数学建模经典案例_选课策略[1]
数学建模 选修课策略模型

黑龙江科技大学题目:选课策略数学模型班级:姓名:学号:摘要本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。
特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。
在不同的情况下建立不同的模型,最终计算出结果。
关键词 0-1规划选修课要求多目标规划模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。
模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。
模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。
一.问题的重述某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计算机。
这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。
那么,毕业时最少可以学习这些课程中的哪些课程。
如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?二.模型的假设及符号说明1.模型假设1)学生只要选修就能通过;2)每个学生都必须遵守规定;2. 符号说明1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9);三.问题分析对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果;对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果;对于问题三,同时考虑两者,所占权重比一样,建立模型三;四.模型的建立及求解模型一目标函数:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9)约束条件:x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;模型的求解:输入:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:Global optimal solution found.Objective value: -2.800000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -0.8000000X2 1.000000 -0.5000000X3 1.000000 -0.5000000X4 1.000000 -0.2000000X5 1.000000 -0.5000000X6 1.000000 -0.2000000X7 1.000000 0.1000000X8 0.000000 0.1000000X9 1.000000 -0.2000000Row Slack or Surplus Dual Price1 -2.800000 -1.0000002 3.000000 0.0000003 1.000000 0.0000004 2.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000001.模型二:目标函数:min z=x1+x2+x3+x4+x5+x6+x7+x8+x9约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0模型的求解本文运用lingo运算球的结果:输入min=x1+x2+x3+x4+x5+x6+x7+x8+x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9);输出:Global optimal solution found.Objective value: 6.000000Extended solver steps: 0Total solver iterations: 1Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.000000模型三:目标函数:Max W=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0x1+x2+x3+x4+x5+x6+x7+x8+x9=6运用lingo解题:输入:max=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;x1+x2+x3+x4+x5+x6+x7+x8+x9=6;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:Global optimal solution found.Objective value: 22.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -3.000000X2 1.000000 -2.000000X3 1.000000 -2.000000X4 0.000000 -1.000000X5 1.000000 -2.000000X6 1.000000 -1.000000X7 1.000000 0.000000X8 0.000000 0.000000X9 0.000000 -1.000000Row Slack or Surplus Dual Price1 22.00000 1.0000002 2.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 2.000000 0.00000011 0.000000 2.000000五.结果的检验与分析经过检验输入式子正确,结果多次验证一样。
全国数学建模大赛python编程经典案例

全国数学建模大赛是我国高校学子间的一场盛会,也是对学生数学建模能力的一次全面考验。
而在近年来,Python编程语言作为一种应用广泛的编程语言,在数学建模大赛中也展现出了其强大的应用能力。
下面,我们将逐一介绍几个在全国数学建模大赛中用Python编程取得优异成绩的经典案例。
一、航班调度优化航班调度一直是航空公司面临的重要问题之一,合理的航班调度可以最大程度地提高航空公司的运营效率和利润。
在数学建模大赛中,有学生利用Python编程对航班调度进行了优化,通过对航班起降时间、航班间隔、飞机维修等因素进行科学的建模与分析,提出了一套高效的航班调度方案,并最终获得了比赛的一等奖。
二、交通拥堵预测交通拥堵一直是城市管理中的难题,如何预测和缓解交通拥堵成为了各地政府和交通部门的重要任务。
在数学建模大赛中,有队伍利用Python编程对城市的交通流量、道路状况、车辆类型等数据进行建模,运用相关的数学模型和算法,成功地预测了未来一段时间内的交通拥堵情况,并提出了一系列有效的缓解措施,最终获得了比赛的优秀奖项。
三、疫情传播模拟近年来,新冠疫情的爆发给全球范围内带来了严重的影响,疫情传播的模拟和预测成为了疫情防控工作中的重要环节。
在数学建模大赛中,有团队利用Python编程对疫情传播进行了模拟,通过对人口流动、病毒传播途径、人裙免疫情况等因素进行综合分析,成功地建立了一套逼真的疫情传播模型,并提出了科学有效的疫情防控措施,最终斩获了比赛的金奖。
四、气象数据分析气象预测一直是气象部门和民众关注的焦点,有效地利用气象数据进行分析和预测可以对城市管理和民生产生重要影响。
在数学建模大赛中,有队伍运用Python编程对气象数据进行了深入的分析,通过对气象数据的趋势、变化规律、环境影响等方面进行科学建模和预测,取得了优异的比赛成绩,为气象预测提供了新的思路和方法。
总结可以看出,Python编程在全国数学建模大赛中发挥了重要作用,学生们利用Python编程对各种实际问题进行了深入的分析与研究,提出了一系列科学有效的解决方案,展现出了其强大的应用能力和潜力。
数学建模-选课问题

数学建模-选课问题选课问题⼀、摘要⼤学⽣在学习中常会遇到选课问题,既要使⾃⼰所选择的课程符合⾃⼰的兴趣,⼜要⽤最少的课程达到最好的效果,最重要是满⾜学校所修课程的要求以达到毕业,有些课程必须在具备基础科⽬学习经历的前提下才能进⾏选择,,在这多种因素引导下选课过程往往发⽣⽭盾。
因此只有对各种因素进⾏周密考虑,最终⽅可得出最优化的结果。
选课所得到的结果必然为整数,因此本题可以可归结为整数线性规划的最优化问题。
⼆.问题重述某学校规定,其运筹学专业的学⽣想要毕业,就⾄少要修过两门数学课,三门运筹学课和两门计算机课。
⽽其备选课程供有9种,按1到9编号,都有其各⾃对应的学分,以及对于先修课程的要求。
在满⾜题设要求的前提下,提出问题:1.学⽣毕业时最少可以学习哪些课程;2.学⽣选择哪些课程可以使⾃⼰选修的课程数量少⽽所获总学分多?三、问题分析根据题⽬要求,学⽣选修课程必须同时满⾜下列条件:(1)任何⼀个学⽣所选择的所有课程中,⾄少应包括两门属于数学类的课程,三门属于运筹学类的课程以及两门属于计算机类的课程;(2)课程编号为3、4、5、6、8、9的六门课选修前都必须先学过其他⼏门课。
要选3号或5号、9号课程就必须先学1、2号课程,要选4号或6号课程就必须先学7号课程,要学8号课程就必须先学5号课程。
因此,针对⽬标⼀,要求所选符合上述要求的课程数量最少,我们选择了以下⽅案⾸先选择1,2再选择课程5,8,其次选择课程课程7,6;如此来看这样只⽤选择六个课程就可以完成所也需要的要求,粗略的估计出选择1,2,5,8,7,6这⼏个课程是最好的结果;针对⽬标⼆,要求选择的符合要求的课程数量最少的同时其累计学分最多,我们也认为这个⽅案可以获得的学分为22分即是最好的结果。
但这都是主观上的判断,难免有偏差。
由于本题研究的是选课过程的最优化结果,因此⾸先必须根据所给条件,分析出各个课程之间的关系,并⽤清晰的数学表达式描述。
因此,我们建⽴0-1型整数线性规划模型,对结果进⾏分别预测后通过Matlab求解多⽬标规划模型,并将之前预测结果和求解结果进⾏⽐较,得到选课结果的最优化组合。
数学建模选课问题

1.问题提出对于问题一,我们必须考虑在学校和院系的规定的条件下对同学选课最少进行求解。
所以我们先从已知条件入手,把他们转化为约束条件,然后建立0-1整数优化模型,利用LINGO软件对其进行求解。
对于问题二,我们同样考虑在选修学分最少的情况下对同学选课最多进行求解。
但两者不能同时都满足,所以我们必须把这个双优化模型转化为单优化模型,然后再利用LINGO对其进行求解。
问题三则是考虑了选修课程限选人数的问题,所以必须针对不同的学生类型设计相应的选择方案。
同时考虑到选修的课程能否如愿选上,需要在已只知不同课程限选人数的情况下,利用对不同目标加权的方法对问题进行优化。
2符号说明与模型假设2.1符号说明表2:符号说明表注:其它符号在文中另加说明2.2模型假设(1):各个同学在选修课程时不受其他因素影响,只受学分和选修课程门数影响。
(2):学生选课是独立的,相互之间不影响。
(3):选课的学生有两种类型,一类是对这门课真正感兴趣的,另一类是“混学分”的,且这两类各占选课学生人数的一半。
(4):学生的信息是不公开的。
(5):问题三中没有提到的课程表示人数没有限制。
3模型建立和求解3.1问题一的解决3.1.1模型的建立用xi表示选修表中按照编号顺序的18门课程的选择(i=1,2,…18),其中xi 取值为1或者0。
其定义如下:采用目标规划的方法,考虑到学校的各种约束条件,将约束条件用数学表达式表示为一下几点:1:要使选修课程的总学分数不少于18,既有下面的不等式:2:任选课程的比例不能少于所修总学分的1/6,也不能超过1/3:3:课程号为5、6、7、8的课程必须至少选一门:4:选修某些课程必须同时选修其他课程,可以表示为:在达到以上要求的情况下,只考虑选修课程最少的情况,相应的目标函数为:在Lingo[1]中可以对该目标函数进行优化,其中约束条件为①②③④,由于上述条件中有大于关系,可以在两边乘以—1将约束条件全部转换成小于关系,这样便于在Lingo中求解.最后本文建立了如下的优化模型3.1.2模型的求解利用LINGO软件求解可以得到3.1.3问题一的结果最后本文得到了在学校和院系的要求下选课最少是选五门,选择方案是选择课程1,2,6,10,14。
全国数模竞赛题选讲1-最优捕鱼策略(96A)

Jingsaitixuanjiang
Jingsaitixuanjiang
假设这种鱼分 4 个年龄组,称 1 龄鱼,…,4 龄
0.8 3
k
2 3
s 40 ) e
2 3
0.8
1.22 10
k
2 3
11
10
11
a (1 e
)( e
0.42 k
s 30 2 e
s 40 ) e
0.8
]
F 3 s 30 F 4 s 40
F3
1 .6 [ 1 .2 2 1 0
3 a (1
重复 ⑵ ,根据递推关系算出下一年的
s 12 , s 22 , s 32 , s 42 ;
⑷ 再重复 ⑵、⑶ 当计算到年初与年末的各龄鱼 的数量一致时,即鱼群稳定为止,根据
G P 3 m 3 P4 m 4 算出年捕获量;
⑸ 另定 k 值,重复 ⑴ ~ ⑷; ⑹ 根据年捕获量最大原则,最后确定最佳的 k 值。
s 21 s 1 s 10 e
3)3 龄鱼即上一年末 2 龄鱼
0.8
s 31 s 2 s 20 e
4)4 龄鱼即上一年末 3 龄鱼
0.8
s 41 s 3 s 30 e
0.8
e
0.24 k
2 3
Jingsaitixuanjiang
3 、鱼群持续变化的递推关系
捞方式,该公司应采取怎样的策略才能使总收获量
数学建模 选课问题

选课问题声明:本人自做,仅作参考,不得商用,责任自负。
1 问题的提出课程选修是大学学分制教育制度的一个重要内容。
课程一般分为必修课、限选课、任选课、同时选修课等四类,各类大学都规定了学生必须完成的学分制。
现在有为同学要选修下一学期的课程,他发现可供选修的限定选修课(限选课)有8门,任意选修课(任选课)有10门。
由于有些课程之间相互关联,所以可能在选修某门课程时必须同时选修其他某门课程,课程信息见下表:按学校规定,学生每个学期选修的总学分数不能少于20学分,因此该同学必须在上述18门课中至少选修18个学分,学校还规定学生每学期选修任选课的比例不能少于所修总学分(包括2个必修学分)的1/6,也不能超过所修总学分的1/3。
学院也规定,课号为5,6,7,8的课程必须至少选一门。
1)为了达到学校和院系的规定,该同学下学期最少应该选几门课?应该选哪几门课?2)若考虑在选修最少学分的情况下,该同学最多可以选修几门课?选哪几门?3)若考虑到选修时课程能否如愿选上的问题,请多准备几套选择方案。
已知课程限选人数为1,2,3,4限选人数最多,5,6,7,8次之,13、17、18限选人数最少。
请考虑选课时的先后顺序(先选者先录,人满停选)。
2 基本假设(1)学生选修任何课程都是随机的,不存在主观意图。
实际生活中选课程是有主观意图的,但是本问题中不考虑这一点。
(2)学生只要选修某门课程,就认为他能够获得该门课程的学分,不考虑实际生活中的考试不及格得不到学分的情况。
(3)学校所给的课程,不管任何课程,都应当是做过调研,一般情况下学生只要选择,就能选上,而不会出现连选几门都选不上的局面。
也就是说选课所给的限制人数应当是合理的限制。
3 符号约定用xk表示2*18的选修课与对应的学分的矩阵,即⎥⎦⎤⎢⎣⎡111122233323334455181716151413121110987654321 用xk ()j i ,表示第i 行第j 列交叉点的元素。
数学建模竞赛模型选择策略

数学建模竞赛模型选择策略一、数学建模竞赛概述数学建模竞赛是一种将数学理论与实际问题相结合的竞赛形式,它不仅要求参赛者具备扎实的数学基础,还需要他们能够灵活运用数学工具解决实际问题。
这种竞赛形式在全球范围内广泛流行,吸引了众多数学爱好者和专业人士的参与。
数学建模竞赛的核心在于通过建立数学模型来描述和解决实际问题,这不仅是一种科学探索的过程,也是一种创新思维的体现。
1.1 数学建模竞赛的目的数学建模竞赛的主要目的在于培养学生的数学思维能力、创新能力和实践能力。
通过参与竞赛,参赛者可以更好地理解数学在实际问题中的应用,提高他们解决复杂问题的能力。
同时,竞赛还能激发参赛者的团队合作精神和竞争意识,促进他们在学术和职业生涯中的发展。
1.2 数学建模竞赛的特点数学建模竞赛具有以下几个显著特点:- 跨学科性:竞赛题目通常涉及多个学科领域,如经济、工程、生物等,要求参赛者具备跨学科的知识背景。
- 实践性:竞赛题目往往来源于实际问题,参赛者需要将理论知识与实际问题相结合,提出切实可行的解决方案。
- 创新性:竞赛鼓励参赛者进行创新思考,开发新的数学模型和算法,以解决复杂的实际问题。
- 团队性:竞赛通常以团队形式进行,强调团队合作和分工协作,培养参赛者的团队精神和协作能力。
二、数学建模竞赛模型选择策略在数学建模竞赛中,选择合适的模型是解决问题的关键。
模型的选择不仅影响解决方案的有效性,还影响整个竞赛的成败。
因此,制定科学的模型选择策略是至关重要的。
2.1 模型选择的重要性模型选择的重要性体现在以下几个方面:- 准确性:选择合适的模型可以更准确地描述和解决实际问题,提高解决方案的可靠性。
- 可行性:模型的选择需要考虑实际应用的可行性,确保模型能够在有限的时间内被有效求解。
- 创新性:选择创新的模型可以为解决问题提供新的思路和方法,提高解决方案的创新性。
- 通用性:选择具有通用性的模型可以提高解决方案的适用性,使其能够应用于更广泛的实际问题。
lingo实现 建立选课策略多目标模型

数学模型实验—实验报告9一、实验项目:选课策略模型建立和求解二、实验目的和要求a.根据题目要求建立优化模型b.通过Lingo软件求解模型三、实验内容1.根据教材4.4节内容建立选课策略多目标模型。
目标一:课程数最少;目标二:学分最多,1)课程数最少前提下,学分最多模型.即在选修6门课的条件下使得总学分尽可能的多,这样应在原规划问题中增加约束条件x1+x2+x3+x4+x5+x6+x7+x8+x9=6;2)引入权重将两目标转化为单目标模型一般的,将权重记为λ1,λ2,且令λ1+ λ2=1, 0≤λ1,λ2≤1,则0—1规划模型的新目标为 min Y= λ1Z-λ2W2. 编写lingo程序求解:1)以课程数最少为单目标的优化模型(注意xi为0-1变量)min x1+x2+x3+x4+x5+x6+x7+x8+x9x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9);运行结果如下:Global optimal solution found.Objective value: 6.000000Objective bound: 6.000000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.0000002)求解以上方法建立的多目标模型,并调整权重值,观察模型结果的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增加约束
9
xi 6,
i 1
以学分最多为目标求解。
最优解: x1 = x2 = x3 = x5 = x7 = x9 =1, 其它为0;总 学分由21增至22。
案例11 选课策略
课号
1 2 3 4 5 6 7 8 9
课名
微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验
学分
5 4 4 3 4 3 2 2 3
所属类别
数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
i 1
1 2 / 3
最优解与1=0,2=1的结果相同——学分最多
1 3 / 4
最优解与1=1,2=0的结果相同——课程最少
决策变量
xi=1 ~选修课号i 的 课程(xi=0 ~不选)
目标函数 选修课程总数最少
Min Z
9
xi
i 1
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
x1 x 2 x 3 x 4 x 5 2
x3 x5 x6 x8 x9 3
x4 x6 x7 x9 2
1 2 3
4 5 6 7 8 9
注意:最优解不唯一!
可将x9 =1 易为x6 =1 LINDO无法告诉优化 问题的解是否唯一。
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y 1 Z 2W 0 . 7 Z 0 . 3W
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件ቤተ መጻሕፍቲ ባይዱ
先修课程要求 x3=1必有x1 = x2 =1
x 3 x1 , x 3 x 2
2 x 3 x1 x 2 0
x4 x7
应用统计 微积分;线性代数
最优解: x1 = x2 = x3 = x4 = x5 = x6 = x7 = x9 =1, 其它为0;总学分28。
多目标规划
Min Y 1 Z 2W
讨论与思考
1 2 1,
0 1 , 2 1
Z
9
xi
W 5 x1 4 x 2 4 x 3 3 x 4 4 x 5 3 x6 2 x7 2 x8 3 x9
1 2 3
4 5 6 7 8 9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程
x4 x7 0
2 x 5 x1 x 2 0
模型求解(LINDO) 最优解: x1 = x2 = x3 = x6 = x7 = x9 =1, 其它为0;6门课程,总学分21
x6 x7 0
x8 x5 0
2 x 9 x1 x 2 0
讨论:选修课程最少,学分尽量多,应学习哪些课程?
课程最少
Min Z
学分最多
Max
9
xi
W 5 x1 4 x 2 4 x 3 3 x 4 4 x 5 3 x 6 2 x 7 2 x8 3 x9
i 1
两目标(多目标)规划
• 以课程最少为目标, 不管学分多少。 • 以学分最多为目标, 不管课程多少。
Min { Z , W }
多目标优化的处理方法:化成单目标优化。
最优解如上,6门课 程,总学分21 。 最优解显然是选修所 有9门课程 。
多目标规划
• 在课程最少的前提下 以学分最多为目标。
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
Z
9
xi
i 1
W 5 x1 4 x 2 4 x 3 3 x 4 4 x 5 3 x6 2 x7 2 x8 3 x9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程
应用统计 微积分;线性代数
要求至少选两门数学课、三门运筹学课和两门计算机课 为了选修课程门数最少,应学习哪些课程 ? 选修课程最少,且学分尽量多,应学习哪些课程 ?
0-1规划模型
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 所属类别 数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机