静力学基本公理
静力学基本公理

⒉ 活动铰链支座 在铰链支座下面装上几个滚轴,使它在支承 面上能任意移动,称为活动铰链支座其简化表示 及约束反力如下图所示。
四、固定端约束
一端固定、另一端 为自由的支座称为固定 端约束,它可以使构件 的某截面既不能转动(绕 垂直于载荷作用面的轴 转动),又不能移动的支 座。如右图所示车床上 的刀架,夹紧工件的三 爪卡盘,均可简化为固 定端。因此,它的约束 反力是两个相互垂直的 分力NAX、NAY和一个阻 止转动的反力矩MA,如 右图所示。
【例1】细绳上端固定在天花板上,下端 悬挂一个电灯,如图所示。这时有几对作用力 和反作用力?
天花板对细绳的拉力 F N 细绳对天花板的拉力 F ´ N 细绳对电灯的拉力F 电灯对细绳的拉力F´
地球对电灯的引力G
电灯对地球的引力G´
公理3:加减平衡力系公理 在任意一个已知力系上加上或减去任一个 平衡力系,不会改变原力系对刚体的作用。 推论1:力的可传递性原理 作用于刚体上的力,可沿其作用线滑移到 任一点,不会改变该力对该刚体的作用效果。
柔索约束与约束反力
二、光滑接触面约束
当两物体直接接触,并忽略接触处的摩擦时,约 束只能限制物体过接触点沿接触面公法线指向约束物 体的运动,而不能限制物体在接触面的切线方向的运 动,故约束反力必然过接触点的法向,并指向被约束 的物体,称为法向反力。通常用FN表示此类约束反力。 如下图所示。
光滑接触面约束与约束反力
4、在网球运动中所涉及的物理现象解释正确的是( B) A.球拍对网球作用力的施力物体是人 B.网球与球拍撞击时,球拍发生形变是因为力改变了物体 的形状 C.飞行的网球不受力的作用
D.网球撞Байду номын сангаас球拍的力和球拍对网球的弹力是一对平衡力
大学工程力学重点知识点总结—期末考试、考研必备!!

工程力学重点总结—期末考试、考研必备!!第一章静力学的基本概念和公理受力图一、刚体P2刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点。
平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1、力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2、二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3、加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4、作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5、刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力1、柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体。
2、光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力。
3、光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定。
4、链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。
静力学公理总结

5.钢化公理 当变形体在某力系作用下处于平衡状态时,如果假象变形体为刚体, 则此刚体在该力系作用下仍将保持平衡。 注:变形体与钢体之间的“桥梁”。
6.力的可传性 作用于刚体上牟点的力,可以沿着它的作用线移到刚体内任意一点, 并不改变该力对物体的作用。
对于刚体而言,力的作用点已不是关键,作用线是关键!
静力学公理总结
1.二力平衡公理 作用在刚体上的两个力,使刚体处于平衡的必要且充分条件是:这两 个力大小相等、方向相反、沿同一条直线。
注:此公理是对刚体而言的。所谓刚体是指在力的作用下不会变形的 物体。或者说是指在力的作用下,物体内任意两点间的距离都不会改 变的物体。 2.加减力系平衡公理 可以在作用于刚体上的原力系(一个或多个)中添加或减去平衡力系 而不改变原力系对刚体的作用。
注:此公理Leabharlann 用于力系的简化。3.平行四边形公理 作用于物体上同一点 A 的两个力 F1、F2 的合力也作用在 A 点,其大 小与方向用 F1 和 F2 为邻边的平行四边形对角线表示。
注:是汇交力系几何法合成的理论基础。 4.作用力与反作用力公理 当甲物体对乙物体有作用力的同时,也受到乙物体对甲物体的反作用 力,作用力与反作用力大小相等、方向相反、沿着同一条直线。
静力学的基本公理及受力分析

平衡条件的推导与证明
01
02
03
04
平衡条件是物体受到的合外力 为零,即$F_{合} = 0$。
平衡条件是物体受到的合外力 为零,即$F_{合} = 0$。
平衡条件是物体受到的合外力 为零,即$F_{合} = 0$。
平衡条件是物体受到的合外力 为零,即$F_{合} = 0$。
平衡条件的实际应用
在工程实践中,平衡条 件的应用非常广泛,如 桥梁设计、建筑结构稳 定性分析、机械零件的 强度计算等。
100%
三角形法则
如果有一个力产生某种效果,那 么这个力也可以产生同样的效果 ,只不过是选择的路径不同而已 。
80%
多边形法则
如果有n个力共同作用产生的效果 和一个单独的力产生的效果相同 ,那么这个单独的力就等于这n个 力的合力。
力的分解
正交分解法
将一个力分解为互相垂直的分 力。
按实际作用效果分解
解方程
解方程求出x轴和y轴方向上的加速度,进而求出 合加速度的大小和方向。
05
平衡状态与平衡条件
平衡状态的定义与分类
平衡状态是指物体处于静止或匀速直 线运动的状态,即物体速度为零或保 持恒定的速度。
平衡状态分为完全平衡状态和部分平 衡状态,完全平衡状态是指物体受到 的合外力为零,部分平衡状态是指物 体受到的合外力矩为零。
应用
在分析平衡问题时,可以应用二力平衡公理,判断物体是否处于 平衡状态。
公理三:加减平衡力系公理
上或减去任意平衡力系,不会 改变物体原有的运动状态。
应用
在分析受力时,可以忽略一些小 的力或力矩,简化问题。
03
受力分析
受力分析的定义与目的
定义
受力分析是对物体所受到的各种力的分析过程,包括分析力 的种类、方向和大小。
静力学的基本公理

静力学的基本公理
公理一:二力平衡公理
作用于同一刚体上的两个力平衡的必要与充分条件是:力的大小相等,方向相反,作用在同一直线上
在两个力作用下处于平衡的物体称为二力体,若物体是构件或杆件,也称二力构件或二力杆件,简称二力杆。
公理二:加减平衡力系公理
在作用于刚体的任意力系中,加上或减去平衡力系,并不改变原力系对刚体作用效应。
公理三:力的平行四边形法则
作用于物体上同一点的两个力可以合成为作用于该点的一个合力,它的大小和方向由以这两个力的矢量为邻边所构成的平行四边形的对角线来表示。
公理四:作用与反作用公理
两个物体间相互作用力总是同时存在,它们的大小相等,指向相反,并沿同一直线分别作用在这两个物体上。
公理五:刚化原理
变形体在已知力系作用下平衡时,若将此变形体视为刚体(刚化),
则其平衡状态不变。
第1章 静力学公理与物体的受力分析

1、销钉 2、构件
(2) 圆柱铰链
A
约束和约束力
FAy
FAx
A
圆柱铰链约束之间的约束力: 通过铰链中心,方向不定,可 用两个正交分力表示,大小未 知。
FAx
FAy
3.
光滑铰链约束
约束和约束力
(3) 固定铰链支座 • 若铰链连接中有一个固定在地面或机架上,则称为固定 铰链支座,简称固定铰支。
例1-3 梁AB自重为P1,电动机
重P2,CD杆自重不计,分别画 出杆CD 和梁AB 的受力图。
物体的受力分析和受力图
2.取梁AB研究 画主动力,画约束力
FAy
P1
P2
FD
FAx
P1
FD
P1
FC
物体的受力分析和受力图
二、受力分析举例
例1-3 续
P1
P2
若杆CD受力画成
FAy
FD FC
FAx
P1
• 注意:不能认为作用力与反作用力平衡。
静力学公理
☆ 公理5
刚化原理
变形体在某一力系作用下处于平衡,如将 此变形体刚化为刚体,其平衡状态保持不变。
柔性体(受拉力平衡)
刚化为刚体(仍平衡)
刚体的平衡条件是变形体平衡的必要而非充分条件。
刚体(受压平衡)
柔性体(受压不平衡)
§1.2 约束和约束力
一、约束的概念
FD
P1
几点说明
(1) 对象明确,分离彻底。
物体的受力分析和受力图
根据问题的要求,研究对象可以是一个物体,或几 个相联系的物体组成的物体系统。 在明确研究对象之后,必须将其周围的约束全部解除, 单独画出它的简单图形。
(2)不画内力,只画外力。
静力学的基本概念和公理

力是物体之间相互的机械作用,这种作用的效果是使物体的运动状态发生变化,同时使物体的形状发生改变。 力使物体运动状态发生变化的效应称为力的外效应或运动效应; 力使物体形状发生改变的效应称为力的内效应或变形效应。
1
2
3
4
决定力的作用效果的因素
1
静力学的基本概念
————————————————————
力的大小。表示物体间相互机械作用的强弱程度。单位:牛顿(N)或千牛顿(KN)。 力的方向。表示力的作用线在空间的方位和指向。 力的作用点。表示力的作用位置。
静力学的基本概念
静力学公理
约束与约束反力
受力分析与受力图 第1章 静力学的基本概念和公理
第一篇 静力学
01
引 言
02
静力学研究物体在力系作用下的平衡规律。
03
平衡——物体的运动状态不变。它包括静止和匀速直线运动。
04
力系——作用于物体上的若干个力。分类:
05
按力的作用线分布:平面力系和空间力系;
约束反力过销中心,方向不能确定,通常用正交的两个分力表示。
3
———————————————————
约 束 与 约 束 反 力
辊轴支座约束。
约 束 与 约 束 反 力
1.3
———————————————————
———————————————————
约 束 与 约 束 反 力
1.3
公理四 作用与反作用公理
2
静 力 学 公 理
———————————————————
——————————————————
两物体间相互作用的作用力和反作用力总是同时存在,大小相等,方向相反,沿同一直线,分别作用在这两个物体上。 它是受力分析必需遵循的原则。
工程力学重点总结

工程力学重点总结第一章静力学基本概念和公理受力图一、刚体刚体是指在力的作用下不会发生形变的物体。
力的三要素包括大小、方向和作用点。
平衡指物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1.力的平行四边形法则:作用在物体上同一点的两个力可以合成为仍作用于该点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2.二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是这两个力的大小相等、方向相反,并且作用在同一直线上。
3.加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4.作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等、方向相反、作用线重合,并分别作用在两个物体上。
5.刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力约束分为柔索约束、光滑面约束、光滑圆柱铰链约束和链杆约束。
约束反力通过不同的连接点和接触面,方向和指向也有所不同。
四、受力分析和受力图选取研究对象,画出研究对象所受的全部主动力和约束反力,表示研究对象受力的简明图形称为受力图。
第二章平面汇交力系一、平面汇交力系合成和平衡的几何法平面汇交力系是指所有力的作用平面相交于一点的力系。
对于平面汇交力系,可以用几何法进行合成和平衡分析。
本文介绍了力学中的几个重要概念和方法。
首先,力多边形法则是一种通过折线和矢量的几何作图法,用于求解平面汇交力系的合力。
其必要充分条件是力多边形自行封闭。
其次,力的分解与投影是力学中常用的方法之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 物体的受力分析和受力图
1.受力分析: 在工程实际中,为了求出未知的约 束反力,需要根据已知力,应用平衡条 件求解。为此,首先要确定构件受了几 个力,每个力的作用位置和力的作用方 向,这个分析过程称为物体的受力分析。
2.受力图:
为了清晰地表示物体的受力情况,我们 把需要研究的物体(称为受力体)从周围 的物体(称为施力体)中分离出来,单独 画出它的简图,这个步骤叫做取研究对象 或取分离体。画出分离体上所有作用力的 图,称为物体的受力图。
【例1】细绳上端固定在天花板上,下端 悬挂一个电灯,如图所示。这时有几对作用力 和反作用力?
天花板对细绳的拉力 F N 细绳对天花板的拉力 F ´ N
细绳对电灯的拉力F
电灯对细绳的拉力F´
地球对电灯的引力G 电灯对地球的引力G´
公理3:加减平衡力系公理
在任意一个已知力系上加上或减去任一个 平衡力系,不会改变原力系对刚体的作用。
推论1:力的可传递性原理 作用于刚体上的力,可沿其作用线滑移到 任一点,不会改变该力对该刚体的作用效果。
B
F2
F1 A
B
F2
A
公理4:力的平行四边形公理
作用于物体上同一点的两个力,可以合成为一 个合力,合力也作用于该点,合力的大小和方向由 这两个力为临边所构成平行四边对角线来确定。已
知有两力F1、F2作用于O点,以F表示其合力,
三、光滑铰链约束 如下图所示,两个带有圆孔的物体,用圆柱 销联接,就构成了典型的铰链约束。所谓光滑铰 链是略去了销与孔壁间的摩擦。光滑铰链约束的 性质只能限制物体在垂直于销钉轴线平面内任意 方向的移动,不能限制物体绕销轴线的转动和沿 销轴线的移动。实质为光滑面的约束。
工程上常见的铰链支座约束
⒈固定铰链支座 支座固定在支承面上,支座与物体的联 接采用铰链联接,其简图及约束反力的表示 方法如下图(b)所示。
A.小鸟受到的力大 B.飞机受到的力大 C.小鸟和飞机的受力一样大 D.主动撞击的一方产生的力大
第三节 约束和约束反力
位移不受限制的物体称为自由体。位 移受到限制的物体称为非自由体。对非自 由体的某些位移起限制作用的周围物体称 为约束。约束限制物体运动的力称为该物 体的约束反力。
一、柔索约束: 工程上常见的钢丝绳、传动带、链 条等都可以简化为柔索,柔索只能承受 拉力。所以柔索对物体的约束反力,作 用点在接触处,方向沿柔索背离物体, 恒为拉力(如下图)。通常用FT表示这 类约束反力。
⒉ 活动铰链支座 在铰链支座下面装上几个滚轴,使它在支承 面上能任意移动,称为活动铰链支座其简化表示 及约束反力如下图所示。
四、固定端约束
一端固定、另一端 为自由的支座称为固定 端约束,它可以使构件 的某截面既不能转动(绕 垂直于载荷作用面的轴 转动),又不能移动的支 座。如右图所示车床上 的刀架,夹紧工件的三 爪卡盘,均可简化为固 定端。因此,它的约束 反力是两个相互垂直的 分力NAX、NAY和一个阻 止转动的反力矩MA,如 右图所示。
请分析
下列情况,两力平衡了吗?为什么?
F1=5N
F2=5N
F1=3NΒιβλιοθήκη ABF1=5N
F2=5N
C
F1=5N D
F2=5N F2=5N
一降落伞重为50N,运动员在空中张开伞匀
速直线下降,在此过程中运动员和伞受到空
气阻力的大小为750N ,则运动员重力为
(C )
A、750N
B、800N
C、700N
D、50N
第二节 静力学基本公理
公理就是人类经过长期的观察和实践积 累起来的经验,加以概括和总结得到的结论, 它的正确性在实践中得到了验证,已被人们 公认为符合客观现实的真理。静力学公理概 括了力的一些基本性质,是建立静力学理论 的基础。
公理1:二力平衡公理
作用于一个刚体上的力,使刚体保持 平衡状态的必要与充分条件是:此二力大 小相等、方向相反、作用在同一直线上 (简称二力等值、反向、共线)。如下图 所示,用矢量式表示F1=-F2。
F
G1 G2
公理2:作用与反作用公理
两个物体间的作用力与反作用力总是同时存在, 且大小相等、方向相反、沿着同一直线(简称等 值、反向、共线)分别作用在这两个物体上。
这个公理概括了自然界物体间相互作用的关系, 标明一切力都是成对出现的。这里应当注意,此 公理与二力平衡公理是有差别的,此公理叙述了 两个物体之间的相互作用的关系,而二力平衡公 理叙述了作用于同一刚体上的二力平衡条件。
则F=F1+F2 为求F大小与方向,可用几何作图法或几何关 系计算。
F1
O
F F2
推论2:三力平衡汇交定理 刚体受三个力作 用而平衡,若其中两力的作用线汇交于一点,则 此三力必共面,且作用线必汇交于一点。
F1
F1 O
A F
C
F2 B
F2
F3
1、依据力的可传性原理,下列说法正确的是(D) A、力可以沿作用线移动到物体内的任意一点。 B、力可以沿作用线移动到任何一点。 C、力不可以沿作用线移动。 D、力可以沿作用线移动到刚体内的任意一点。
柔索约束与约束反力
二、光滑接触面约束
当两物体直接接触,并忽略接触处的摩擦时,约 束只能限制物体过接触点沿接触面公法线指向约束物 体的运动,而不能限制物体在接触面的切线方向的运 动,故约束反力必然过接触点的法向,并指向被约束 的物体,称为法向反力。通常用FN表示此类约束反力。 如下图所示。
光滑接触面约束与约束反力
B.不一定改变;
C.改变;
D.可能改变
4、在网球运动中所涉及的物理现象解释正确的是( B)
A.球拍对网球作用力的施力物体是人
B.网球与球拍撞击时,球拍发生形变是因为力改变了物体 的形状
C.飞行的网球不受力的作用
D.网球撞击球拍的力和球拍对网球的弹力是一对平衡力
5、在航空领域,常常发生小鸟撞毁飞机事件。下列 关于小鸟和飞机相撞时的说法正确的是:(C)
2、关于合力与分力,下列说法正确的是(C) A、合力的大小一定大于每个分力的大小 B、合力的大小至少大于其中的一个分力 C、合力的大小可以比两个分力都大,也可以比 两个分力都小 D、合力不可能与其中的一个分力相等
3、某刚体连续加上(或减去)若干个平衡力 系,对该刚件的作用效应( A )。
A.不变;