C语言程序运行速度优化方法谈
C语言程序运行速度优化方法谈

C语言程序运行速度优化方法谈1、选择合适的算法和数据结构选择合适的数据结构非常重要。
如果在一堆随机存储的数字中使用大量insert和delete指令,则使用链表的速度要快得多。
数组与指针语句密切相关。
一般来说,指针灵活简洁,而数组直观易懂。
对于大多数编译器来说,使用指针生成的代码比使用数组生成的代码更短、效率更高。
在许多种情况下,可以用指针运算代替数组索引,这样做常常能产生又快又短的代码。
与数组索引相比,指针一般能使代码速度更快,占用空间更少。
使用多维数组时差异更明显。
下面的代码作用是相同的,但是效率不一样。
数组索引指针运算对于(;;){p=arraya=array[t++];for(;){a=*(p++);。
}}指针方法的优点是,array的地址每次装入地址p后,在每次循环中只需对p增量操作。
在数组索引方法中,每次循环中都必须根据t值求数组下标的复杂运算。
2、使用尽量小的数据类型对于可以由字符类型(char)定义的变量,不要使用整数(int)变量;对于可以用整数变量定义的变量,不要使用长整数,也不要使用没有浮点变量的浮点变量。
当然,定义变量后不要超出变量的范围。
如果赋值超出变量范围,C编译器不会报告错误,但程序运行结果是错误的,这样的错误很难找到。
在iccavr中,可以在options中设定使用printf参数,尽量使用基本型参数(%c、%d、%x、%x、%u和%s格式说明符),少用长整型参数(%ld、%lu、%lx和%lx格式说明符),至于浮点型的参数(%f)则尽量不要使用,其它c编译器也一样。
在其它条件不变的情况下,使用%f参数,会使生成的代码的数量增加很多,执行速度降低。
3、减少运算的强度(1),查表(游戏程序员必修课)一个聪明的游戏大虾,基本上不会在自己的主循环里搞什么运算工作,绝对是先计算好了,再到循环里查表。
看下面的例子:旧代码:长阶乘(inti){if(i==0)return1;其他的returni*factorial(i-1);}新代码:静态长阶乘表[]={1,1,2,6,24,120,720/*etc*/};longfactorial(inti){returnfactorial_uu表[i];}如果表很大,不好写,就写一个init函数,在循环外临时生成表格。
C语言技术中的CPU和内存使用率优化方法

C语言技术中的CPU和内存使用率优化方法在计算机科学领域,C语言是一种广泛应用的编程语言,被用于开发各种软件和系统。
然而,在编写C语言程序时,我们需要考虑到CPU和内存的使用率,以确保程序的性能和效率。
本文将探讨一些优化方法,帮助我们提高C语言程序的CPU和内存使用率。
一、减少CPU的使用率1. 合理使用循环结构循环结构是C语言中常用的控制结构,但过多的循环可能会导致CPU的过度使用。
因此,在编写循环时,我们应该尽量避免不必要的循环,或者通过优化算法来减少循环的次数。
例如,可以使用二分查找算法代替线性查找算法,以减少循环次数。
2. 使用并行化技术并行化技术可以将一个任务分解为多个子任务,并在多个处理器上同时执行,从而提高CPU的利用率。
在C语言中,我们可以使用多线程编程技术来实现并行化。
通过将任务分配给不同的线程,可以使CPU同时执行多个任务,提高程序的并发性和性能。
3. 避免频繁的系统调用系统调用是C语言中与操作系统交互的重要方式,但频繁的系统调用会导致CPU的使用率增加。
因此,在编写程序时,我们应该尽量避免频繁的系统调用,可以通过合并多个系统调用、使用缓存等方式来减少系统调用的次数,从而降低CPU的使用率。
二、优化内存使用率1. 合理使用数据结构数据结构是C语言中用于存储和组织数据的重要方式。
不同的数据结构对内存的使用率有所不同,因此,在选择数据结构时,我们应该根据实际需求和性能要求来选择合适的数据结构。
例如,使用数组代替链表可以减少内存的使用,但会增加访问元素的时间复杂度。
2. 及时释放内存在C语言中,我们需要手动分配和释放内存。
如果我们在程序中没有及时释放不再使用的内存,就会导致内存泄漏,从而降低内存的使用率。
因此,我们应该养成良好的内存管理习惯,在不再使用内存时及时释放,以提高内存的使用效率。
3. 使用内存池技术内存池是一种优化内存使用的技术,它通过预先分配一块连续的内存空间,并在程序中重复使用这块内存空间,避免了频繁的内存分配和释放操作。
C语言程序优化技巧

C语言程序优化技巧在编写C语言程序时,我们常常需要考虑如何提高程序的性能和效率。
通过优化技巧可以使程序更加快速、高效,减少资源的占用和浪费。
本文将介绍一些常见的C语言程序优化技巧,帮助开发者写出更出色的代码。
1. 使用合适的数据类型选择合适的数据类型可以减少内存的占用和提高程序的运行速度。
例如,如果变量的取值范围在0到255之间,可以使用无符号字符型(unsigned char)代替整型(int),以节省内存空间。
此外,在涉及大量整数运算时,使用整型(int)而非浮点型(float)或双精度浮点型(double)可以提高运算效率。
2. 减少循环次数循环是C语言中常用的结构,但是过多的循环会影响程序的性能。
因此,在编写程序时应尽量减少循环的次数。
可以使用数学公式、位运算等技巧来简化运算,从而减少循环的次数。
3. 避免重复计算在编写程序时,避免重复计算可以提高程序的效率。
可以使用临时变量存储重复计算的结果,避免重复的运算过程。
此外,还可以使用缓存来存储一些常用的计算结果,加快程序的运行速度。
4. 减少函数调用次数函数调用是C语言中常见的操作,但是频繁的函数调用会导致程序的性能下降。
因此,在编写程序时应尽量减少函数调用的次数。
可以将一些常用的代码片段封装成函数,以避免重复的代码和函数调用。
5. 使用适当的算法和数据结构选择合适的算法和数据结构对于程序的性能非常重要。
在解决问题时,应该选择最合适的算法来实现需求,并结合适当的数据结构来提高程序的执行效率。
通过选择高效的算法和数据结构,可以减少程序的运行时间和资源占用。
6. 注意内存管理合理的内存管理可以提高程序的运行效率。
在编写程序时,应避免内存泄漏和内存碎片的情况发生。
可以使用合适的内存分配和释放操作,例如使用malloc()、free()等函数来管理内存,避免不必要的内存占用和浪费。
7. 编译器优化选项现代编译器通常提供一些优化选项,可以帮助开发者自动对代码进行优化。
DSP平台c语言编程优化方法精

数又很多,往往几个时脉就可以完成却浪费时间在存取堆栈的内容上,所以干脆将这些很短的子程序直接写在主程序当中,以减少时脉数。
方法六写汇编语言虽然由C语言所编译出来的汇编语言可以正确无误的执行,但是这个汇编语言却不是最有效率的写法,所以为了增加程序的效率,于是在某些地方,例如一些被呼叫很多次且程序代码不长的函式(function),必须改以自己动手写汇编语言来取代。
方法七利用平行处理的观念C6x是一颗功能强大的处理器,它CPU勺内部提供了八个可以执行不同指令的单元,也就是说最多可以同时处理八个指令。
所以如果我们可以用它来作平行处理,我们就可以大大的缩短程序执行的时间,最有效率的来利用它来作解码的动作。
最后还要知道:第三级优化(-03),效率不高(经验),还有一些诸如用一条读32位的指令读两个相邻的16位数据等,具体情况可以看看C优化手册。
但这些效率都不高(虽然ti的宣传说能达到80%我自己做的时候发现绝对没有这个效率!65泌差不多),如果要提高效率只能用汇编来做了。
还有要看看你的c程序是怎么编的,如果里面有很多中断的话,6000可以说没什么优势。
还有,profiler 的数据也是不准确的,比实际的要大,大多少不好说。
还有dsp在初始化的时候特别慢,这些时间就不要和pc机相比了,如果要比就比核心的部分。
关于profileC6x的Debug工具提供了一个profile 界面。
在图9中,包括了几个重要的窗口,左上角的窗口是显示出我们写的C语言,可以让我们知道现在做到了哪一步。
右上角的窗口显示的是C6x所编译出来的汇编语言,同样的我们也可以知道现在做到了哪一步。
左下角的窗口是命令列,是让我们下指令以及显示讯息的窗口。
而中间的profile 窗口就是在profile模式下最重要的窗口,它显示出的项目如下表:表5:profile 的各项参数[8]字段意义Cou nt被呼叫的次数In elusive 包含子程序的总执行clock数Inel-Max包含子程序的执行一次最大clock数Exclusive不包含子程序的总执行clock数Excl-Max不包含子程序的执行一次最大clock数利用这个profile 模式我们可以用来分析程序中每个函数被呼叫的次数、执行的时脉数等等。
提高C语言程序的执行效率

提高C语言程序的执行效率C语言是一种高效的编程语言,但是在编写程序时,仍然有很多方法可以进一步提高程序的执行效率。
下面是一些可以帮助你优化C语言程序的方法:1.使用合适的算法和数据结构:选择正确的算法和数据结构对于程序性能至关重要。
通过选择最适合特定问题的数据结构和算法,可以显著提高程序的效率。
例如,使用哈希表而不是线性可以快速查找数据。
2.减少循环次数:循环是程序中最常见的性能瓶颈之一、你可以通过减少循环的次数来提高程序的效率。
这可以通过避免重复计算和重复操作来实现。
3.减少函数调用次数:函数调用是有一定开销的,尤其是在递归调用时。
尽量减少函数的嵌套和递归调用,可以显著提高程序的效率。
4.使用适当的数据类型:选择适当的数据类型可以减少内存占用和提高运行速度。
例如,使用整数类型代替浮点数类型可以提高运算速度。
另外,使用位操作可以更快地执行一些操作,如位移和位掩码。
5.避免冗余计算:如果一个变量的值在循环中没有变化,可以将计算移到循环之外,避免重复计算。
这样可以减少不必要的计算,提高程序的效率。
6.减少内存访问次数:内存访问是有一定开销的,尤其是在访问缓存行时。
尽量减少对内存的访问次数,可以提高程序的效率。
这可以通过使用局部变量替代全局变量、减少数组访问次数等方式实现。
7. 编译器优化:现代的编译器通常会进行一定的优化,以提高程序的执行效率。
你可以尝试使用优化选项来编译代码,例如对循环进行展开、inline函数等,以获得更好的性能。
8.并行化和多线程:如果你的程序可以并行执行,可以考虑使用多线程或并行计算来加快程序的执行速度。
这可以通过使用线程库或并行计算库来实现,并确保线程之间正确地共享数据。
9.降低输入/输出操作:输入/输出操作通常是较慢的操作。
如果可能的话,可以尝试减少输入/输出操作的次数,或者使用更高效的输入/输出方法,如内存映射文件。
10.使用内联汇编:在一些特定的情况下,使用内联汇编可以获得更高的性能。
C语言性能优化代码优化和算法改进

C语言性能优化代码优化和算法改进C语言性能优化:代码优化和算法改进在编程领域中,性能优化是提高程序运行效率和响应速度的关键因素之一。
C语言是一种强大的编程语言,但在实际应用中,如果不进行代码优化和算法改进,可能会导致程序运行速度慢、内存占用过大等问题。
本文将介绍一些C语言性能优化的方法,包括代码优化和算法改进。
1. 代码优化代码优化是通过改进程序代码的结构和语法,以减少运行时的时间和空间开销。
以下是一些常用的代码优化技巧:1.1 减少循环次数循环是程序中常见的结构之一,在提升性能时,我们需要尽量减少循环的次数。
可以考虑使用更高效的循环方式,如使用while循环替代for循环,避免不必要的循环条件判断。
1.2 使用局部变量在编写代码时,尽量使用局部变量而不是全局变量。
局部变量的访问速度更快,可以减少内存访问时间,从而提高程序性能。
1.3 避免重复计算在某些情况下,同样的计算可能会在代码中多次出现,可以通过使用中间变量来避免重复计算,从而提高代码的执行效率。
1.4 使用位操作位操作是C语言的特有特性,可以通过位操作实现一些复杂的运算,例如位与、位或、位异或等。
合理利用位操作可以提高程序的效率。
2. 算法改进算法改进是通过优化程序中的算法,以减少运算和存储资源的使用,从而提高程序性能。
以下是一些常用的算法改进技巧:2.1 数据结构选择在选择数据结构时,需要根据具体的应用场景分析选择合适的数据结构。
例如,当需要频繁进行插入和删除操作时,可以选择链表而不是数组,以提高效率。
2.2 缓存优化利用缓存机制可以减少内存访问时间,从而提高程序运行速度。
可以通过调整数据的存储方式、使用局部性原理等方法来进行缓存优化。
2.3 分而治之对于一些复杂的问题,可以使用分而治之的思想将问题划分为多个子问题,并通过递归或迭代的方式分别解决子问题,最后将结果合并。
这种方式可以显著提高程序运行效率。
2.4 并行计算利用多线程或并行计算技术可以将程序的计算任务分配给多个处理器或核心,并发执行,从而提高程序的运行速度。
C语言优化程序空间效率技巧

C语言优化程序空间效率技巧在编写C语言程序时,优化空间效率是提高程序性能和资源利用率的关键。
在本文中,将介绍一些常用的C语言程序空间优化技巧,帮助读者更好地理解和应用这些技巧。
1、使用合适的数据类型在C语言中,选择合适的数据类型可以节省内存空间并提高程序性能。
例如,当一个变量的取值范围明确时,可以使用较小的数据类型,如使用char类型代替int类型,以节省内存空间。
此外,一些特殊的数据类型,如bit字段和位域,可以进一步减小数据的存储空间。
2、避免内存泄漏内存泄漏是指程序在动态分配内存后,没有适时地释放该内存,导致内存的浪费。
为了避免内存泄漏,应注意在使用malloc()和free()函数时,分配的内存要及时释放,以避免程序运行过程中出现内存泄漏问题。
3、使用动态内存分配和释放在某些情况下,需要在程序运行时动态地分配和释放内存。
使用动态内存分配函数如malloc()和动态内存释放函数如free()可以灵活地管理内存空间,从而减少内存消耗。
然而,也需要注意在不再使用动态分配的内存后及时释放,以防止内存泄漏。
4、避免过度使用全局变量全局变量在C语言程序中具有全局作用域,可以在程序的任何地方访问。
然而,过度使用全局变量会占用大量内存空间,并且增加程序的复杂性。
在编写程序时,应尽量减少全局变量的使用,尽可能将变量的作用域限制在局部。
5、压缩和优化数据结构优化数据结构是提高程序空间效率的重要手段。
可以通过减少数据冗余、合并相同类型的数据、采用更紧凑的存储方式等方式来压缩和优化数据结构。
例如,可以使用位运算来表示数据中的某些属性或状态,以减小存储空间的占用。
6、避免频繁的内存分配和释放频繁的内存分配和释放会引起内存碎片问题,导致程序运行效率下降。
为了避免这个问题,可以考虑使用内存池技术,预先分配一块较大的内存空间,然后在程序运行过程中重复使用这块内存,避免频繁地进行内存分配和释放操作。
7、合理设计算法和数据结构算法和数据结构是程序效率的关键因素。
C语言中的代码优化技巧

C语言中的代码优化技巧在C语言中,代码优化技巧是提高程序性能和效率的关键。
通过优化代码,可以在不改变程序功能的情况下,使程序运行更快、占用更少的内存空间。
下面介绍一些C语言中常用的代码优化技巧:1. 减少函数调用:函数调用是一种很消耗资源的操作,因为需要保存现场和恢复现场。
可以通过将多个函数调用合并成一个函数,减少函数嵌套的层数,避免过度的函数调用来提高程序的性能。
2. 使用适当的数据类型:在C语言中,选择适当的数据类型可以减少内存占用和提高运行速度。
比如使用整型数据类型int来代替浮点型数据类型float,可以减少内存占用和提高运行速度。
3. 避免使用过多的指针:指针操作虽然可以提高程序的效率,但是过多的指针操作会增加程序的复杂性和出错的可能性。
可以尽量减少指针的使用,使用数组或者结构体来代替指针操作。
4. 减少循环的次数:循环是程序中占用时间最多的部分,可以通过减少循环的次数或者优化循环体内部的代码来提高程序的性能。
5. 避免使用全局变量:全局变量会增加程序的耦合性和复杂度,可以尽量减少全局变量的使用,使用局部变量来代替全局变量。
6. 使用预处理器宏:使用预处理器宏可以在编译阶段进行代码替换,提高程序的性能。
可以将一些常量或者简单的函数用宏来替代,减少函数调用和代码量。
7. 减少内存拷贝操作:内存拷贝操作是一种消耗资源的操作,可以通过使用指针来避免过多的内存拷贝操作。
8. 编译器优化选项:编译器提供了很多优化选项来帮助优化代码,比如-O2、-O3等级别的优化选项可以提高程序的性能。
总之,代码优化是一个综合性的工作,需要综合考虑程序的结构、算法和编译器的优化选项。
通过合理的优化技巧,可以使程序更加高效和优化,提高程序的性能和效率。
希望以上介绍的C语言中的代码优化技巧能够帮助您优化您的程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在数组索引方法中,每次循环中都必须根据 t 值求数组下标的复杂运算。
2、使用尽量小的数据类型
能够使用字符型(char)定义的变量,就不要使用整型(int)变量来定义;能够使用整型变 量定义的变量就不要用长整型(long int),能不使用浮点型(float)变量就不要使用浮点型变量。 当然,在定义变量后不要超过变量的作用范围,如果超过变量的范围赋值,C 编译器并不报 错,但程序运行结果却错了,而且这样的错误很难发现。
C 语言程序运行速度优化方法谈
1、选择合适的算法和数据结构
选择一种合适的数据结构很重要,如果在一堆随机存放的数中使用了大量的插入和删
除指令,那使用链表要快得多。数组与指针语句具有十分密切的关系,一般来说,指针比较 灵活简洁,而数组则比较直观,容易理解。对于大部分的编译器,使用指针比使用数组生成
的代码更短,执行效率更高。 在许多种情况下,可以用指针运算代替数组索引,这样做常常能产生又快又短的代码。
qq = (qq + rr) >> 1; } } rr = a - qq * qq; *q = qq;
*r = rr;
}
5、循环优化
(1)、充分分解小的循环
要充分利用 CPU 的指令缓存,就要充分分解小的循环。特别是当循环体本身很小的时 候,分解循环可以提高性能。注意:很多编译器并不能自动分解循环。 不好的代码: // 3D 转化:把矢量 V 和 4x4 矩阵 M 相乘 for (i = 0; i < 4; i ++) {
(6)、使用增量和减量操作符
在使用到加一和减一操作时尽量使用增量和减量操作符,因为增量符语句比赋值语句更 快,原因在于对大多数 CPU 来说,对内存字的增、减量操作不必明显地使用取内存和写内 存的指令,比如下面这条语句:
x=x+1;
模仿大多数微机汇编语言为例,产生的代码类似于:
move A,x ;把 x 从内存取出存入累加器 A
} 新代码:
static long factorial_table[] = {1, 1, 2, 6, 24, 120, 720 /* etc */ };
long factorial(int i)
{
return factorial_table[i];
} 如果表很大,不好写,就写一个 init 函数,在循环外临时生成表格。
不好的代码,普通顺序 short ga, gu, gi; long foo, bar; double x, y, z[3]; char a, b; float baz;
推荐的代码,改进的顺序 double z[3]; double x, y; long foo, bar; float baz; short ga, gu, gi;
不好的代码: float a, b, c, d, e, f; 。。。 e = b * c / d; f = b / d * a;
推荐的代码: float a, b, c, d, e, f; 。。。 const float t(b / d); e = c * t; f = a * t;
不好的代码: float a, b, c, e, f; 。。。
(4)把频繁使用的指针型参数拷贝到本地变量
避免在函数中频繁使用指针型参数指向的值。因为编译器不知道指针之间是否存在冲 突,所以指针型参数往往不能被编译器优化。这样数据不能被存放在寄存器中,而且明显地 占用了内存带宽。注意,很多编译器有“假设不冲突”优化开关(在 VC 里必须手动添加编 译器命令行/Oa 或/Ow),这允许编译器假设两个不同的指针总是有不同的内容,这样就不 用把指针型参数保存到本地变量。否则,请在函数一开始把指针指向的数据保存到本地变量。 如果需要的话,在函数结束前拷贝回去。
} 新代码:
x = w & 7; y = x * x; z = (y << 5) + y;
/* 位操作比求余运算快 */ /* 乘法比平方运算快 */
/* 位移乘法比乘法快 */
for (i = h = 0; i < MAX; i++)
{
h += 14;
/* 加法比乘法快 */
printf("%d", h);
e = a / c; f = b / c; 推荐的代码: float a, b, c, e, f;
。。。 const float t(1.0f / c); e = a * t; f = b * t;
4、结构体成员的布局
很多编译器有“使结构体字,双字或四字对齐”的选项。但是,还是需要改善结构体成 员的对齐,有些编译器可能分配给结构体成员空间的顺序与他们声明的不同。但是,有些编 译器并不提供这些功能,或者效果不好。所以,要在付出最少代价的情况下实现最好的结构 体和结构体成员对齐,建议采取下列方法:
推荐的代码,新的顺序并手动填充了几个字节: struct
{ double x; long k; char a[5]; char pad[7];
} baz; 这个规则同样适用于类的成员的布局。
(3)按数据类型的长度排序本地变量
当编译器分配给本地变量空间时,它们的顺序和它们在源代码中声明的顺序一样,和 上一条规则一样,应该把长的变量放在短的变量前面。如果第一个变量对齐了,其它变量就 会连续的存放,而且不用填充字节自然就会对齐。有些编译器在分配变量时不会自动改变变 量顺序,有些编译器不能产生 4 字节对齐的栈,所以 4 字节可能不对齐。下面这个例子演示 了本地变量声明的重新排序:
推荐的代码: // 假设 q != r void isqrt(unsigned long a, unsigned long* q, unsigned long* r) {
unsigned long qq, rr; qq = a; if (a > 0) {
while (qq > (rr = a / qq)) {
3、减少运算的强度
(1)、查表(游戏程序员必修课)
一个聪明的游戏大虾,基本上不会在自己的主循环里搞什么运算工作,绝对是先计算 好了,再到循环里查表。看下面的例子: 旧代码:
long factorial(int i)
{
if (i == 0)
return 1;
else
return i * factorial(i - 1);
(1)按数据类型的长度排序
把结构体的成员按照它们的类型长度排序,声明成员时把长的类型放在短的前面。编译 器要求把长型数据类型存放在偶数地址边界。在申明一个复杂的数据类型 (既有多字节数据 又有单字节数据) 时,应该首先存放多字节数据,然后再存放单字节数据,这样可以避免内 存的空洞。编译器自动地把结构的实例对齐在内存的偶数边界。
与数组索引相比,指针一般能使代码速度更快,占用空间更少。使用多维数组时差异更明显。
下面的代码作用是相同的,但是效率不一样。
数组索引
指针运算
For(;;){#43;];
for(;;){
a=*(p++); 。。。。。。。。。
。。。。。。
}
}
指针方法的优点是,array 的地址每次装入地址 p 后,在每次循环中只需对 p 增量操作。
r[i] = 0; for (j = 0; j < 4; j ++) {
r[i] += M[j][i]*V[j]; } } 推荐的代码: r[0] = M[0][0]*V[0] + M[1][0]*V[1] + M[2][0]*V[2] + M[3][0]*V[3]; r[1] = M[0][1]*V[0] + M[1][1]*V[1] + M[2][1]*V[2] + M[3][1]*V[3]; r[2] = M[0][2]*V[0] + M[1][2]*V[1] + M[2][2]*V[2] + M[3][2]*V[3]; r[3] = M[0][3]*V[0] + M[1][3]*V[1] + M[2][3]*V[2] + M[3][3]*v[3];
整数,均可以用移位的方法得到结果,如:
a=a*9 可以改为:
a=(a<<3)+a 采用运算量更小的表达式替换原来的表达式,下面是一个经典例子: 旧代码:
x = w % 8; y = pow(x, 2.0);
z = y * 33;
for (i = 0;i < MAX;i++)
{
h = 14 * i; printf("%d", h);
(2)把结构体填充成最长类型长度的整倍数
把结构体填充成最长类型长度的整倍数。照这样,如果结构体的第一个成员对齐了, 所有整个结构体自然也就对齐了。下面的例子演示了如何对结构体成员进行重新排序:
不好的代码,普通顺序: struct { char a[5]; long k; double x; } baz;
(8)、提取公共的子表达式
在某些情况下,C++编译器不能从浮点表达式中提出公共的子表达式,因为这意味着 相当于对表达式重新排序。需要特别指出的是,编译器在提取公共子表达式前不能按照代数 的等价关系重新安排表达式。这时,程序员要手动地提出公共的子表达式(在 里 有一项“全局优化”选项可以完成此工作,但效果就不得而知了)。
a=pow(a,3。0); 更改为:
a=a*a*a; 则效率的改善更明显。
(4)、用移位实现乘除法运算
a=a*4; b=b/4;
可以改为:
a=a<<2;
b=b>>2; 通常如果需要乘以或除以 2n,都可以用移位的方法代替。在 ICCAVR 中,如果乘以