PCB设计规范

合集下载

PCB布线设计规范精选全文

PCB布线设计规范精选全文

可编辑修改精选全文完整版印制电路板设计规范一、适用范围该设计规范适用于常用的各种数字和模拟电路设计。

对于特殊要求的,尤其射频和特殊模拟电路设计的需量行考虑。

应用设计软件为Protel99SE。

也适用于DXP Design软件或其他设计软件。

二、参考标准GB 4588.3—88 印制电路板设计和使用Q/DKBA—Y004—1999 华为公司内部印制电路板CAD工艺设计规范三、专业术语1.PCB(Print circuit Board): 印制电路板2.原理图(SCH图):电路原理图,用来设计绘制,表达硬件电路之间各种器件之间的连接关系图。

3.网络表(NetList表):由原理图自动生成的,用来表达器件电气连接的关系文件。

四、规范目的1.规范规定了公司PCB的设计流程和设计原则,为后续PCB设计提供了设计参考依据。

2.提高PCB设计质量和设计效率,减小调试中出现的各种问题,增加电路设计的稳定性。

3.提高了PCB设计的管理系统性,增加了设计的可读性,以及后续维护的便捷性。

4.公司正在整体系统设计变革中,后续需要自主研发大量电路板,合理的PCB设计流程和规范对于后续工作的开展具有十分重要的意义。

五、SCH图设计5.1 命名工作命名工作按照下表进行统一命名,以方便后续设计文档构成和网络表的生成。

有些特殊器件,没有归类的,可以根据需求选择其英文首字母作为统一命名。

对于元器件的功能具体描述,可以在Lib Ref中进行描述。

例如:元器件为按键,命名为U100,在Lib Ref中描述为KEY。

这样使得整个原理图更加清晰,功能明确。

5.2 封装确定元器件封装选择的宗旨是1. 常用性。

选择常用封装类型,不要选择同一款不常用封装类型,方便元器件购买,价格也较有优势。

2. 确定性。

封装的确定应该根据原理图上所标示的封装尺寸检查确认,最好是购买实物后确认封装。

3. 需要性。

封装的确定是根据实际需要确定的。

总体来说,贴片器件占空间小,但是价格贵,制板相同面积成本高,某些场合下不适用。

PCB设计规范

PCB设计规范

PCB设计规范PCB设计是电子产品中非常重要的一环,也是实现电路功能的基础。

设计出高质量的PCB板不仅可以保证电路稳定性和可靠性,还能提升整个产品的性能和品质。

为了确保PCB设计的质量和效果,需要遵循PCB设计规范。

PCB设计规范包括以下几个方面:1.尺寸规范PCB板的尺寸要大于等于实际需要的空间大小,以确保电路板的稳定性和可靠性。

同时,PCB板的尺寸还需要考虑到制造成本和生产工艺。

在标注PCB尺寸时,应该包括外形尺寸和最长边尺寸。

2.布线规范布线是PCB设计中重要的一部分,它直接影响到电路的正常工作。

在布线时应该遵循以下规范:(1)布线路径尽量直,减少折线和弯曲。

(2)高频电路的信号线和地线要尽量靠近,避免干扰。

(3)普通信号电路布线路径和电源线相隔远,减少干扰。

(4)避免信号和电源线的平行布线,避免电磁兼容干扰。

(5)布线路径不能干扰到焊盘、元器件和标识。

PCB焊盘的设计要遵循以下规范:(1)焊盘与元器件之间的间距要够大,以方便手工/机械焊接。

(2)焊盘的大小要适当,不宜太小,避免给生产和维护造成麻烦。

(3)焊盘应该统一,避免出现大小不一、排列杂乱的情况。

(4)焊盘间应该有足够的间隙,以确保信号之间的电气隔离。

(5)焊盘应该有正确的标识和编号系统,以便后续操作。

4.元器件安装规范在PCB元器件的安装和设计时,需要遵循以下规范:(1)元器件的安装位置与焊盘匹配,避免安装反向,造成电路不通。

(2)在安装元器件时需要留足够的间距,以避免相邻件之间的干扰。

(3)在安装元器件时应该留出足够的空间,以便元器件的调整和维护。

(4)元器件的标识应该清晰、准确、统一,以便后续的维护和操作。

PCB接地规范主要包括以下几个方面:(1)整个PCB板需要有一个统一的接地系统,以确保电路的稳定性。

(2)接地线路应该尽量短,以避免接地线路电感和电容的影响。

(3)高频电路的接地和普通信号的接地要分开,避免互相干扰。

(4)接地的引脚和焊盘要足够的强壮,以防止接地不良等问题。

PCB设计规范参考

PCB设计规范参考

PCB设计规范参考PCB(Printed Circuit Board)设计规范是为了确保PCB设计符合电气工程的要求,并且在制造和组装过程中能够得到良好的性能和可靠性。

以下是一些常见的PCB设计规范参考。

1.尺寸和形状:PCB的尺寸和形状应根据所使用的设备和封装来确定。

必须确保PCB能够适配于所需要的外壳和连接器,并且不会与其他组件发生干涉。

2.连接器布局:各个连接器应根据其功能和信号类型来布局。

必须确保连接器之间有足够的间距,以便于正确连接和散热。

3.元件布局:元件应根据电路设计的要求进行布局。

需要尽量减少导线的长度,并且避免交叉线路和环路。

4.导线布局:导线应尽量维持直线和平行布局,以减少信号的串扰和延迟。

必须确保导线宽度足够以承载所需的电流,并减少电阻。

5.路径规划:路径规划通常可分为两类:模拟信号和数字信号。

对于模拟信号,需要避免信号之间的干涉和串扰。

对于数字信号,需要确保信号的传输速度和正确性。

6.管脚布局:元件的管脚布局应符合相关的标准和规范。

需要确保每个管脚能够正确连接到相应的焊盘。

7.PCB层数:PCB的层数取决于所需的信号和功率平面。

通常,多层PCB具有更好的电磁兼容性和抗干扰性能。

8.焊盘和焊接规范:焊盘应根据元件的封装和引脚布局进行设计。

必须符合焊接标准,并确保焊接质量和可靠性。

9.接地和电源规范:必须确保正确的接地和电源布局。

需要提供足够的接地和电源引脚,并减少回流和过渡电流。

10.纹理和涂层规范:必须确保PCB的纹理和涂层符合相关的标准和规范。

需要考虑到制造和组装过程中的要求。

11.引脚和标记规范:必须对每个引脚进行正确的标记和编号。

需要在PCB上标明元件的名称和数值。

12.温度和湿度规范:PCB需要经受住各种温度和湿度条件的考验。

必须保证能够在设计规范范围内工作。

以上是一些常见的PCB设计规范参考。

根据具体的应用和需求,还可以有其他的规范和要求。

PCB设计者应根据实际情况,选择恰当的规范,并确保PCB设计能够满足相关的标准和要求。

印制电路板设计规范

印制电路板设计规范

印制电路板设计规范印制电路板(Printed Circuit Board,简称PCB)设计规范是指为了保证电路板的设计、制造和使用中的质量和可靠性,制定的一系列规则和准则。

以下是一份典型的PCB设计规范,详细介绍了各个方面的要求。

一、电路板尺寸和层数1.PCB尺寸应符合实际需求,合理调整尺寸以满足其他设备的要求。

2.PCB层数应根据电路复杂度、电磁兼容性和成本等因素合理选择。

二、布局设计1.元器件布局应科学合理,尽量避免元器件之间的相互干扰。

2.高频信号和低频信号的布局应相互分离,以减少相互干扰。

3.电源和地线应尽量宽厚,减小电阻和电感,提高电路的稳定性。

三、网络连接1.信号线应尽量短、直且排布整齐,最大程度地避免信号交叉和串扰。

2.不同信号层之间的信号连线应通过过孔、通孔或阻抗匹配的方式进行连接。

四、电源和地线设计1.电源线和地线应尽量宽厚,减小电阻和电感,提高电压的稳定性。

2.电源和地线的路径应尽量短,减少电源回路的串扰和噪声。

五、元器件选择和焊接1.元器件的选择应根据设计需求,考虑其性能、品质和可靠性。

2.焊接工艺应符合IPC-610标准,保证焊点的牢固和质量。

六、阻抗匹配和信号完整性1.高速信号线应进行阻抗匹配,以减少反射和信号失真。

2.信号线应采用差分传输方式,以提高抗干扰能力和信号完整性。

七、电磁兼容性设计1.尽量合理布局和组织信号线,以减少电磁干扰和辐射。

2.使用合适的屏蔽措施,包括屏蔽罩、电磁屏蔽层和绕线等。

八、PCB制造和组装1.PCB制造应按照标准工艺进行,确保PCB质量和可靠性。

2.元器件的组装应按照标准操作进行,保证焊接质量。

九、测试和调试1.PCB设计完成后,应进行严格的电路测试和调试,确保其性能和可靠性。

2.测试和调试工具应符合要求,确保测试结果的准确性和可靠性。

以上是一份典型的PCB设计规范,设计师在进行PCB设计时应考虑到电路的复杂性、可靠性和成本等因素,并严格按照规范进行设计和制造,以提高电路板的质量和可靠性。

PCB电路板PCB设计规范

PCB电路板PCB设计规范

PCB电路板PCB设计规范1.尺寸和形状:根据电路板应用和要求确定尺寸和形状,确保能够容纳所有的组件并符合外形要求。

在设计过程中要考虑PCB的弯曲、挤压等因素,应保持板面较为平整。

2.布线规范:合理规划布线,使布线路径尽量短,减小电阻和干扰。

应避免线路交叉和平行,减少串扰和阻抗不匹配。

同时,应根据不同信号的特性分开布线,如模拟信号、数字信号和高频信号。

3.引脚布局:根据电路板上的组件情况,合理安排引脚位置和布局,以便于布线和检修。

引脚布局应尽量避免互相干扰,减少电磁辐射和串扰。

4.电源和接地:电源和接地是电路板的重要部分,应合理规划电源和接地的位置和路径,确保电源供应稳定和接地可靠。

同时,应避免电源和接地回路交叉、干扰。

5.差分信号设计:对于差分信号,对应的差分线应该保持相同的长度和距离,并且相对地和其他信号线隔离,以保证信号的传输质量。

6.阻抗控制:对于高频信号和差分信号,需要控制PCB的阻抗以保证信号的传输质量。

通过合理布线、选用合适的线宽和间距等方式来控制阻抗。

7.信号层分布:不同信号应分配在不同的信号层上,以减少串扰和互相影响。

如分离模拟信号和数字信号的层,使其相互独立。

8.过孔和焊盘:过孔和焊盘是PCB上的重要部分,需要合理设计和布局,以便于焊接和连接。

过孔应根据设计要求确定尺寸和孔径,焊盘应采用适当的尺寸和形状。

9.元件布局:在布局元件时,应合理安排元件的位置和间距,以便于布线和散热。

同时,要注意元件的方向和引脚位置,以方便组装和检修。

10.标记和说明:在PCB上标注元件的名称、值和引脚功能,以便于使用和维护。

同时,在PCB设计文件中提供详细的说明和注释,方便其他人理解和修改。

总之,PCB设计规范是确保PCB电路板设计的合理性、可靠性和可制造性的重要标准和方法。

通过遵循相关规范,可以有效提高电路板的性能和可靠性,减少故障和制造成本。

PCB可制造性设计规范

PCB可制造性设计规范

PCB可制造性设计规范PCB (Printed Circuit Board)的制造性设计规范是指在设计和布局PCB电路板时所需考虑的一系列规范和标准,以确保电路板的制造过程顺利进行并获得可靠性和性能。

一、尺寸规范1.PCB电路板的尺寸要符合制造商的要求,包括最小尺寸、最大尺寸和板上零部件之间的间距。

2.确保电路板的边缘清晰、平整,并防止零部件或钳具与电路板边缘重叠。

二、层规范1.根据设计要求确定所需的层次和层的数量,确保原理图和布局文件的一致性。

2.定义PCB的地平面层、电源层、信号层和垫层、焊盘层等的位置和规格。

三、元件布局规范1. 合理布局元件,以最小化路径长度和EMI (Electromagnetic Interference),提高电路的可靠性和性能。

2.避免元件之间的相互干扰和干涉,确保元件之间有足够的间距,以便于焊接工序和维修。

四、接线规范1.线路走向应简洁、直接,避免交叉和环形走线。

2.确保信号和电源线路之间的隔离,并使用正确的引脚布局和接线技术。

五、电路可靠性规范1.选择适当的层次和厚度,以确保足够强度和刚度。

2.确保电路板表面和感应部件光滑,以防止划伤和损坏。

六、焊接规范1.在设计中使用标准的焊盘尺寸和间距,以方便后续的手工或自动焊接。

2.制定适当的焊盘和焊缺陷防范措施,以最小化焊接问题的发生。

七、标准规范1. 遵循IPC (Institute for Interconnecting and Packaging Electronic Circuits)标准,以确保PCB的制造符合国际标准。

2.正确标注和命名电路板上的元件和信号,以方便生产和测试。

八、生产文件和图纸规范1.提供准确和详细的生产文件和图纸,包括层叠图、金属化孔、引线表和拼图图等。

2.确保文件和图纸的易读性和可修改性。

九、封装规范1.选择适当的封装类型和尺寸,以满足电路板的要求。

2.避免使用不常见或过于复杂的封装,以确保可靠的元件焊接和连接。

PCB工艺设计规范

PCB工艺设计规范1. 厚度规范:PCB的厚度是指PCB板的整体厚度,包括铜箔厚度和基板厚度。

通常,常用的PCB板厚度为1.6mm,厚度小于0.8mm的为薄板,大于2.4mm的为厚板。

在设计中,需要根据具体的应用需求和制造工艺要求选择适当的板厚,以确保PCB的机械强度和电性能。

2. 最小线宽线距规范:线宽和线距是PCB中电路走线的基本要素。

在设计中,需要根据电路的复杂性、元器件封装的引脚间距以及制造工艺的要求来确定线宽和线距。

一般情况下,常见的线宽线距为0.15mm,对于高密度集成电路和高频电路,线宽线距可以更小,如0.1mm。

3.确保电信号完整性的规范:在高速信号和高频电路设计中,为了保证电信号的完整性,需要采取一系列措施,包括使用合适的PCB材料、布线布局、地与电源平面的设置、阻抗匹配和信号层堆叠等。

此外,还需要考虑信号的传输延迟,尽量缩短信号传输路径,减少信号的反射和串扰。

4.元器件布局规范:元器件的布局直接影响到电路的性能和可靠性。

在进行布局时,需要注意以下几点:首先,元器件之间的布局要合理,避免互相干扰;其次,布局要符合热分布平衡的原则,尽量避免热点集中;最后,布局要注意便于元器件的调试和维护。

5.焊接规范:PCB的焊接是PCB制造的重要步骤之一、在进行焊接时,需要根据不同的焊接方式和元器件类型选择合适的焊接方法。

常见的焊接方式有手工焊接、波峰焊接和无铅焊接。

此外,还需要注意焊接温度和时间,避免过高的温度和时间对PCB和元器件产生损害。

6.通孔设计规范:通孔是PCB中连接不同层电路的重要通道。

为了确保通孔的质量和可靠性,通孔设计时需要注意以下几点:首先,通孔尺寸应符合元器件引脚和焊盘的要求;其次,通孔布局应合理,避免通孔过多导致PCB变形和信号串扰;最后,通孔孔径和层数需要根据通孔负载和导通电流来确定。

以上是几个常见的PCB工艺设计规范,通过遵循这些规范可以有效地提高PCB设计的质量和可靠性。

PCB板工艺设计规范

重量限制
在BOTTOM面无 大体积、太重的 表贴器件.
1、片式器件:A≦0.075g/ mm2 2、翼形引脚器件: A≦0.300g/ mm2 3、J形引脚器件: A≦0.200g/ mm2 4、面阵列器件:A≦0.100g/ mm2
· 若有超重的器件必须布在BOTTOM面,则 应通过验证.
24
PCB板基本布局要求(四)
55mil…… 40mil以下按4mil递减,如: 36mil、 32mil、28mil、
24mil…… ▪ 器件引脚直径与PCB板焊盘孔径的对应关系,以及二次电源插针焊脚与通孔
回流焊的焊盘孔径对应关系如下表:
15
器件库选择型要求(二)
器件引脚直径(D) D≦1.0mm
PCB焊盘孔径/插针通孔回 流焊焊盘孔径
2、要便于生产时插装.
3、尺寸较长的器件,长度方向 应按与传送方向一致,如图:
4、通孔焊盘与QFP、SOP、连接器 和BGA丝印间距离>10mm, 与SMT器件焊盘>2mm.
5、过孔焊盘与传送边距离>10mm, 与非传送边距离>5mm
▪ 高热器件的安装方式要易于操作和焊接; ▪ 当器件的发热密度超过0.4W/cm3时,单位靠器件引脚和本体不足充分散热,
应采用散热网、汇流条等措施来提高过热能力.
13
三、器件库选择型要求
14
器件库选择型要求(一)
❖已有PCB元件封装库的选用应确认无误
▪ PCB上已有元件库器件的选用应保证封装与元件物外形轮廓、引脚间距、通 孔直径等相符.
19
器件库选择型要求(六)
❖ 膨胀系数偏差大的处理
除非经实验验证没有问题,否则就不能选用和PCB板热膨胀系数差 别太大的无引脚表贴器件,这会使焊盘拉脱.;

PCB设计规范DOC

PCB设计规范DOC1.PCB尺寸和形状:PCB尺寸应根据实际应用需求进行合理选择。

在进行PCB布局时,应根据特定需求确定PCB的形状,边缘应呈规整的矩形或圆角矩形。

2.PCB层次和层数:根据设计需求,合理选择PCB的层数,常见的有单层、双层和多层PCB。

根据信号完整性要求,可在多层PCB中加入地层和电源层,提高抗干扰能力和信号传输质量。

3.线宽和线距:合理选择线宽和线距对于PCB的稳定性和抗干扰能力至关重要。

一般来说,较窄的线宽和线距有助于减小PCB的尺寸,但也会增加制造和焊接的难度。

因此,需根据具体应用需求和制造工艺要求进行合理选择。

4.确保电磁兼容性(EMC):在进行PCB设计时,应考虑电磁兼容性,以降低电磁干扰和提高系统的抗干扰能力。

通过合理分布和布线可以降低干扰源和受干扰源之间的耦合,使用屏蔽罩和地层来减小电磁辐射和接收。

5.元件布局与布线:合理的元件布局和布线有助于优化PCB性能、降低串扰和噪声。

对于模拟和数字信号,应按照不同的信号类型进行分区布局,减少互相干扰的机会。

高频和敏感信号线应尽量短且平行布线,降低引入的噪声。

6.引脚映射和标识:为了便于排查和维护,应做好引脚映射和标识。

对于器件的引脚和连接器的引脚应有明确的标识,方便布线和调试。

7.保留特定区域:在PCB设计中,可能存在一些需要保留的特定区域,如机械固定孔、散热器或接口连接器的安装区域。

在布局时要合理规划这些区域,以免干扰到其他电路或器件。

8.禁止区域和引脚验证:有些器件在工作时可能会产生较大的电磁辐射或高温,需要在设计时设置禁止区域,并在设计验证阶段进行引脚验证,确保没有错误连接。

9.工艺规范:在PCB设计中,还应根据制造工艺的要求制定相应的工艺规范。

如焊盘的孔径和间距、复杂线路的线宽要求等,这些规范可以在整个制造和组装过程中起到指导作用。

10.DFM/DFT设计原则:DFM(Design for Manufacturability)和DFT(Design for Testability)是一系列设计原则,旨在方便制造和测试过程。

PCB设计规范范文

PCB设计规范范文PCB(Printed Circuit Board)是电子产品中不可或缺的关键组件之一、它承载着电子元件并提供电气连接,为电子设备的正常运行提供支持。

为了确保PCB的正常工作和受到适当的维护,有一套规范和指南来指导PCB的设计和生产。

以下是一些常见的PCB设计规范:1.尺寸规范:PCB的尺寸应根据实际应用需求进行设计,并应考虑到电子产品的外部尺寸要求。

尺寸的准确性对于PCB和组装工艺的成功都至关重要。

2.电气规格:PCB设计应符合应用需求的电气规范。

其中包括电压、电流、频率等参数的限制。

电气规格的合理设计可以确保电路的稳定性、可靠性和性能。

3.材料选用:PCB的材料选择应考虑到产品应用场景和要求,包括高温环境、潮湿环境、抗震性能等。

常见的PCB材料有FR-4、铝基板、陶瓷基板等。

4.敏感电路隔离:PCB设计中敏感电路应与其他电路隔离,以避免相互之间的干扰。

敏感电路包括模拟电路和高频电路。

5.地线规划:良好的地线规划可以降低电路中的噪声和干扰。

地线应尽可能宽,避免共线回流路径,减小回流电流的磁场。

6.线宽距规范:PCB中导线的线宽和间隔距离应根据电流和电压要求设计。

较大的电流需要较宽的线宽,较大的电压需要较大的间距。

7.最小孔径:PCB设计中应注意最小孔径的限制,以确保钻孔的准确性和稳定性。

通常情况下,最小孔径应大于钻头直径的两倍。

8.贴片元件安装规范:PCB设计中应合理安排贴片元件并留出足够的安装空间。

贴片元件的布置应符合组装工艺的要求,并确保元件之间的电气连接。

9.GPIO引脚排列:PCB设计中应按照IC的GPIO引脚功能进行排列。

相同功能的引脚应相邻,以方便信号的连接和布线。

10.PCB标记和标识:PCB设计中应包含元件的标记和标识。

标记包括元件的名称和编号,以方便组装和维护。

11.焊盘设计:PCB设计中应合理设计焊盘,确保良好的焊接质量。

焊盘的尺寸和形状应适应元件的尺寸和引脚间距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB设计规范二O 一O 年八月目录一.PCB 设计的布局规范- - - - - - - - - - - - - - - - - - - - - - - - -- - 3 ■布局设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ------ - - 3 ■对布局设计的工艺要求- - - - - - - - - - - - - - - - - - - - - ------- - - 4 二.PCB 设计的布线规范- - - - - - - - - - - - - - - - - - - - - - - - - - 15 ■布线设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - 15 ■对布线设计的工艺要求- - - - - - - - - - - - - - - - - - - - - - - ------ 16 三.PCB 设计的后处理规范- - - - - - - - - - - - - - - - - - - -- - - - - 25 ■测试点的添加- - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - - 25 ■PCB 板的标注- - - - - - - - - - - - - - - - - - - - - - - - ----- - - - - 27 ■加工数据文件的生成- - - - - - - - - - - - - - - - - - - - - - ----- - - - 31 四.名词说明- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - 33 ■金属孔、非金属孔、导通孔、异形孔、装配孔- - - - - - - - - ---- - 33 ■定位孔和光学定位点- - - - - - - - - - - - - - - - - - - - - - - ------ - 33 ■负片(Negative)和正片(Positive)- - - - - - - - - - - --- - - - - 33 ■回流焊(Reflow Soldering)和波峰焊(Wave Solder)- - --- - - 34 ■PCB 和PBA - - - - - - - - - - - - - - - - - - - - - - - - - - ---- --- - - 34一.PCB 设计的布局规范(一)布局设计原则1.距板边距离应大于5mm。

2.先放置与结构关系紧密的元件,如接插件、开关、电源插座等。

3.优先摆放电路功能块的核心元件及体积较大的元器件,再以核心元件为中心摆放周围电路元器件。

4.功率大的元件摆放在利于散热的位置上,如采纳风扇散热,放在空气的主流通道上;若采纳传导散热,应放在靠近机箱导槽的位置。

5.质量较大的元器件应幸免放在板的中心,应靠近板在机箱中的固定边放置。

6.有高频连线的元件尽可能靠近,以减少高频信号的分布参数和电磁干扰。

7.输入、输出元件尽量远离。

8.带高电压的元器件应尽量放在调试时手不易触及的地点。

9.热敏元件应远离发热元件。

10.可调元件的布局应便于调剂。

如跳线、可变电容、电位器等。

11.考虑信号流向,合理安排布局,使信号流向尽可能保持一致。

12.布局应平均、整齐、紧凑。

13.表贴元件布局时应注意焊盘方向尽量取一致,以利于装焊,减少桥连的可能。

14.去耦电容应在电源输入端就近放置。

(二)对布局设计的工艺要求当开始一个新的PCB 设计时,按照设计的流程我们必须考虑以下的规则:1.建立一个差不多的PCB 的绘制要求与规则(示意如图)建立差不多的PCB 应包含以下信息:1)PCB 的尺寸、边框和布线区A.PCB 的尺寸应严格遵守结构的要求。

注:目前生产部能生产的多层PCB 最大为450mm×500mm。

B.PCB 的板边框(Board Outline)通常用10mil 的线绘制。

B.布线区距离板边缘应大于5mm。

2)PCB 板的层叠排列缘A.基于加工工艺的考虑:如下图是四层PCB 的例子,第一种是举荐的方法。

关于六层的PCB,层的排列如下图;关于更多层的PCB 则类推。

B.基于电特性考虑的层叠排列。

在多层板的设计中,应尽量使用地层和电源层将信号层隔开,不能隔开的相邻信号层的走线应采纳正交方向。

下图为一四层板的排列:下图为一建议的10 层的PCB 的层叠,其它层数的PCB 依次类推。

3)PCB 的机械定位孔和用于SMC 的光学定位点。

A.关于PCB 的机械定位孔应遵循以下规则:要求■机械定位孔的尺寸要求PCB 板机械定位孔的尺寸必须是标准的(见下表和图),如有专门必须通知生产经理,以下单位为mm。

B.机械定位孔的定位机械定位孔的定位在PCB 对角线位置如图:■关于一般的PB,工艺部举荐:机械定位孔直径为3mm,机械定位孔圆心与板边缘距离为5.08mm。

■关于边缘有元件(物体、连接器等),机械定位孔将在X 方向做移动,机械定位孔的直径举荐为3mm。

■机械定位孔为非金属孔。

C.关于PCB 板的SMC 的光学定位点应遵循以下规则:■PCB 板的光学定位点为了满足SMC 的自动化生产处理的需要,必须在PCB 的表层和底层上添加光学定位点,见下图:注:1)距离板边缘和机械定位孔的距离≥7.5mm。

2)它们必须有相同的X 或Y 坐标。

3)光学定位点必须要加上阻焊。

4)光学定位点至少有2 个,并成对角放置。

5)光学定位点的尺寸见下图。

6)它们是在顶层和底层放置的表面焊盘。

工艺部举荐:通常光学定位点焊盘直径(PD)1.6mm(63mil),阻焊直径(D(SR))3.2mm(126mil);当PCB 的密度和精度要求专门高时,光学定位点焊盘能够为1.0mm(必须通知生产经理),同时焊盘要加上阻焊。

■PCB 板上表面贴装元件的参考点1)当元件(SMC)的引脚中心距(Lead Pitch)<0.5mm 时,必须增加参考点,放在元件的拐角处,见下图。

参考点能够只放2 个,参考点应放在对角位置上,在放置完元件后,参考点必须可见。

2)BGA 必须增加参考点同上图3)在密度专门高的板上,同时没有空间放置元件的参考点,那么在长和宽≤100mm 的区域中,能够只放置两个公用的参考点,如下图工艺部举荐:引脚中心距(Lead Pitch)≥0.5mm 那么能够不加元件定位点,反之一定要加参考点。

4)元件的参考点与PCB 板的光学定位点的类型是一样的,为一无孔的焊盘尺寸见(PCB 板的光学定位点)。

2.PCB 元件布局放置的要求。

PCB 元件的布局规则应严格参照(一)的内容,具体的要求如下:1)元件放置的方向性(orientation)A.元器件放置方向考虑布线,装配,焊接和修理的要求后,尽量统一。

在PCBA 上的元件尽量要求有统一的方向,有正负极型的元件也要有统一的方向。

B.关于波峰焊工艺,元件的放置方向要求如图:(应幸免改放置方式)由于波峰焊的阴影效应,因此元件方向与焊接方向成90°,波峰焊面的元件高度限制为4mm。

C.关于热风回流焊工艺,元件的放置方向关于焊接阻碍不大。

D.关于双面都有元件的PCB,较大较密的IC,如QFP,BGA 等封装的元件放在板子的顶层,插件元件也只能放在顶层,插装元件的另一面(底层)只能放置较小的元件和管脚数较少且排列松散的贴片元件,柱状表面贴器件应放在底层。

E.为了真空夹具的结构,板子背面的元件最高高度不能超过5.5mm;假如使用标准的针压测试夹具,板子背面的元件最高不能超过10mm。

F.考虑实际工作环境及本身发热等,元器件放置应考虑散热方面的因素。

注:1)元件的排列应有利于散热,必要的情形下使用风扇和散热器,关于小尺寸高热量的元件加散热器尤为重要。

2)大功率MOSFET 等元件下面能够通过敷铜来散热,而且在这些元件的周围尽量不要放热敏锐元件。

假如功率专门大,热量专门高,能够加散热片进行散热。

2)PCB 布局关于电信号的考虑。

关于一个设计者在考虑PCB 元件的分布时要考虑如下图的问题。

A.高速的元件(和外界接口的)应尽量靠近连接器。

B.数字电路与模拟电路应尽量分开,最好是用地隔开。

3)元件与定位孔的间距A.定位孔到邻近通脚焊盘的距离不小于7.62 mm(300mil)。

B.定位孔到表面贴装器件边缘的距离不小于5.08mm(200mil)。

关于SMD 元件,从定位孔圆心SMD 元件外框的最小半径距离为5.08mm (200mil)4)DIP 自动插件机的要求。

在同时有SMD 和DIP 元件的PB 上,为了幸免DIP 元件在自动插入时损坏SMD 元件,必须在布局时考虑SMD 和DIP 元件的布局要求。

二.PCB 设计的布线规范(一)布线设计原则1.线应幸免锐角、直角。

采纳45°走线。

2.相邻层信号线为正交方向。

3.高频信号尽可能短。

4.输入、输出信号尽量幸免相邻平行走线,最好在线间加地线,以防反馈耦合。

5.双面板电源线、地线的走向最好与数据流向一致,以增强抗噪声能力。

6.数字地、模拟地要分开,对低频电路,地应尽量采纳单点并联接地;高频电路宜采纳多点串联接地。

关于数字电路,地线应闭合成环路,以提高抗噪声能力。

7.关于时钟线和高频信号线要依照其特性阻抗要求考虑线宽,做到阻抗匹配。

8.整块线路板布线、打孔要平均,幸免显现明显的疏密不均的情形。

当印制板的外层信号有大片空白区域时,应加辅助线使板面金属线分布差不多平稳。

(二)对布线设计的工艺要求1.通常我们布线时最常用的走线宽度、过孔尺寸:注意:BGA 封装元件下方的过孔,依照加工工艺的要求,需要在其正、反两面用阻焊层覆盖。

1)当走线宽度为0.3mm 时2)当走线宽度为0.2mm 时:3)当走线宽度为0.15mm 时4)当走线宽度为0.12mm 时值得注意的是,BGA 下方的焊盘和焊盘间过孔焊盘的间距也为线宽。

且由于工艺方面的难度,不举荐使用0.12mm 的线宽。

5)当线宽小于等于0.12mm 时,过孔焊盘需要加泪滴,表中的T 即代表需要加泪滴。

当板子的尺寸大于600mm 时,过孔的焊盘宽度需要增大0.1mm。

表中单位:mm关于非金属化孔,阻焊窗直径(the solder resist window)应该比孔的直径大0.50mm。

而表层隔离区宽度也由孔的尺寸决定,当孔的直径小于等于3.3mm时,其范畴是“孔径+2.0” ;当孔的直径大于3.3mm 时,其范畴是孔径的1.6 倍。

相关文档
最新文档