中考数学代数式专题测试题及答案

合集下载

2024年深圳市中考数学模拟题汇编:代数式(附答案解析)

2024年深圳市中考数学模拟题汇编:代数式(附答案解析)

2024年深圳市中考数学模拟题汇编:代数式
一.选择题(共10小题)
1.下列各式去括号正确的是()
A.﹣(a﹣3b)=﹣a﹣3b
B.a+(5a﹣3b)=a+5a﹣3b
C.﹣2(x﹣y)=﹣2x﹣2y
D.﹣y+3(y﹣2x)=﹣y+3y﹣2x
2.已知:关于x,y的多项式ax2+2bxy+3x2﹣3x﹣4xy+2y不含二次项,则3a﹣4b的值是()
A.﹣3B.2C.﹣17D.18
3.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组

成的大正方形,则这个窗户的外框总长为(
A.6a+πa B.12a C.15a+πa D.6a
4.若x m﹣1y2与x2y n的和仍是单项式,则n m的值()
A.3B.6C.8D.9
5.下列各选项中,不是同类项的是()
A.3a2b和﹣5ba2B.122和12B2
C.6和23D.5x n和−34
6.按如图所示的运算程序,能使运算输出的结果为2的是(

A.x=﹣1,y=﹣1B.x=5,y=﹣1C.x=﹣3,y=1D.x=0,y=﹣2 7.某种商品每件进价为a元,按进价增加50%出售,现“双十二”打折促销按售价的八折
第1页(共19页)。

中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)

中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)

全国中考真题解析代数式、整式及单项式、多项式的有关概念一、选择题1. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. 若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。

专题:计算题。

分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。

专题:计算题。

分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。

中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。

2023年中考数学一轮专题练习 代数式与整式(含解析)

2023年中考数学一轮专题练习 代数式与整式(含解析)

2023年中考数学一轮专题练习 ——代数式与整式1一、单选题(本大题共12小题)1. (湖南省永州市2022年)下列各式正确的是( )A =B .020=C .321a a -=D .()224--=2. (湖南省湘西州2022年)下列运算正确的是( )A .3a ﹣2a =aB .(a 3)2=a 5C .2 2D .(a ﹣1)2=a 2﹣1 3. (湖南省益阳市2022年)下列各式中,运算结果等于a 2的是( )A .a 3﹣aB .a +aC .a •aD .a 6÷a 34. (2022年西藏)按一定规律排列的一组数据:12,35,12,717-,926,1137-,….则按此规律排列的第10个数是( ) A .19101-B .21101C .1982-D .21825. (2022年西藏)下列计算正确的是( ) A .2ab ﹣ab =ab B .2ab +ab =2a 2b 2 C .4a 3b 2﹣2a =2a 2b D .﹣2ab 2﹣a 2b =﹣3a 2b 26. (江西省2022年)下列计算正确的是( )A .236m m m ⋅=B .()m n m n --=-+C .2()m m n m n +=+D .222()m n m n +=+7. (辽宁省盘锦市2022年)下列运算正确的是( ) A .236a a a ⋅=B .22(2)4x x -=C .22m mnn-= D .2ab ab b -=8. (湖南省长沙市2022年)下列计算正确的是( ) A .752a a a ÷=B .541a a -=C .236326a a a ⋅=D .222()a b a b -=-9. (辽宁省抚顺本溪辽阳市2022年)下列运算正确的是( ) A .()426a a =B .246a a a ⋅=C .246+=a a aD .246a a a ÷=10. (湖南省株洲市2022年)下列运算正确的是( ) A .235a a a ⋅= B .()235a a =C .22()ab ab =D .632(0)a a a a=≠11. (湖南省长沙市2022年)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元12. (江西省2022年)将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A .9B .10C .11D .12二、填空题(本大题共6小题)13. (湖南省永州市2022年)若单项式3m x y 的与62x y -是同类项,则m =______. 14. (江苏省常州市2022年)计算:42÷=m m .15. (江苏省扬州市2022年)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的 倍. 16. (黑龙江省大庆市2022年)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是 .17. (湖北省天门市八校联考2021-2022学年九年级上学期)如图,四边形ABCD 是正方形,曲线11112DA B C D A 是由一段段90度的弧组成的.其中:1DA 的圆心为点A ,半径为AD ;11A B 的圆心为点B ,半径为1BA ;11B C 的圆心为点C ,半径为1CB ; 11C D 的圆心为点D ,半径为1DC ;…1111111,,,,DA A B B C C D ⋅⋅⋅的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则20202020A B 的长是 .18. (湖南省长沙市2022年)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2002个不同的数据二维码,现有四名网友对2002的理解如下: YYDS (永远的神):2002就是200个2相乘,它是一个非常非常大的数; DDDD (懂的都懂):2002等于2200; JXND (觉醒年代):2002的个位数字是6;QGYW (强国有我):我知道10321024,101000==,所以我估计2002比6010大. 其中对2002的理解错误的网友是 (填写网名字母代号). 三、解答题(本大题共6小题)19. (吉林省长春市2022年)先化简,再求值:()()()221a a a a +-++,其中4a =. 20. (湖南省岳阳市2022年)已知2210a a -+=,求代数式()()()4111a a a a -++-+的值. 21. (湖南省衡阳市2022年)先化简,再求值:()()()2a b a b b a b +-++,其中1a =,2b =-.22. (四川省南充市2022年)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =. 23. (湖北省黄冈市、孝感市、咸宁市2022年)先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.24. (吉林省2022年)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.参考答案1. 【答案】D【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。

中考数学真题精选专题试卷代数式(含答案解析)(含答案解析)

中考数学真题精选专题试卷代数式(含答案解析)(含答案解析)

代数式
一.选择题(共19小题)
1.(?海南)某企业今年
1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是
()
A .(1﹣10%)(1+15%)x 万元
B .(1﹣10%+15%)x 万元
C .(x ﹣10%)(x+15%)万元
D .(1+10%﹣15%)x 万元2.(?吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为(

A .(a+b )元
B .3(a+b )元
C .(3a+b )元
D .(a+3b )元3.(?自贡)为庆祝战胜利70周年,我市某楼盘让利于民,
决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为(
)A .a ﹣10% B .a?10% C .a (1﹣10%)D .a (1+10%)
4.(?恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b 元,则原售价为(
)A .(a+b )元B .(a+b )元C .(b+a )元
D .(b+a )元5.(?江阴市模拟)某厂1月份产量为a 吨,以后每个月比上一个月增产
x%,则该厂3月份的产量(单位:吨)为(
)A .a (1+x )2B .a (1+x%)2C .a+a?x% D .a+a?(x%)2
6.(?海南)已知x=1,y=2,则代数式x ﹣y 的值为(
)A .1B .﹣1 C .2D .﹣3
7.(?娄底)已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为(
)A .0B .1C .﹣1 D .﹣2。

中考数学代数式综合测试卷(1)及答案

中考数学代数式综合测试卷(1)及答案

中考代数式综合测试卷(一)及答案一、选择题(本题共10 小题,每小题3 分,满分30分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得3分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.一个代数式减去22x y -等于222x y +,则这个代数式是( )。

A.23y -B.222x y + C.2232y x -D.23y2.下列各组代数式中,属于同类项的是( )。

A .b a 221 与221ab B .b a 2 与c a 2 C .22与43 D . p 与q 3.下列计算正确的是( )。

A.2233x x -=B.22321a a -= C.235358x x x +=D.22232a a a -=4.a = 255, b = 344, c = 433, 则 a 、b 、c 的大小关系是( )。

A . a>c>b B . b>a>c C . b>c>a D . c>b>a 解:a = 255=(25)11=3211b = 344=(34)11=8111c = 433=(23)11=8115.一个两位数,十位数字是x ,个位数字是y ,如果把它们的位置颠倒一下,得到的数是( )。

A.y x +B.yxC.10y x +D.10x y +6.若26(3)(2)x kx x x +-=+-,则k 的值为( )。

A . 2B . -2 C. 1 D. –1 7.若x 2+mx +25 是一个完全平方式,则m 的值是( )。

A .20B .10 C. ± 20 D.±108.若代数式2231y y +=,那么代数式2469y y +-的值是( )。

A.2B.17C.7- D.79.如果(2-x)2+(x -3)2=(x -2)+(3-x ),那么x 的取值范围是( )。

2023年九年级数学下册中考数学计算能力训练专题--代数式

2023年九年级数学下册中考数学计算能力训练专题--代数式一、计算题1.阅读下面文字:对于(﹣5 )+(﹣9 )+17 +(﹣3 )56233412可以如下计算:原式=[(﹣5)+(﹣ )]+[(﹣9)+(﹣ )]+(17+ )+[(﹣3)+(﹣ )]56233412=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣ )+(﹣ )+ +(﹣ )]56233412=0+(﹣1 )14=﹣1 14上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(−202023)+201934+(−201856)+2017122.已知 是方程组 的一组解,求此方程组的另一组解. {x 1=3y 1=−2{x 2+y 2=mx +y =n 3.已知 ,将代数式 先化简|2x−3y +5|+(x +2y−1)2=0x(x−4y)+(2x +y)(2x−y)−(2x−y)2再求值.4.已知:a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2,求:(a+b+cd )x+(a+b )2017+(﹣cd )2018的值.5.已知 ,求代数式 的值.x 2−6x−3=02x(x−3)−(x +1)(x−1)+36.如果代数式 的值与字母x 所取的值无关,(−2x 2+ax−y +6)−(2bx 2−3x +5y−1)试求代数式 的值.13a 3−2b 2−(14a 3−3b 2)7.已知 , , 互为相反数,求 的值.|a +3|+|b−5|=0x y 3(x +y)−a +2b8.观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(-1)×2=-2(-3)×(-4)×(-5)=-60三个角上三个数的和1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商-2÷2=-1(2)请用你发现的规律求出图④中的数y和图⑤中的数x. 9.我们定义一种新运算: .a∗b=a×b−a+b(1)求的值.2∗(−3)(2)求的值.(−2)∗[2∗(−3)]10.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程 的解,13x−ax =5求代数式a 2﹣2a﹣11的值.11.先化简,再求值:2+(a+b )(a-b )-,其中a=﹣3,b=.b 2(a−b )21212.对于任意实数a ,b ,定义关于“ × ”的一种运算如下:a × b=2a-b .例如:5 × 2=2×5-2=8,(-3) × 4=2×(-3)-4=-10。

中考数学 专题02 代数式和整数(专题测试-基础)(解析版)

专题02 代数式和整式(专题测试-基础)学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每小题4分,共48分)1.(2018·河北中考模拟)有理数a、b、c在数轴上的对应点如图所示,化简代数式:|a﹣b|+|a+b|﹣2|c﹣a|=()A.﹣2c B.2b﹣2c+2a C.﹣2a﹣2b﹣2c D.﹣4a+2c【解析】根据数轴上点的位置得:a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,则原式=b﹣a﹣a﹣b﹣2c+2a=﹣2c.故选A.2.(2018·江苏中考模拟)已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1 B.﹣1 C.7 D.﹣7【解析】∵a+b=4,c-d=3,∴原式=b+c-d+a=(a+b)+(c-d)=3+4=7,故选:C.3.(2016·山东中考真题)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【解析】∵第1个图形中,小正方形的个数是:221-=3;-=8;第2个图形中,小正方形的个数是:231第3个图形中,小正方形的个数是:241-=15;…∴第n 个图形中,小正方形的个数是:2(1)1n +-=22n n +; 故选C .4.(2016·广东中考模拟)下列各组的两项是同类项的为( ) A .3m 2n 2与-m 2n 3 B .12xy 与2yx C .53与a 3 D .3x 2y 2与4x 2z 2【解析】A 、3m 2n 2与﹣m 2n 3字母n 的指数不同不是同类项,故A 错误;B 、12xy 与2yx 是同类项,故B 正确;C 、53与a 3所含字母不同,不是同类项,故C 错误;D 、3x 2y 2与4x 2z 2所含的字母不同,不是同类项,故D 错误, 故选B .5.(2013·四川中考真题)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙C .丙D .一样【解析】解:设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ; 乙超市售价为:x (1﹣15%)2=0.7225x ; 丙超市售价为:x (1﹣30%)=70%x=0.7x ; 故到丙超市合算. 故选:C .6.(2018·四川中考模拟)把四张形状大小完全相同的小正方形卡片(如图1)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子的底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分的周长和是( )A .4mcmB .4ncmC .2(m +n )cmD .4(m −n )cm【详解】设小长方形卡片的长为a ,宽为b ,∴L 上面的阴影=2(n ﹣a +m ﹣a ),L 下面的阴影=2(m ﹣2b +n ﹣2b ),∴L 总的阴影=L上面的阴影+L 下面的阴影=2(n ﹣a +m ﹣a )+2(m ﹣2b +n ﹣2b )=4m +4n ﹣4(a +2b ).又∵a +2b =m ,∴4m +4n ﹣4(a +2b )=4n . 故选B .7.(2018·湖北中考真题)下列代数式中,整式为( )A .x+1B .11x + CD .1x x+ 【详解】A 、x+1是整式,故此选项正确;B 、1x 1+是分式,故此选项错误;C D 、x 1x+是分式,故此选项错误, 故选A .8.(2018·贵州中考模拟)下面关于单项式-13a 3bc 2的系数与次数叙述正确的是( ) A .系数是13,次数是6 B .系数是-13,次数是5C .系数是13,次数是5D .系数是-13,次数是6【解析】单项式的系数为:13-;次数为:3+1+2=6.故选D .9.(2019·江苏中考模拟)若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( ) A .2 B .0C .4D .1【详解】∵﹣2a m b 4与5a 2b 2+n 是同类项, ∴m =2, 2+n=4, 解得: m =2, n =2, ∴22 4.n m == 故选:C.10.(2011·安徽中考模拟)已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .﹣13x ﹣1D .13x+1【解析】设这个多项式为M , 则M=3x 2+4x-1-(3x 2+9x ) =3x 2+4x-1-3x 2-9x =-5x-1. 故选A .11.(2018·浙江中考模拟)下列各式中,是8a 2b 的同类项的是( ) A .4x 2y B .―9ab 2C .―a 2bD .5ab【详解】A 、8a 2b 和4x 2y ,字母不同不是同类项,故本选项错误;B 、8a 2b 和-9ab 2所含字母指数不同,不是同类项,故本选项错误;C 、8a 2b 和-a 2b 所含字母相同,指数相同,是同类项,故本选项正确;D 、8a 2b 和5ab 所含字母指数不同,不是同类项,故本选项错误. 故选:C.12.(2015·江苏中考真题)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y +C .2x y --D .2x y -+【解析】原式去括号合并即可得到结果. 解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y , 故选A .二、 填空题(共5小题,每小题4分,共20分) 13.(2017·四川中考真题)若312m x y +-与432n x y +是同类项,则2017()m n +=______. 【解析】 解:∵312m x y +-与432n x y +是同类项, ∴m +3=4,n +3=1,∴m =1,n =﹣2, ∴2017()m n +=(1﹣2)2017=﹣1,故答案为:﹣1.14.(2017·辽宁中考模拟)如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).【解析】故剪n次时,共有4+3(n-1)=3n+1.15.(2018·广东中考模拟)若2x﹣3y﹣1=0,则5﹣4x+6y的值为.【解析】由2x﹣3y﹣1=0可得2x﹣3y=1,所以5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.16.(2018·内蒙古中考模拟)若两个单项式2x m y n与﹣3xy3n的和也是单项式,则(m+n)m的值是_____.【详解】∵两个单项式2x m y n与-3xy3n的和也是单项式,∴2x m y n与-3xy3n是同类项,∴m=1,n=3n,∴m=1,n=0,∴(m+n)m=(1+0)1=1,故答案为:117.(2017·广西中考模拟)单项式225x y的系数是_______,次数是_______.【解析】根据单项式定义得:单项式﹣225x y的系数是﹣25,次数是3.故答案为:25,3. 三、 解答题(共4小题,每小题8分,共32分)18.(2018·河北中考真题)嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++W ,发现系数“W ”印刷不清楚.1)他把“W ”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“W ”是几? 【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2 =﹣2x 2+6; (2)设“”是a ,则原式=(ax 2+6x+8)﹣(6x+5x 2+2) =ax 2+6x+8﹣6x ﹣5x 2﹣2 =(a ﹣5)x 2+6,∵标准答案的结果是常数, ∴a ﹣5=0, 解得:a=5.19.(2018·安徽中考模拟)先化简,再求值:2x 2–[3(–13x 2+23xy )–2y 2]–2(x 2–xy+2y 2),其中x =12,y =–1. 【分析】先去小括号,再去中括号,然后,合并同类项,这样即可得出最简整式,从而代入x 及y 的值即可得出答案. 【详解】原式=()2222222222x x xy y x xy y ⎡⎤--+---+⎣⎦=2x²+x²-2xy+2y²-2x²+2xy-4y² = x 2-2y 2当12x =,y=-1时, x 2-2y 2=221()2(1)2-⨯-=74-20.(2019·浙江中考模拟)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形. (1)用含m 或n 的代数式表示拼成矩形的周长; (2)m=7,n=4,求拼成矩形的面积.【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得. 【详解】(1)矩形的长为:m ﹣n , 矩形的宽为:m+n ,矩形的周长为:2[(m-n)+(m+n)]=4m ;(2)矩形的面积为S=(m+n )(m ﹣n )=m 2-n 2, 当m=7,n=4时,S=72-42=33.21.(2017·北京中考模拟)已知x 2﹣x ﹣3=0,求代数式(x ﹣1)2+(x+2)(x ﹣2)的值. 【解析】原式22214,x x x =-++- 2223x x =--, 230x x --=Q , 23x x ∴-=,∴原式()223633x x =--=-=.。

中考数学专题02 代数式【考点巩固】(解析版)

专题02 代数式考点1:代数式的概念与求值1.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31 B .31-C .41D .41-【答案】B 【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 【详解】解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .2.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .元【答案】D 【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可. 【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∴应缴水费为17a +3(a +1.2)=20a +3.6(元), 故选:D .3.(2021·浙江嘉兴市·中考真题)观察下列等式:,,,…按此规律,则第个等式为__________________.【答案】.()20 3.6a +22110=-22321=-22532=-n 21n -=()221n n --【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【详解】解:∵,, ,…∴第个等式为:故答案是:.4.(2021·浙江台州市·中考真题)将x 克含糖10的糖水与y 克含糖30的糖水混合,混合后的糖水含糖( ) A .20 B .C .D .【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:, 故选:D .5.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:,…,则第个式子是___________.【答案】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,;当n 为偶数时,,∴第n 个式子是:.22110=-22321=-22532=-n ()22211n n n -=--()221n n --%%%+100%2x y⨯+3100%20x y⨯+3100%10+10x yx y⨯10%30%3100%1010x y x yx y x y++=⨯++2335472,2,2,2a b a b a b a b +-+-n ()12112n nn a b +-+-⋅()111n +-=()111n +-=-()1211·2n n n a b +-+-故答案为:考点2:整式相关概念6.多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案. 【解答】解:由题意可得,此多项式可以为: ﹣5x 3+34x 2﹣2x +4. 故答案为:﹣5x 3+34x 2﹣2x +4.7.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0. 考点3:整式的运算8.(2021·广西来宾市·中考真题)下列运算正确的是( ) A . B .C .D .【答案】A 【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解. 【详解】解:A. ,原选项计算正确,符合题意; B. ,原选项计算错误,不合题意; C. ,原选项计算错误,不合题意;D. ,不是同类项,无法相减,原选项计算错误,不合题意. 故选:A9.(2021·四川达州市·中考真题)已知,满足等式,则___________.【答案】-3()1211·2n n n a b +-+-235a a a ⋅=623a a a ÷=()325a a =2232a a a -=235a a a ⋅=624a a a ÷=()326a a =232a a -ab 2690a a ++=20212020a b =【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解. 【详解】解:由,变形得, ∴, ∴, ∴.故答案为:-310.(2021·广东中考真题)若且,则_____. 【答案】 【分析】 根据,利用完全平方公式可得,根据x 的取值范围可得的值,利用平方差公式即可得答案. 【详解】 ∵, ∴, ∵, ∴, ∴=, ∴==, 故答案为: 考点4:整式化简求值2690a a ++=()230a +=130,03a b +=-=13,3a b =-=()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1136x x +=01x <<221x x-=6536-1136x x +=2125(36x x -=1x x-1136x x +=2211125()(436x x x xxx -=+-⋅=01x <<1x x <1x x -56-221x x -=11()(x x x x +-135(66⨯-6536-6536-11.(2021·吉林长春市·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =+.【答案】a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =-+-当时,原式.12.(2021·贵州安顺市·中考真题)(1)有三个不等式,请在其中任选两个不等式,组成一个不等式组,并求出它的解集: (2)小红在计算时,解答过程如下:第一步第二步 第三步小红的解答从第_________步开始出错,请写出正确的解答过程. 【答案】(1)x <-3;(2)第一步,正确过程见详解 【分析】(1)先挑选两个不等式组成不等式组,然后分别求出各个不等式的解,再取公共部分,即可;(2)根据完全平方公式、去括号法则以及合并同类项法则,进行化简,即可. 【详解】解:(1)挑选第一和第二个不等式,得,由①得:x <-2, 由②得:x <-3,∴不等式组的解为:x <-3;4a =-4a =44-=()231,515,316x x x +--->()()211a a a +--2(1)(1)a a a +--22(1)a a a =+--221a a a =+--1a =-231515x x +<-⎧⎨->⎩①②(2)小红的解答从第一步开始出错,正确的解答过程如下:.故答案是:第一步 考点5:因式分解13.(2021·四川成都市·中考真题)因式分解:__________. 【答案】 【详解】解:=; 故答案为14.(2021·云南中考真题)分解因式:=______. 【答案】x (x +2)(x ﹣2). 【详解】试题分析:==x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).15.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____. 【答案】(a +1)2 【分析】直接利用完全平方公式分解. 【详解】a 2+2a +1=(a +1)2. 故答案为.考点6:分式有意义及分式为零的条件 16.(2021·浙江宁波市·中考真题)要使分式有意义,x 的取值应满足( ) A . B .C .D .【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】2(1)(1)a a a +--22(21)a a a a =+--+2221a a a a =+-+-31a =-24x -=(x+2)(x-2)24x -=222x -(2)(2)x x +-(2)(2)x x +-34x x -34x x -2(4)x x -()21+a 12x +0x ≠2x ≠-2x ≥-2x >-解: 分式有意义,故选: 考点7:分式性质17.(2021·四川自贡市·中考真题)化简:_________. 【答案】 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:, 故答案为:. 考点8:分式化简与运算18.(2021·四川南充市·中考真题)下列运算正确的是( )A .B .C .D .【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】12x +20,x ∴+≠2.x ∴≠-.B 22824a a -=--22a +22824a a ---()()28222a a a =--+-()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+22a +232496b a b a b ⋅=2312332b b ab a ÷=11223a a a +=2112111a a a -=-+-解:A.,计算错误,不符合题意; B. ,计算错误,不符合题意;C.,计算错误,不符合题意; D.,计算正确,符合题意; 故选:D19.(2021·江苏盐城市·中考真题)先化简,再求值:,其中. 【答案】,3 【分析】先通分,再约分,将分式化成最简分式,再代入数值即可. 【详解】 解:原式.∵∴原式.20.(2021·山东威海市·中考真题)先化简,然后从,0,1,3中选一个合适的数作为a 的值代入求值.【答案】2(a -3),当a =0时,原式=-6;当a =1时,原式=-4. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案. 【详解】= 2324916b a a b b⋅=2231213=333221b a ab a ab b b÷=⨯23111=2222a a a a a+=++--=--+---22211112=11111a a a a a a a 21111m m m-⎛⎫+ ⎪-⎝⎭2m =1m +11(1)(1)1m m m m m-+-+=⋅-(1)(1)1m m m m m-+=⋅-1m =+2m =213=+=2211(1)369a a a a a a -+--÷--+1-2211(1)369a a a a a a -+--÷--+()()()221311333a a a a a a a +-⎡⎤-+-÷⎢⎥---⎣⎦= = = =2(a -3), ∵a ≠3且a ≠-1, ∴a =0,a =1,当a =0时,原式=2×(0-3)=-6; 当a =1时,原式=2×(1-3)=-4.21.(2021·内蒙古通辽市·中考真题)先化简,再求值:,其中x 满足. 【答案】x (x +1);6 【分析】先求出方程的解,然后化简分式,最后选择合适的x 代入计算即可. 【详解】解:∵ ∴x =2或x =-1 ∴ = = ==x (x +1)∵x =-1分式无意义,∴x =2当x =2时,x (x +1)=2×(2+1)=6.()2223123331a a a a a a a -⎛⎫----⋅⎪--+⎝⎭()222312331a a a a a a ---++⋅-+()()221331a a a a +-⋅-+2212(1)121x x x x x x +++-÷+++220x x --=220x x --=220x x --=2212(1)121x x x x x x +++-÷+++()221212()111x x x x x x +++÷+++-()2222()11x x x x x ++÷++()()22112x x x x x ++⨯++22.(2021·四川遂宁市·中考真题)先化简,再求值:,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】; 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解: , ∵m 是已知两边分别为2和3的三角形的第三边长, ∴3-2<m <3+2,即1<m <5, ∵m 为整数, ∴m =2、3、4, 又∵m ≠0、2、3 ∴m =4, ∴原式=. 23.(2021·四川凉山彝族自治州·中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系. 对数的定义:一般地.若x a N =(且),那么x 叫做以a 为底N 的对数, 记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭32m m --12322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--=2232m m m m-⋅-=32m m --=431422-=-0a >1a ≠log a x N =4216=24log 16=32log 9=239=,理由如下:设,则..由对数的定义得又.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①___________;②_______,③________; (2)求证:; (3)拓展运用:计算.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a=log a M -log a N 的逆用,将所求式子表示为:,计算可得结论. 【详解】解:(1)①∵,∴5,②∵,∴3,③∵,∴0;(2)设log a M =m ,log a N =n ,∴,,∴, ∴, ∴; (3)= log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>log ,log a a M m N n ==,n m M a N a ==m n m n M N a a a +∴⋅=⋅=log ()a m n M N +=⋅log log a a m n M N +=+ log ()log log a a a M N M N ∴⋅=+2log 32=3log 27=7log l =log log log (0,1,0,0)a a a M M N a a M N N=->≠>>555log 125log 6log 30+-M N 5125630log ⨯5232=2log 32=3327=3log 27=071=7log 1=m a M =n a N =m n m n M a a a N-÷==log aM m n N =-log log log a a a M M N N=-555log 125log 6log 30+-5125630log ⨯==2.25.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2);(3)1008块【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有()块;故答案为:;(3)令 则5log25 24n +24n +24n +242021n +=1008.5n =当时,此时,剩下一块等腰直角三角形地砖 需要正方形地砖1008块1008n =242020n +=∴。

(专题精选)初中数学代数式经典测试题含答案解析

(专题精选)初中数学代数式经典测试题含答案解析一、选择题1.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】根据同类项的概念求解. 【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=, n 2∴=,m 2=. 则m n 4+=. 故选D . 【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.2.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ). A .1 B .4C .x 6D .8x 3【答案】B 【解析】 【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案. 【详解】∵4x 4+ 4x 2+1=(2x+1)2, ∴A=1,不符合题意, ∵4x 4+ 4x 2+ 4不是完全平方式, ∴A=4,符合题意, ∵4x 4+ 4x 2+ x 6=(2x+x 3)2, ∴A= x 6,不符合题意, ∵4x 4+ 4x 2+8x 3=(2x 2+2x )2, ∴A=8x 3,不符合题意. 故选B . 【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.3.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40【答案】B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n+个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.5.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个()A.400 B.401 C.402 D.403【答案】D【解析】【分析】由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.【详解】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.6.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)【答案】A【解析】试题分析:根据排列规律可知从1开始,第N排排N个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数 根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数. 故选A .考点:坐标确定位置.7.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b - B .29bC .29aD .22a b -【答案】B 【解析】 【分析】根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b + ∴阴影部分的面积为:22(2)8(2)a b ab a b +-=- ∵35a b =,即53a b =∴阴影部分的面积为:222(2)()39b b a b -=-=故选:B . 【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.8.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18 B .p =-5,q =18 C .p =-5,q =-18D .p =5,q =-18【答案】A 【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项, ∴p-5=0,7-5p+q=0, 解得p=5,q=18. 故选A .9.下列运算正确的是( ). A .()2222x y x xy y -=-- B .224a a a += C .226a a a ⋅= D .()2224xy x y =【答案】D 【解析】 【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案. 【详解】解:A.、()2222x y x xy y -=-+,故本选项错误; B.、2222a a a +=,故本选项错误; C.、224a a a ⋅=,故本选项错误; D 、 ()2224xy x y =,故本选项正确;故选:D . 【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.10.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C 【解析】 【分析】根据前4个图形中五角星的个数得到规律,即可列式得到答案. 【详解】 观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+, 第2个图形中一共是7个五角星,即7321=⨯+, 第3个图形中一共是10个五角星,即10331=⨯+, 第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +, 故选:C. 【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.11.下列运算中,正确的是( ) A .236x x x ⋅= B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B 【解析】 【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可. 【详解】x 2•x 3=x 5,故选项A 不合题意; (ab )3=a 3b 3,故选项B 符合题意; (2a )3=8a 6,故选项C 不合题意;3−2=19,故选项D 不合题意. 故选:B . 【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.下列运算中正确的是( ) A .2235a a a += B .222(2)4a b a b +=+ C .236236a a a ⋅= D .()()22224a b a b a b -+=-【答案】D 【解析】 【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确. 故选D . 【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.13.若3,2x y xy +==, 则()()5235x xy y +--的值为( )A .12B .11C .10D .9【答案】B 【解析】 【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11, 故选:B. 【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.14.下列算式能用平方差公式计算的是( ) A .(2)(2)a b b a +- B .11(1)(1)22x x +--C .(3)(3)x y x y --+D .()()m n m n ---+【答案】D 【解析】 【分析】利用平方差公式的结构特征判断即可. 【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2, 故选D . 【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D 【解析】 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4)2-(a+1)2 =(a 2+8a+16)-(a 2+2a+1) =a 2+8a+16-a 2-2a-1 =6a+15. 故选D .16.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A 【解析】 【分析】根据题意,每个选项进行计算,即可判断. 【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意; C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A . 【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.已知x=2y+3,则代数式9-8y+4x 的值是( ) A .3 B .21C .5D .-15【答案】B 【解析】 【分析】直接将已知变形进而代入原式求出答案. 【详解】 解:∵x=2y+3 ∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21 故选:B 【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.若55+55+55+55+55=25n ,则n 的值为( ) A .10 B .6C .5D .3【答案】D 【解析】 【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案. 【详解】解:∵55+55+55+55+55=25n , ∴55×5=52n , 则56=52n , 解得:n =3. 故选D . 【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.19.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:+⨯=元,若一年内例如,购买A类会员年卡,一年内健身20次,消费1500100203500在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x次,分别用含x的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x次,由题意可知:50≤x≤60则购买A类会员年卡,需要消费(1500+100x)元;购买B类会员年卡,需要消费(3000+60x)元;购买C类会员年卡,需要消费(4000+40x)元;不购买会员卡年卡,需要消费180x元;当x=50时,购买A类会员年卡,需要消费1500+100×50=6500元;购买B类会员年卡,需要消费3000+60×50=6000元;购买C类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式专题测试题
(试卷满分 150 分,考试时间 120 分钟)
一、选择题(本题共10 小题,每小题4 分,满分40分)
每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.一个代数式减去2
2
x y -等于22
2x y +,则这个代数式是( )。

A.2
3y -
B.22
2x y +
C.22
32y x -
D.2
3y
2.下列各组代数式中,属于同类项的是( )。

A .
b a 221 与22
1
ab B .b a 2 与c a 2 C .22与4
3 D . p 与q 3.下列计算正确的是( )。

A.2
2
33x x -= B.22
321a a -= C.2
3
5
358x x x +=
D.2
2
2
32a a a -=
4.a = 255 , b = 344, c = 433 , 则 a 、b 、c 的大小关系是( )。

A . a>c>b B . b>a>c C . b>c>a D . c>b>a
5.一个两位数,十位数字是x ,个位数字是y ,如果把它们的位置颠倒一下,得到的数是( )。

A.y x +
B.yx C.10y x + D.10x y +
6.若2
6(3)(2)x kx x x +-=+-,则k 的值为( )。

A . 2
B . -2 C. 1 D. –1 7.若x 2+mx +25 是一个完全平方式,则m 的值是( )。

A .20 B .10 C. ± 20 D.±10 8.若代数式2
231y y +=,那么代数式2
469y y +-的值是( )。

A.2 B.17 C.7- D.7
9.如果(2-x)2 +(x -3)2 =(x -2)+(3-x ),那么x 的取值范围是( )。

A .x≥3
B . x≤2 C.x>3 D.2≤x≤3 10.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S ,按此推断S 与n 的关系式为( )。

A .S=3n
B .S=3(n -1)
C .S=3n -1
D .S=3n +1 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.计算 :( -a 3)2 = _________。

12.把3222a ab a b +-分解因式的结果是_______________________。

13.在下面由火柴杆拼出的一列图形中,第n 个图形由n 个正方形组成:
通过观察可以发现,第n 个图形中有_________根火柴杆。

14.观察等式:22221
1⨯=
+,333322⨯=+,444433⨯=+,55
5544
⨯=+, .设n 表示正整数,请用关于n 的等式表示这个观律为:_________。

三、(本题共2小题,每小题8分,满分 16 分) 15.计算:265222x x x x -⎛⎫
÷-- ⎪--⎝⎭

16.先化简,再求值:2
(32)(32)5(1)(21)x x x x x +-----,其中1
3
x =-.
四、(本题共2小题,每小题8分,满分16分)
17.已知A=-4a 3-3+2a 2+5a,B=3a 3-a -a 2,求:A -2B 。

18.已知x+y=7,xy=2,求①2x2+2y2的值;②(x-y)2的值.
五、(本题共2小题,每小题10分,满分20分)
19.已知A=a +2,B=a 2-a+5,C=a 2+5a-19,其中a>2.
(1)求证:B-A>0,并指出A与B的大小关系;
(2)指出A与C哪个大?说明理由.
20.a、b、c为△ABC三边长,利用因式分解说明b2-a2+2ac-c2的符号
六、(本题满分12 分)
21.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积。

七、(本题满分12分)
22.有规律排列的一列数:2,4,6,8,10,12,…
它的每一项可用式子2n (n 是正整数)来表示. 有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?
(3)2010是不是这列数中的数?如果是,是第几个数?
八、(本题满分14 分)
23.某餐厅中1张餐桌可以坐6人,有以下两种摆放方式:
一天中午,餐厅要接待98位顾客共同就餐,但餐厅中只有25张这样的餐桌,假设你是这个餐厅的经理,你打算选择哪种拼接方式来摆餐桌?
新 课 标 第一 网
2011年中考数学总复习专题测试卷(二) 参考答案
一、1、B 2、C 3、D 4、C 5、C 6、C 7、D 8、C 9、D 10、B
二、11、6
a ; 12、2
)(b a a -; 13、3n+1;14、
11
)1(2+++=+n n
n n n 。

三、15.原式265(2)22x x x x -⎡⎤
=
÷-+⎢⎥--⎣⎦ 2(3)5(2)(2)222x x x x x x -+-⎡⎤
=
÷-⎢⎥---⎣⎦
22(3)5(4)
22
x x x x ---=÷
-- 22(3)922x x x x --=÷
--=)3)(3(22)3(2x x x x x -+-⨯--=3
2
+-x 16.原式(
)(
)
2
2
2
9455441x x x x x =-----+
2229455441x x x x x =--+-+-
95x =-.
当13
x =-时,原式195953x ⎛⎫=-=⨯-- ⎪⎝⎭
35=--8=-.
四、17、-10a 3+4a 2+7a -3 18、(1)90 (2)41。

五、19、(1)B -A =(a -1)2+2 >0 所以 B >A (2)C -A =(a +7)(a -3) 因为a >2,所以a +7>0
从而当2<a <3时,A >C , 当a =2时, A =C ,当 a >3时,A <C 20、b2-a2+2ac-c2=b2-(a-c )2=(b+a-c )(b-a+c )>0 六、 21、
2
π
ab x kb 1.c om 七、22、(1)它的每一项可用式子1
(1)n n +-(n 是正整数)来表示.
(2)它的第100个数是100-.)
(3)2010不是这列数中的数,因为这列数中的偶数全是负数.(或正数全是奇数.) 注:它的每一项也可表示为(1)n
n --(n 是正整数).表示如下照样给分: 当n 为奇数时,表示为n .当n 为偶数时,表示为n -. 八、23.两种摆放方式各有规律:
第一种n 张餐桌可容纳()42n +人,第二种n 张餐桌可容纳:()24n +人, 通过计算,第二种摆放方式要容纳98人是不可能的,而第一种可以.
新课标第一网。

相关文档
最新文档