数学建模-最优化模型

合集下载

数学建模中的优化模型ppt课件

数学建模中的优化模型ppt课件

2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模最优化模型

数学建模最优化模型

数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。

在众多的数学建模方法中,最优化模型是一种常用的方法。

最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。

最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。

决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。

最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。

线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。

线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。

非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。

非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。

整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。

max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。

最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。

通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。

总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。

最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。

数学建模-简单的优化模型

数学建模-简单的优化模型

3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3
火势以失火点为中心,
均匀向四周呈圆形蔓延,
假设1) 的解释
半径 r与 t 成正比
r
B
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
假设1) 假设2)
dB
b t1,
t t b
由模型决定队员数量x
问题
4 最优价格
根据产品成本和市场需求,在产销平
衡条件下确定商品价格,使利润最大
假设
1)产量等于销量,记作 x 2)收入与销量 x 成正比,系数 p 即价格 3)支出与产量 x 成正比,系数 q 即成本 4)销量 x 依赖于价格 p, x(p)是减函数
进一步设 x( p) a bp, a, b 0
C~
c1
c2
Q 2
T
c1 c2
rT 2 2
每天总费用平均 值(目标函数)
~ C(T ) C c1 c2rT
TT 2
模型求解
dC 0 dT 模型分析
求 T 使C(T ) c1 c2rT Min T2
T 2c1 rc2
Q rT 2c1r c2
c1 T,Q
模型应用
c2 T,Q
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度)
2)t1tt2, 降为-x (为队员的平均灭火速度)

最优化问题数学模型

最优化问题数学模型
• 飞机飞行的方向角调整幅度不应超过30 ; • (因飞机飞行的速度变化不大)所有飞机的飞行 速度 v 均为800km/h;

• 进入该区域的飞机在到达区域边缘时,与区域内 飞机的距离应在60km以上;
根据当年竞赛题目给出的数据,可以验证 新进入的飞机与区域内的飞机的距离超过 60公里。
• 最多需考虑六架飞机;
cij xij 表示该队员的成 目标函数:当队员i入选泳姿j时, 绩,否则 cij xij 0 。于是接力队的成绩可表示为
f cij xij .
j 1 i 1
4
5
约束条件:根据接力队要求, xij 满足约束条件
a. 每人最多只能入选4种泳姿之一,即
x
j 1
4
ij
1.
b. 每种泳姿必须有1人而且只能有一人入选,即
分析,对实际问题进行合理的假设、简化,首先考虑用
线性规划模型,若线性近似误差较大时,则考虑用非线 性规划.
例题讲解
例1 1995年全国数学建模A题:飞行管理问题 在约1万米的高空的某边长为160km的正方 形区域内,经常有若干架飞机作水平飞行,区 域内每架飞机的位置和速度向量均由计算机记 录其数据,以便进行飞行管理。当一架欲进入 该区域的飞机到达区域边缘时,计算机记录其 数据后,要立即计算并判断是否会发生碰撞。 若会发生碰撞,则应计算如何调整各架飞机 (包括新进入的飞机)飞行的方向角,以避免 碰撞,且使飞机的调整的幅度尽量小,
目标:求函数极值或最值,求取得极值时变量的取值。
x
1.线性规划
问题:某工厂在计划期内要安排生产I、II两种产品,已 知生产单位产品所需的设备台时及A、B两种原材料的消 耗,如下表所示
I 设备 1 II 2 8台时

数学建模讲座之七最优化模型

数学建模讲座之七最优化模型

什么是七最优化模型
七最优化模型是一种数学建模方法,旨在解决具有多个决策 变量和约束条件的优化问题。它通过寻找满足一定条件下的 最优解,为实际问题的解决提供数学模型。
七最优化模型的核心思想是在给定的约束条件下,寻找使目 标函数达到最优值的决策变量值。这个过程涉及到对数学方 程、不等式以及函数的运用,通过建立数学模型来描述实际 问题中的最优化问题。
物流优化
总结词
物流优化是利用七最优化模型来规划物流运输和配送路线,以最小化运输成本、 最大化运输效率的过程。
详细描述
通过数学建模,将物流问题转化为最优化问题,利用七最优化模型求解,可以找 到最优的运输和配送路线,包括车辆调度、货物配载、路径规划等,从而实现运 输成本最小化、运输效率最大化的目标。
物流优化
线性规划的解法包括单纯形法、 对偶理论和分解算法等。
非线性规划
非线性规划是优化技术中的一种, 它处理的是目标函数或约束条件
是非线性的问题。
非线性规划的应用领域包括机器 学习、图像处理、化学工程等。
非线性规划的解法包括梯度下降 法、牛顿法、拟牛顿法等。
非线性规划
非线性规划是优化技术中的一种, 它处理的是目标函数或约束条件
动态规划的解法包括递归法、自底向 上法等。
动态规划的应用领域包括机器学习、 控制系统、生物信息学等。
动态规划
动态规划是数学优化技术中的一种, 它处理的是决策过程具有时间顺序或 阶段性的问题。
动态规划的解法包括递归法、自底向 上法等。
动态规划的应用领域包括机器学习、 控制系统、生物信息学等。
启发式算法
详细描述
人工智能优化主要考虑算法复杂度、计算精 度、系统稳定性等多个因素,通过建立数学 模型,对算法进行优化,提高人工智能系统 的性能和效率。具体来说,可以采用遗传算 法、模拟退火算法、粒子群算法等方法,对

数学建模的最优化方法

数学建模的最优化方法
其中等式(3)、(4)、(5)的右边可选用(1)或(2) 的等式右边.
函数fminbnd的算法基于黄金分割法和二次插值法,它要求 目标函数必须是连续函数,并可能只给出局部最优解.
MATLAB(wliti1)
例 1 求 x = 2ex sin x 在 0< x <8 中的最小值与最大值.
主程序为wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8)
x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1
output= iterations: 108 funcCount: 202
algorthm: 'Nelder-Mead simplex direct search '
有约束最优化
最优化方法分类
(一)线性最优化:目标函数和约束条件都是线 性的则称为线性最优化。
解 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:
(8 25 2% x1 8 15 5% x2 ) 2 8x1 12 x2
故目标函数为:
min z (32 x1 24 x2) (8x1 12 x2 ) 40 x1 36 x2
x1, x2 0
用Matlab编程求解程序如下:
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) f = -[10 5]; A = [0.3 0.4;0.5 0.2]; B = [9;8]; [X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b)

数学建模-最优化模型

数学建模-最优化模型
2
建立无约束优化模型为:min y =- (3 2 x) x , 0< x <1.5
2
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
min f ( x)
s.t. gi ( x) 0, i 1, 2,..., m hi ( x) 0, i 1, 2,..., n
x
其中,极大值问题可以转化为极小值问题来 进行求解。如求: max f ( x)
x
可以转化为: f ( x ) min
x
1、无约束极值问题的求解
例1:求函数y=2x3+3x2-12x+14在区间[-3,4]上的最 大值与最小值。 解:令f(x)=y=2x3+3x2-12x+14 f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142,
问:每种产品各应该每季度生产多少,才能使这 个工厂每季度生产利润达到最大。
生产单位 产品所需 车间的工 作小时数
甲 乙 丙 丁 利润 (百元)
A
B
C
D
E
F
每个车间 一个季度 工作小时 的上限
500 500
1 2 4
1
1 5
3 5
2
3
2 1 3
5 8
500 500
4.0
2.4
5.5
5.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 用fminsearch函数求解
输入命令:
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2';
[x,fval,exitflag,output]=fminsearch(f,[-1.2 2])
运行结果:
x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1
几个概念
• 最优化是从所有可能方案中选择最合理的一种
以达到最优目标的学科。
• 最优方案是达到最优目标的方案。 • 最优化方法是搜寻最优方案的方法。 • 最优化理论就是最优化方法的理论。
经典极值问题
包括:
①无约束极值问题
②约束条件下的极值问题
1、无约束极值问题的数学模型 min f ( x)
x
2、约束条件下极值问题的数学模型
最优化方法概述
1、最优化理论和方法是近二十多年来发展十分迅
速的一个数学分支。 2、在数学上,最优化是一种求极值的方法。 3、最优化已经广泛的渗透到工程、经济、电子技
术等领域。
• 在实际生活当中,人们做任何事情,不管是分 析问题,还是进行决策,都要用一种标准衡量 一下是否达到了最优。 (比如基金人投资)
min f ( x)
s.t. gi ( x) 0, i 1, 2,..., m hi ( x) 0, i 1, 2,..., n
x
其中,极大值问题可以转化为极小值问题来 进行求解。如求: max f ( x)
x
min f ( x ) 可以转化为:
x
1、无约束极值问题的求解
例 1 :求函数 y=2x3+3x2-12x+14 在区间 [-3,4] 上的最 大值与最小值。 解:令f(x)=y=2x3+3x2-12x+14 f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142,
例 1 求 x = 2 e x sin x 在 0< x <8 中的最小值与最大值 .
主程序为wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8) f1='-2*exp(-x).*sin (x)'; [xmax,ymax]=fminbnd (f1, 0,8)
output= iterations: 108 funcCount: 202 algorthm: 'Nelder-Mead simplex direct search
'
有约束最优化
最优化方法分类
(一)线性最优化:目标函数和约束条件都是线 性的则称为线性最优化。 非线性最优化:目标函数和约束条件如果含 有非线性的,则称为非线性最优化。 (二)静态最优化:如果可能的方案与时间无关, 则是静态最优化问题。 动态最优化:如果可能的方案与时间有关, 则是动态最优化问题
综上得,
函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7ຫໍສະໝຸດ 用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f ( x )
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…)
• 在各种科学问题、工程问题、生产管理、社会
经济问题中,人们总是希望在有限的资源条件
下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。 以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。 计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
2 建立无约束优化模型为:min y =- (3 2 x) x , 0< x <1.5
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?

设剪去的正方形的边长为 x ,则水槽的容积为: (3 2 x) 2 x
x1 x x2
(5)[x,fval,exitflag,output]= fminbnd(…)
其中等式(3)、(4)、(5)的右边可选用(1)或(2) 的等式右边. 函数fminbnd的算法基于黄金分割法和二次插值法,它要求 目标函数必须是连续函数,并可能只给出局部最优解.
MATLAB(wliti1)
MATLAB(wliti2)
运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边 长为0.5m时水槽的容积最大,最大容积为2m3.
2.多元函数无约束优化问题
标准型为:min F ( X )
命令格式为: (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options); 或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...); 或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...); 或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...); 或[x,fval,exitflag,output]= fminsearch(...)
相关文档
最新文档