1 2 3 4 5 1 0 2 1 3 1 4 1 5 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0
2 1 5
2 4 3
1 2 3 4 1 0 2 0 3 0 4 0 1 1 0 0 1 1 0 0 0 0 1 0

山东财经大学
优化问题建模
马建华
关联矩阵
简单图 G ( N , E ) 的关联矩阵:一个 | N | | E | 阶矩阵 B (bik ) ,其中 1, 当点i与边k关联 bik 0, 否则 简单有向图 G ( N , A) 的关联矩阵:一个| N | | A | 阶 B (bik ) 矩阵 ,其中

山东财经大学
优化问题建模
马建华
Scilab中输入图

命令:
g = make_graph(name,directed,n,tail,head) 其中: name:图的名称,字符串‘graph1’ directes:有向无向,0-无向图,1-有向图 n:顶点个数 tail向量,各边的尾部 head向量,各边的头部
1 1 1 0 0 0 2 1 0 1 1 0 3 0 1 1 0 1 4 0 0 0 1 1
山东财经大学
优化问题建模
马建华
邻接矩阵
简单图 G ( N , E ) 的邻接矩阵:一个| N | | N | 阶矩阵 A ( a ij ) ,其中
山东财经大学
优化问题建模
马建华
例子
2
边 a b c d e f g h i 1 d 3 a c 4 e f b g 5 i
1, 当点i与点j邻接 a ij 0, 否则
| N || N | 简单有向图 G ( N , A) 的关联矩阵:一个 阶 矩阵 A (a ij ) ,其中
1, 当有弧从点i到点j a ij 0, 否则
山东财经大学
优化问题建模
马建华
邻接矩阵示例
1 3 4
返回
完全图
完全二分图
补图 G
山东财经大学
优化问题建模
马建华
有向图与网络
有向图G:一个有序二员组(Fra bibliotek,A),记为G=(N,A) G的弧集合:A={aij}且aij={ni,nj}为有序二元组 ,若aij={ni,nj}, 则称aij从ni连向nj, ni称为aij的尾, nj为 aij的头,ni称为nj的 先辈,nj称为 ni的后继 有向图G的基本图:对于G的每条弧用一条边代替后得到的无向图 网络G:对(有向)图G的每条边(弧)都赋予一个实数,并称为 边(弧)的权,则连同它边(弧)上的权称为(有向)网络
相关文档
最新文档