经典优化算法1

合集下载

第九章经典最优化方法

第九章经典最优化方法

第九章经典最优化方法9.1 最优化的基本概念最优化方法是一门古老而又年青的学科。

这门学科的源头可以追溯到17世纪法国数学家拉格朗日关于一个函数在一组等式约束条件下的极值问题(求解多元函数极值的Lagrange乘数法)。

19世纪柯西引入了最速下降法求解非线性规划问题。

直到20世纪三、四十年代最优化理论的研究才出现了重大进展,1939年前苏联的康托洛维奇提出了解决产品下料和运输问题的线性规划方法;1947年美国的丹奇格提出了求解线性规划的单纯形法,极大地推动了线性规划理论的发展。

非线性规划理论的开创性工作是在1951年由库恩和塔克完成的,他们给出了非线性规划的最优性条件。

随着计算机技术的发展,各种最优化算法应运而生。

比较著名的有DFP和BFGS无约束变尺度法、HP广义乘子法和WHP约束变尺度法。

最优化问题本质是一个求极值问题,几乎所有类型的优化问题都可概括为如下模型:给定一个集合(可行集)和该集合上的一个函数(目标函数),要计算此函数在集合上的极值。

通常,人们按照可行集的性质对优化问题分类:如果可行集中的元素是有限的,则归结为“组合优化”或“网络规划”,如图论中最短路、最小费用最大流等;如果可行集是有限维空间中的一个连续子集,则归结为“线性或非线性规划”;如果可行集中的元素是依赖时间的决策序列,则归结为“动态规划”;如果可行集是无穷维空间中的连续子集,则归结为“最优控制”。

线性规划与非线性规划是最优化方法中最基本、最重要的两类问题。

一般来说,各优化分支有其相应的应用领域。

线性规划、网络规划、动态规划通常用于管理与决策科学;最优控制常用于控制工程;非线性规划更多地用于工程优化设计。

前面提到的算法是最优化的基本方法,它们简单易行,对于性态优良的一般函数,优化效果较好。

但这些经典的方法是以传统微积分为基础的,不可避免地带有某种局限性,主要表现为:①大多数传统优化方法仅能计算目标函数的局部最优点,不能保证找到全局最优解。

最短路径问题的优化算法

最短路径问题的优化算法

最短路径问题的优化算法最短路径问题是计算网络中两个节点之间最短路径的一个经典问题。

在许多实际应用中,如导航系统、交通规划和物流管理等领域,寻找最短路径是一个重要的任务。

然而,当网络规模较大时,传统的最短路径算法可能会面临计算时间长、耗费大量内存等问题。

为了解决这些问题,研究人员提出了许多优化算法,以提高最短路径问题的计算效率。

一、Dijkstra算法的优化Dijkstra算法是最短路径问题中最经典的解法之一,但当网络中的节点数量较大时,其计算时间会显著增加。

为了优化Dijkstra算法,研究者提出了以下几种改进方法:1. 堆优化Dijkstra算法中最耗时的操作是从未访问节点中选取最短路径的节点。

传统的实现方式是通过线性搜索来选择下一个节点,时间复杂度为O(N),其中N是节点的数量。

而使用堆数据结构可以将时间复杂度降低到O(lgN),从而提高算法的效率。

2. 双向Dijkstra算法双向Dijkstra算法是通过同时从起点和终点开始搜索,以减少搜索的范围和时间。

在搜索过程中,两个搜索方向逐渐靠近,直到找到最短路径为止。

双向Dijkstra算法相比传统的Dijkstra算法能够减少搜索空间,因此在网络规模较大时可以提供更快的计算速度。

二、A*算法A*算法是一种启发式搜索算法,常用于解决最短路径问题。

与传统的Dijkstra算法不同,A*算法通过引入启发函数来优先搜索距离终点较近的节点。

启发函数的选择对算法的效率有重要影响,一般需要满足启发函数低估距离的性质。

A*算法的时间复杂度取决于启发函数,如果启发函数选择得恰当,可以在大规模网络中快速找到最短路径。

三、Contraction Hierarchies算法Contraction Hierarchies(CH)算法是近年来提出的一种高效解决最短路径问题的方法。

CH算法通过预处理网络,将网络中的节点进行合并,形成层次结构。

在查询最短路径时,只需在层次结构上进行搜索,大大减少了计算复杂度。

(运筹学与控制论专业优秀论文)一类最优化问题的算法设计

(运筹学与控制论专业优秀论文)一类最优化问题的算法设计
ii
知识水坝为您提供优质论文
承诺书
本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立 进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容 外,本学位论文的研究成果不包含任何他人享有著作权的内容。对本 论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明 确方式标明。
本人授权南京航空航天大学可以有权保留送交论文的复印件,允 许论文被查阅和借阅,可以将学位论文的全部或部分内容编入有关数 据库进行检索,可以采用影印、缩印或其他复制手段保存论文。
1.3 本文的主要内容
本文主要研究一类具有特殊形式的最优化问题,求解这一类最优化问题的全 局最优解,并应用到求解互补问题上。虽然目前已经有很多算法,但是我们考虑 到本最优化问题的约束条件是特殊的,因此可以利用约束条件的特殊性构造更为 简单有效的算法。
本文提出了一类新的函数,将它定义为半正定函数。利用这类函数将原问题; 分别转化为无约束最优化和含等式约束的最优化问,并分别设计了算法,进行了 数值实验,验证了算法的有效性。为了给出问题的全局最优解,我们又研究了算 法子问题的全局最优化算法,利用填充函数法来求解子问题。这样就保证了前面 设计的算法可以求得问题的全局最优解。最后,针对约束最优化问题(P),提出 了拟填充函数的概念,构造了一类拟填充函数并设计了算法。具体内容如下:
In this article we propose a new type of function, which is called a semi-positive function. We use this function to make another function, then we can turn the original problem into another one. We give algorithms and numerical results. Then we investigate the sub-problem. Also we propose the definition of quasi-filled function. We propose a quasi-filled function and design algorithm. It mainly contains the following six chapters:

最短路径问题的智能优化算法

最短路径问题的智能优化算法

最短路径问题的智能优化算法最短路径问题是图论中的经典问题,其在各个领域都有着广泛的应用。

然而,当图的规模庞大时,传统的求解方法往往存在效率低下的问题。

为了提高求解最短路径问题的效率,智能优化算法应运而生。

本文将介绍几种常用的智能优化算法,并比较它们在求解最短路径问题上的表现。

1. 遗传算法遗传算法是模拟自然界的进化过程而设计的一种优化算法。

在求解最短路径问题时,可以将图中的节点看作基因,路径长度看作适应度。

遗传算法通过交叉、变异等操作对解空间进行搜索,并逐代筛选出较优的解。

在实际应用中,遗传算法能够在较短的时间内找到逼近最优解的结果。

2. 蚁群算法蚁群算法是受到蚂蚁觅食行为的启发而设计的一种优化算法。

蚁群算法通过模拟蚂蚁在搜索食物时释放信息素、路径选择等行为进行优化。

在求解最短路径问题时,可以将蚂蚁看作在节点之间移动的代理,蚁群中的每只蚂蚁通过释放信息素来引导搜索方向。

经过多次迭代,蚁群算法可以找到接近最短路径的解。

3. 粒子群算法粒子群算法是模拟鸟群觅食行为的一种优化算法。

粒子群算法通过随机初始化一群“粒子”,然后根据自身最优解和群体最优解来不断调整粒子的位置和速度,以找到最优解。

在求解最短路径问题时,可以将节点看作粒子,粒子的位置和速度表示路径的位置和前进方向。

通过迭代调整粒子的位置和速度,粒子群算法能够找到较优的解。

4. 模拟退火算法模拟退火算法是一种受到固体退火原理启发的优化算法。

在求解最短路径问题时,可以将节点看作原子,在不同温度下进行状态转移,以找到更优的解。

模拟退火算法通过接受差解的概率和降低温度的策略来逐渐搜索到接近最优解的结果。

以上是几种常见的智能优化算法在求解最短路径问题上的应用。

这些算法在实际应用中有着广泛的适用性,并且能够在较短的时间内找到较优的解。

在具体选择算法时,需要根据问题的规模和要求进行综合考虑。

未来随着智能优化算法的发展,相信将会有更多高效、灵活的算法被提出,为最短路径问题的求解提供更多选择。

最短路径问题的优化算法

最短路径问题的优化算法

最短路径问题的优化算法最短路径问题是图论中的经典问题之一,涉及在给定图中找到两个节点之间的最短路径。

这个问题在实际生活中有广泛的应用,如导航系统中的路线规划、网络通信中数据包的传输等。

为了提高计算效率,许多优化算法被提出和应用于解决最短路径问题。

1. 单源最短路径问题单源最短路径问题是指在给定图中,从一个固定的起始节点到其他所有节点的最短路径问题。

经典的解决方法包括迪杰斯特拉算法和贝尔曼-福特算法。

迪杰斯特拉算法是一种贪婪算法,通过确定与起始节点距离最短的节点来逐步扩展最短路径树。

具体步骤如下:1) 初始化距离数组,将起始节点距离设为0,其他节点距离设为无穷大。

2) 选择当前距离最短的节点,并标记为已访问。

3) 更新与该节点相邻节点的距离,若经过当前节点到相邻节点的距离更短,则更新距离数组。

4) 重复步骤2和步骤3,直到所有节点都被访问过。

最后,距离数组中记录的即为从起始节点到其他所有节点的最短路径。

贝尔曼-福特算法是一种动态规划算法,通过不断地松弛边来逐步得到最短路径。

具体步骤如下:1) 初始化距离数组,将起始节点距离设为0,其他节点距离设为无穷大。

2) 依次对所有边进行松弛操作,即更新边的端点节点的距离。

3) 重复步骤2,直到所有边都被松弛完毕。

4) 判断是否存在负环路,若存在则说明无最短路径;若不存在,则距离数组中记录的即为从起始节点到其他所有节点的最短路径。

2. 全局最短路径问题全局最短路径问题是指在给定图中,找到任意两个节点之间的最短路径问题。

弗洛伊德算法是一种经典的解决方法,通过动态规划的思想逐步求解。

弗洛伊德算法的具体步骤如下:1) 初始化距离矩阵,将所有节点之间的距离设为无穷大。

2) 根据已知的边信息更新距离矩阵,即将已知路径的距离设为对应的实际距离。

3) 对于每一对节点,考虑经过中转节点的路径是否更短,若更短则更新距离矩阵。

4) 重复步骤3,直到距离矩阵不再变化。

最后,距离矩阵中记录的即为任意两个节点之间的最短路径。

经典最优化方法

经典最优化方法

第九章经典最优化方法9.1 最优化的基本概念最优化方法是一门古老而又年青的学科。

这门学科的源头可以追溯到17世纪法国数学家拉格朗日关于一个函数在一组等式约束条件下的极值问题(求解多元函数极值的Lagrange乘数法)。

19世纪柯西引入了最速下降法求解非线性规划问题。

直到20世纪三、四十年代最优化理论的研究才出现了重大进展,1939年前苏联的康托洛维奇提出了解决产品下料和运输问题的线性规划方法;1947年美国的丹奇格提出了求解线性规划的单纯形法,极大地推动了线性规划理论的发展。

非线性规划理论的开创性工作是在1951年由库恩和塔克完成的,他们给出了非线性规划的最优性条件。

随着计算机技术的发展,各种最优化算法应运而生。

比较著名的有DFP和BFGS无约束变尺度法、HP广义乘子法和WHP约束变尺度法。

最优化问题本质是一个求极值问题,几乎所有类型的优化问题都可概括为如下模型:给定一个集合(可行集)和该集合上的一个函数(目标函数),要计算此函数在集合上的极值。

通常,人们按照可行集的性质对优化问题分类:如果可行集中的元素是有限的,则归结为“组合优化”或“网络规划”,如图论中最短路、最小费用最大流等;如果可行集是有限维空间中的一个连续子集,则归结为“线性或非线性规划”;如果可行集中的元素是依赖时间的决策序列,则归结为“动态规划”;如果可行集是无穷维空间中的连续子集,则归结为“最优控制”。

线性规划与非线性规划是最优化方法中最基本、最重要的两类问题。

一般来说,各优化分支有其相应的应用领域。

线性规划、网络规划、动态规划通常用于管理与决策科学;最优控制常用于控制工程;非线性规划更多地用于工程优化设计。

前面提到的算法是最优化的基本方法,它们简单易行,对于性态优良的一般函数,优化效果较好。

但这些经典的方法是以传统微积分为基础的,不可避免地带有某种局限性,主要表现为:①大多数传统优化方法仅能计算目标函数的局部最优点,不能保证找到全局最优解。

常用的优化方法和优化函数

常用的优化方法和优化函数

常用的优化方法和优化函数优化方法和优化函数是在解决问题时常用的数学工具和方法。

优化是一种数学问题,目标是找到一些函数的最优解或近似最优解。

一、优化方法:1.初等方法:初等方法是最直接的一种优化方法,包括插值法、拟合法、曲线拟合法等,通过数学公式来估计函数的取值。

2.单变量优化方法:单变量优化方法是对单一变量进行优化的方法,常见的有二分法、黄金分割法和牛顿迭代法等。

这些方法适用于单调函数和凸函数的优化问题。

3.多变量优化方法:多变量优化方法是对多个变量进行优化的方法,常见的有梯度下降法、共轭梯度法和牛顿法等。

这些方法适用于非线性函数的优化问题。

4.线性规划:线性规划是一种常用的优化方法,通过线性函数和线性约束来确定最优解。

线性规划问题可以通过单纯形法或内点法求解。

5.整数规划:整数规划是一种在决策变量为整数时的优化方法,常用的算法有分支界限法、整数规划近似算法等。

6.动态规划:动态规划是一种将复杂问题分解为简单子问题的方法,通过递推关系求解最优解。

常用的动态规划算法有最短路径算法、背包问题算法等。

7.模拟退火算法:模拟退火算法是一种通过模拟物质在退火过程中的行为来进行全局的算法。

它能够在一定程度上跳出局部最优解,常见的变种有遗传算法和粒子群优化算法等。

8.遗传算法:遗传算法是一种基于自然选择和遗传机制的优化算法,通过模拟自然界的进化过程来优化问题。

它常用于求解复杂的问题,如函数逼近、组合优化等。

9.神经网络:神经网络是一种通过模拟神经元之间的连接和传输信息来建立模型的方法。

通过训练网络参数,可以实现优化目标函数。

二、常用的优化函数:1. Rosenbrock函数:Rosenbrock函数是一个经典优化函数,用于测试优化算法的性能。

其函数形式为 f(x,y) = (1-x)^2 + 100(y-x^2)^2,目标是找到函数的全局最小值。

2. Ackley函数:Ackley函数是另一个经典的优化函数,用于测试优化算法的鲁棒性。

网络优化模 型与算法-V1

网络优化模 型与算法-V1

网络优化模型与算法-V1网络优化模型与算法随着互联网技术的不断发展,网络优化问题变得越来越重要。

无论是商业领域还是科研领域,网络优化都在扮演着重要的角色。

本文将重点介绍网络优化模型与算法。

一、网络优化模型网络优化模型是指将网络中的各个元素和关系用数学模型表示出来,并根据所要优化的目标给出相应的优化模型。

常见的网络优化模型有最小生成树模型、最短路模型、网络流模型等。

1. 最小生成树模型最小生成树模型是指在一个网络中找到一棵生成树,使得这个生成树的总权值最小。

在最小生成树模型中,边的权值代表着连接两个节点的代价。

经典的最小生成树算法有Prim算法和Kruskal算法。

2. 最短路模型最短路模型是指在一个网络中找到一条路径,使得这条路径的总权值最小。

在最短路模型中,边的权值代表着从一个节点到另一个节点的距离或代价。

经典的最短路算法有Dijkstra算法和Floyd算法。

3. 网络流模型网络流模型是指在一个网络中找到一种流量分配方式,使得流量的总和最大或成本最小。

在网络流模型中,节点之间的流量代表着信息传递的速度或物质的流动量,边的容量代表着流量的上限。

经典的网络流算法有最大流算法和最小费用最大流算法。

二、网络优化算法网络优化算法是指利用数学模型和算法求解网络优化问题的方法。

不同的网络优化问题需要不同的算法。

本节将介绍一些常见的网络优化算法。

1. Prim算法Prim算法是用于求解最小生成树的一种贪心算法。

它从一个起点开始,每次找到与当前最小生成树距离最近的节点,将这个节点加入最小生成树中。

2. Kruskal算法Kruskal算法是用于求解最小生成树的一种贪心算法。

它将所有边按照权值从小到大排序,依次加入最小生成树中。

如果加入一条边会形成环,则舍弃这个边。

3. Dijkstra算法Dijkstra算法是用于求解最短路的一种贪心算法。

它从起点开始,每次找到距离起点最近的节点,并更新其它与该节点相邻的节点的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典优化算法:单纯形法、椭球算法(多项式算法),内点法、无约束的优化算法包括:最速下降法(steepest)、共轭梯度法、牛顿法(Newton Algorithm)、拟牛顿法(pseudo Newton Algorithms)、信赖域法。

约束优化算法包括:拉格朗日乘子法(Augmented Lagrangian Algorithms),序列二次规划(SQP)等
现代:遗传算法、蚁群算法、模拟退火算法、禁忌搜索、粒子群算法、现代优化算法是人工智能的一个重要分支,这些算法包括禁忌搜索(tabu search)、模拟退火(simulated annealing)、遗传算法(genetic algorithms)人工神经网络(nearal networks)。

贪婪算法和局部搜索、模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。

最近,演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法、混合算法
经典优化算法和启发式优化算法都是迭代算法,但是,它们又有很大区别:1.经典算法是以一个可行解为迭代的初始值,而启发式算法是以一组可行解为初始值;2.经典算法的搜索策略为确定性的,而启发式算法的搜索策略是结构化和随机化;3.经典算法大多都需要导数信息,而启发式算法仅用到目标函数值的信息;4.经典算法对函数性质有着严格要求,而启发式算对函数性质没有太大要求;
5.经典算法的计算量要比启发式算法小很多。

比如,对于规模较大且函数性质比较差的优化问题,经典算法的效果不好,但一般的启发式算法的计算量太大。

优化算法的主要由搜索方向和搜索步长组成。

搜索方向和搜索步长的选区决定了优化算法的搜索广度和搜索深度。

经典优化算法和启发式优化算法的区别主要是由其搜索机制不同造成的。

经典算法的搜索方向和搜索步长是由局部信息(如导数)决定的所以只能对局部进行有效的深度搜索,而不能进行有效广度搜索,所以经典的优化算法很难跳出局部最优。

启发式优化算法,为了避免像经典优化算法那样陷入局部最优,采用了相对有效的广度搜索,不过这样做使得在问题规模较大的时候计算量难以承受。

纵观优化算法的发展,完美的算法是不存在的。

我们评价算法好坏的标准:
<!--[if !supportLists]-->(1)<!--[endif]-->算法收敛速度;
<!--[if !supportLists]-->(2)<!--[endif]-->算法使用范围(普适性);
<!--[if !supportLists]-->(3)<!--[endif]-->算法的时间复杂度;
<!--[if !supportLists]-->(4)<!--[endif]-->算法得到解得质量(局部性或全局性,对绝对最优解的近似程度);
<!--[if !supportLists]-->(5)<!--[endif]-->算法的可实现性;
可以说这些标准是不可公度的(不可能同时都好)。

以全局最优问题为例,要求计算时间少,搜索广度无法保证,解得质量就差;要求收敛速度快,就需要有效的搜索方向,有了搜索方向就降低了搜索广度,这样解得全局最优性无法保证。

Intelligent search algorithm
simulated annealing:
Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global optimum of a given function in a large search space. For certain problems, simulated annealing may be more effective than exhaustive enumeration —provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution.
The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one.。

相关文档
最新文档