数学建模:组合优化问题和计算复杂性共57页

合集下载

组合优化问题简介

组合优化问题简介

组合优化问题简介在我们的日常生活和工作中,经常会遇到各种各样需要做出最优选择的情况。

比如,在旅行时规划最佳路线,以使花费的时间和费用最少;在生产线上安排工序,以提高生产效率和降低成本;在物流运输中选择最优的配送方案,以减少运输时间和成本等等。

这些问题都属于组合优化问题。

组合优化问题是一类在离散的、有限的可行解集合中,寻找最优解的问题。

这里的“组合”意味着解决方案是由多个元素的组合而成,而“优化”则表示我们要找到其中最好的那个组合。

让我们以一个简单的例子来理解组合优化问题。

假设你要从城市 A 前往城市 C,中间需要经过城市 B。

从 A 到 B 有三条路线可选择,分别需要花费 2 小时、3 小时和 4 小时;从 B 到 C 也有三条路线可选择,分别需要花费 1 小时、2 小时和 3 小时。

那么,要找到从 A 到 C 的最短时间路线,就需要考虑所有可能的组合,即 3×3=9 种组合,然后从中挑选出总时间最短的那一种。

组合优化问题具有一些显著的特点。

首先,可行解的数量通常是有限的,但可能非常庞大。

就像上面的例子,仅仅是两个阶段的选择就有 9 种可能,如果涉及更多的阶段和更多的选择,可行解的数量会呈指数级增长,这使得直接枚举所有可能的解变得非常困难,甚至在计算上是不可行的。

其次,组合优化问题的目标函数通常是明确的。

在上述例子中,目标就是找到从 A 到 C 的总时间最短的路线,这个目标是清晰可度量的。

再者,很多组合优化问题具有实际的应用背景和重要的经济价值。

例如,在资源分配问题中,如何将有限的资源分配给不同的项目或任务,以实现最大的效益;在网络设计中,如何规划网络拓扑结构,以最小化建设成本和提高网络性能;在排班问题中,如何安排员工的工作时间表,以满足业务需求并减少人力成本等。

常见的组合优化问题包括旅行商问题(TSP)、背包问题、装箱问题、指派问题等。

旅行商问题是一个经典的组合优化问题。

假设有一个旅行商要访问n 个城市,每个城市只能访问一次,最后回到出发城市。

组合优化问题

组合优化问题

End
典型优化问题的模型与算法-R03
185
特点


NP完全问题 它的解是多维的、多局部极值的 很难用数学公式描述 TSP 问题 吸引了许多不同领域的研究者,包括 数学、 运筹学、 物理、 生物、 人工智能等领域。 TSP展示了组合优化的所有方面,它已经成为并将 继续成为测试新算法的标准问题,如: 模拟退火、 禁忌搜索、 神经网络以及进化算法等都用 TSP 来测试。
TSP 问

人们为 TSP 提出了几种染色体表达方法,其中:
随机键表达 换位表达

这两种表达方式不仅适用于 它组合优化问题。
TSP,也适用于其
未来研究
虽然遗传算法已经提出了有四十多年的历史,但是人们 对于遗传算法的研究和改进一直都没有中断过。不少研究者 已经对遗传算法进行了许多很有价值的改进,比如对编码方 式和遗传算子的改进,或者在遗传算法中引入启发式算法或 模拟退火算法等所构成的混合遗传算法,如何理论这些理论 和方法更加有效地解决工程技术中的实际问题(车辆路径问 题,公交调度问题等),都将需要人们进一步的讨论。 另外由于遗传算法本质是通过借鉴了自然界生物进化过 程中创立的。随着当前生物技术与基因工程的进一步发展, 把新的生物和基因技术引入到遗传算法的改进中也是当前科 学研究的一个重要的方向。最后还能希望将神经网络、专家 系统等前沿学科也融入到遗传算法改进中来,以求达到遗传 算法应用领域的广泛性和解决实际问题的有效性。
应用

旅行路线的确定 配送路线问题(Route of Distribution)

TSP问题在物流中的描述是对应一个物流配送公司(快递员),欲将 n 个客户的订货(快件)沿最短路线全部送到,如何确定最短路线 例如:连锁店的货物配送路线确定问题等 例如:金融押运车辆的调度问题(机构网点相当于城市,这类问题 属于多旅行商问题。) 平面上有 n 个点,用最短的线将全部的点连起来。称为“一笔画” 问题。 类似的问题:机械加工当中, 要在一个零件(或者一个电路板) 上加工很多孔,如何安排刀具的 走刀路径,能使走刀距离最短, (孔相当于城市、孔之间的距离 相当于城市间的距离)。

组合优化问题

组合优化问题

组合优化问题在我们的日常生活和工作中,常常会遇到各种各样需要做出最优选择的情况。

比如,在安排旅行路线时,如何以最短的时间和最少的费用游览最多的景点;在生产线上,如何安排工人的工作任务,以最大化生产效率;在物流配送中,怎样规划车辆的行驶路线,使得运输成本最低。

这些问题都属于组合优化问题。

组合优化问题是一类在离散的、有限的可行解集合中,寻找最优解的问题。

这里的“组合”指的是可行解通常是由多个元素组合而成,而“优化”则意味着我们要找到其中最好的那个解,也就是使得某个目标函数达到最大值或最小值的解。

让我们以一个简单的例子来理解组合优化问题。

假设有一家快递公司,需要为快递员规划送货路线。

公司有 5 个送货地点,分别是 A、B、C、D、E。

每个地点之间的距离已知,快递员需要从公司出发,访问所有地点并最终返回公司。

那么,如何规划路线才能使得总行程最短呢?这就是一个典型的组合优化问题。

在这个例子中,可能的路线组合数量是非常庞大的。

如果我们简单地列举所有可能的路线,然后计算每条路线的长度,最后找出最短的那条,这种方法在送货地点数量较少时或许可行,但当送货地点数量增加时,计算量会呈指数级增长,很快就变得无法处理。

组合优化问题具有一些显著的特点。

首先,可行解的数量通常是有限的,但可能非常巨大。

这就给寻找最优解带来了巨大的挑战。

其次,目标函数通常是复杂的,可能不是简单的线性函数,而是包含了各种约束条件和复杂的关系。

再者,组合优化问题的解空间往往是不连续的,这与连续优化问题有很大的不同。

解决组合优化问题的方法有很多种。

其中,精确算法能够保证找到问题的最优解,但对于大规模的问题,计算时间往往过长。

常见的精确算法包括分支定界法和动态规划法。

分支定界法通过不断地分支和界定可行解的范围,逐步缩小搜索空间,最终找到最优解。

动态规划法则是将复杂的问题分解为多个子问题,并通过保存子问题的解来避免重复计算。

然而,在实际应用中,由于精确算法的计算复杂性,我们往往更多地使用启发式算法和元启发式算法来求解组合优化问题。

第一讲:计算复杂性理论

第一讲:计算复杂性理论

大多数研究者认可 的包容关系
L m
计算复杂度的影响因素
简化模型:模型2
计算复杂度的影响因素
简化模型:模型3。
计算复杂度的影响因素
建模假设 例:高空抛球的运动轨迹。 ----抛物线模型 假设1.没有空气阻力; 假设2.地面是平面。 ----椭圆模型
计算复杂度的影响因素
探索空间1 探索空间1---解的近似度、满意度
例:0—10之间的整数解:1-9共9个可行解(一维) 0—10之间的实数解:精确到小数点后6位 共有107个可行解(一维); 107n个可行解(n维)
n! 10141世紀 → 10120世紀 102551世紀 → 102530世紀
问题与算法
每个問題都可能有多个算法存在. 每个算法的计算量(速度)都不同。 例: 赝品金币問題: 问题:9個外观完全一样的金币.,有一个是假的 (重量轻). 提问:用天秤来鉴别真伪,天秤需要使用几次?
贋品金币問題算法 問題算法
优化技术与方法
計算量(1) 計算量
+,-,×,÷ 比較:≠,≤,≥,<,> 5种基本演算都是用1step 可以实现. 実際上,×比+多占用時間. 「四舍五入」不算基本演算.
計算量(2) 計算量
{a1, a2,..., an}:n個整数 Q1. 求和(1): a1+a2+・・・+an. 1 + +a n-1 steps → O(n)算法. Q2. 求和(2): (1) 2×a1+・・・+ 2×an , 2n-1 steps→ O(n)算法. (2) 2×(a1+・・・+an) , n steps→ O(n)算法.
尚未确信能否用多項式時間算法求解的问题的 集合称为NP (non-deterministic polynomial)问题 某一个问题不属于NP问题的証明 如能够找到一个多項式時間算法 (簡単) 某一个问题属于NP问题的証明 可以归结为某一类既知的NP类问题(现阶段7类))

组合优化问题的分析与求解

组合优化问题的分析与求解

组合优化问题的分析与求解在我们的日常生活和工作中,经常会遇到各种各样需要做出最优决策的情况。

比如,物流运输中如何规划路线以最小化成本,生产线上如何安排工序以最大化效率,资源分配中如何分配有限的资源以满足最大的需求等等。

这些问题都属于组合优化问题,它们的共同特点是在有限的可行解集合中,寻找一个最优的解。

组合优化问题是一个具有广泛应用和重要意义的研究领域。

它不仅在数学、计算机科学、运筹学等学科中有着深厚的理论基础,还在工程、管理、经济等实际领域中发挥着重要的作用。

解决组合优化问题,可以帮助我们提高生产效率、降低成本、优化资源配置,从而实现更好的经济效益和社会效益。

那么,什么是组合优化问题呢?简单来说,组合优化问题就是在给定的约束条件下,从有限个可行解中找出一个最优解的问题。

这些可行解通常是由一些离散的元素组成,比如整数、集合、排列等。

而最优解则是指在满足约束条件的前提下,使得某个目标函数达到最大值或最小值的解。

组合优化问题的一个典型例子是旅行商问题(Travelling Salesman Problem,TSP)。

假设有一个旅行商要访问 n 个城市,每个城市只能访问一次,最后要回到出发城市。

已知城市之间的距离,那么如何规划旅行路线,使得旅行的总距离最短?这个问题看似简单,但实际上是一个非常复杂的组合优化问题,因为可能的路线数量随着城市数量的增加呈指数增长。

再比如背包问题(Knapsack Problem)。

有一个背包,其容量有限,同时有一系列物品,每个物品有一定的价值和重量。

如何选择物品放入背包,使得背包中物品的总价值最大,同时不超过背包的容量限制?这也是一个常见的组合优化问题。

为了求解组合优化问题,人们提出了许多方法。

其中,精确算法是一种能够保证找到最优解的方法,但它们通常只适用于规模较小的问题。

例如,分支定界法就是一种常见的精确算法。

它通过不断地将问题分解为子问题,并对每个子问题进行评估和剪枝,逐步缩小搜索范围,最终找到最优解。

数学建模 - 第一章 组合优化模型与计算复杂性

数学建模 - 第一章 组合优化模型与计算复杂性

概念的一种表达形式 . 可以建立完全不同的模型,分别反映该系统的不同
侧面;出于相同的研究目的,对于同一个对象系 模型不是研究对象本身,而是对研究对象的一种 统,也可能建立不同的模型,反映不同的研究角 抽象,它反映现实中对象系统的主要特征,但它又高 度、考察因素和价值取向 . 于现实,因而具有同类问题的共性 .
16
第一章
组合优化模型与计算复杂性
2、按模型的解的特征分类 解析模型与数值模型 3、按模型所用的数学方法分类 初等模型、微分方程模型、差分方程模型、优
化模型等
4、按模型研究的实际范畴分类
人口模型、生态系统模型 、交通流模型、经济
模型、 基因模型等 5、按对实际问题了解的程度分类 白箱模型、灰箱模型、黑箱模型
的本质属性,而且要舍弃事物的物质和能量方面的具
体内容,只考虑其数量关系和空间形式,同时还要把 这些数量关系和空间形式作进一步的抽象,加以形式 化和符号化,以便能够进行逻辑推理和数值运算 . 这种高度的抽象性,实质是对事物认识上的高度 概括和深化,对同类问题包含更多的经验和理解 .
13
§1 组合优化模型与算法 2、高度的精确性 数学方法的高度精确性表现在三个方面: 一是表达各种因素、变量和它们之间的关系相当 明确、清楚;二是逻辑推演和运算规则十分严密;三
s.t. x1 x4 x5 x6 x7 67 某商场根据客流量统计得出一周中每天所需要的
(线度)必须是偶数条 . 见图可知,与四个顶点相连的边都是奇数条,因 这是利用数学模型分析和解决问题的一个成功范例 的第一篇论文 而不可能存在通过每条边一次且仅一次的画法,即一
这是关于图论
笔画不存在 .
故七桥问题不可能有解 .
12

【经典】建模-组合优化模型-组合优化

【经典】建模-组合优化模型-组合优化
1. 任选一节点为起点x 2. 寻找距离节点x最近的节点y作为下一个
造访的节点 3. 寻找距离节点y最近的节点z作为下一个
造访的节点 4. 重复以上步骤,直到所有节点均已造访 5. 连接最后一个节点与起点,即形成一个
TSP的可行解
14
最近邻点法
5 2
4
3
5
1
7
8
3
7
12345
4
1 -4 7 3 8
1
旅行推销员问题
Traveling Salesman Problem
2
哈密尔顿循环(Hamiltonian Cycle)
环游世界问题:
有个人想环游世界,他选出全世界的二十个著名城世,然后在地 图上开始他的作业。他打算规画出一条路线,使他可以依序地玩遍这 二十个城市。但问题是并不是任两个城市皆有飞机直航,而他又不愿 重复去同一个城市两次。这个问题转化为图论上便是所谓的哈密尔 顿循环(Hamilton Cycle),于1857年爱尔兰数学家哈密尔顿(Sir William Hamilton)首次提出。 哈密尔顿循环(Hamilton Cycle)不一定存在
路线构建(route construction)
• 邻点法、节省法、插入法、扫瞄法….
路线改善(route improvement) 局部搜索算法 (local search)
• k-Opt交换法、Or-Opt交换法……
综合型(composite)
• 合并执行路线构建及路线改善
13
最近邻点法(Nearest-neighbor Heuristic)
18
2-opt交换法
5 2
4
4
3
5
1

组合优化问题的算法与求解

组合优化问题的算法与求解

组合优化问题的算法与求解组合优化问题是一类需要在给定的约束条件下找到最优解的问题。

这些问题在现实生活中有着广泛的应用,比如物流配送问题、旅行商问题等等。

本文将介绍几种常见的组合优化问题的算法以及它们的求解方法。

一、贪婪算法贪婪算法是一种简单而高效的求解组合优化问题的方法。

它通过在每一步选择当前看起来最优的解决方案,逐步建立起最终的解。

贪婪算法通常具有快速的执行速度和较好的近似解质量。

例如,对于旅行商问题,贪婪算法可以从一个起点开始,每次选择离当前位置最近的未访问节点作为下一个访问节点,直到所有节点都被访问过。

这样,贪婪算法可以得到一个近似的最短路径。

二、回溯算法回溯算法是一种穷举搜索的方法,它通过逐个尝试所有可能的解决方案,并逐步剪枝以减少搜索空间。

回溯算法通常适用于组合优化问题的求解,尤其是在问题规模较小的情况下。

以0-1背包问题为例,回溯算法可以通过穷举所有可能的物品选择方式,计算其总价值,并在搜索过程中剪枝以提高效率。

回溯算法的优势在于能够找到最优解,但在问题规模较大时,耗时较长。

三、动态规划算法动态规划算法是一种将问题分解为子问题并记录子问题结果的方法。

它适用于能够将原问题分解为相互重叠的子问题,并利用子问题的解来推导原问题的解。

比如在背包问题中,动态规划算法可以通过定义状态转移方程来解决。

设dp[i][j]表示在前i个物品中选择总重量不超过j的情况下的最大价值,则有以下状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])通过填表计算,可以获得最终的最优解。

四、遗传算法遗传算法是一种模拟自然选择和遗传机制的搜索算法。

它通过模拟生物种群的遗传、变异、选择等过程,逐步演化出最优解。

遗传算法在求解组合优化问题时,通过编码将解空间中的解表示成染色体,并利用交叉、变异等遗传操作来搜索更优的解。

通过不断迭代,遗传算法能够找到较好的解,但无法保证找到全局最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档