偏振光学实验报告
偏振光的研究_实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振性质的认识。
2. 学习并掌握偏振光的产生、传播、检测和调控方法。
3. 理解马吕斯定律及其在实际应用中的意义。
4. 掌握使用偏振片、波片等光学元件进行偏振光实验的基本技能。
二、实验原理1. 光的偏振性质:光是一种电磁波,具有横波性质。
在光的传播过程中,光矢量的振动方向相对于传播方向可以保持不变(线偏振光)、绕传播方向旋转(圆偏振光)或呈现椭圆轨迹(椭圆偏振光)。
2. 偏振光的产生:自然光通过偏振片后,可以产生线偏振光。
当自然光入射到某些光学各向异性介质(如偏振片、波片等)时,由于不同方向的光矢量分量在介质中的折射率不同,从而导致光矢量振动方向发生偏转,形成偏振光。
3. 马吕斯定律:当一束完全线偏振光通过一个偏振片时,透射光的光强与入射光的光强和偏振片透振方向与入射光光矢量振动方向的夹角θ之间的关系为:\( I = I_0 \cdot \cos^2\theta \),其中\( I \)为透射光的光强,\( I_0 \)为入射光的光强。
三、实验仪器与设备1. 自然光源(如激光器)2. 偏振片(两块)3. 波片(1/4波片、1/2波片)4. 光具座5. 光屏6. 光电探测器7. 数据采集与分析软件四、实验步骤1. 观察线偏振光:将自然光源发出的光通过偏振片,观察光屏上的光斑。
然后逐渐旋转偏振片,观察光斑的变化,验证马吕斯定律。
2. 观察圆偏振光:将1/4波片放置在偏振片和光屏之间,使1/4波片的光轴与偏振片的透振方向夹角为45°。
观察光屏上的光斑,验证圆偏振光的产生。
3. 观察椭圆偏振光:将1/4波片的光轴与偏振片的透振方向夹角调整为22.5°,观察光屏上的光斑,验证椭圆偏振光的产生。
4. 测量偏振片透振方向:利用光电探测器测量偏振片的透振方向,并与理论计算值进行比较。
5. 分析实验数据:使用数据采集与分析软件对实验数据进行处理,分析偏振光的特性,验证实验原理。
光的偏振物理实验报告

光的偏振物理实验报告一、实验目的1、观察光的偏振现象,加深对光的偏振基本概念的理解。
2、学习使用偏振片来产生和检验偏振光。
3、测量布儒斯特角,并验证布儒斯特定律。
二、实验原理1、光的偏振态光是一种电磁波,其电场和磁场的振动方向垂直于光的传播方向。
一般情况下,光的振动方向是随机的,这种光称为自然光。
如果光的振动方向在某个特定方向上具有优势,这种光称为部分偏振光。
当光的振动方向完全固定在一个方向上时,称为完全偏振光,又分为线偏振光和圆偏振光。
2、偏振片偏振片是一种只允许特定方向振动的光通过的光学元件。
其工作原理是基于晶体的二向色性,即某些晶体对不同方向振动的光吸收程度不同。
3、布儒斯特定律当自然光在两种介质的分界面上发生反射和折射时,反射光和折射光都成为部分偏振光。
当入射角等于某一特定角度时,反射光成为完全偏振光,其振动方向垂直于入射面,这个角度称为布儒斯特角,满足以下定律:\\tan \theta_B =\frac{n_2}{n_1}\其中,\(\theta_B\)为布儒斯特角,\(n_1\)和\(n_2\)分别为两种介质的折射率。
三、实验仪器1、光源(钠光灯)2、起偏器(偏振片)3、检偏器(偏振片)4、玻璃堆5、光具座6、白屏四、实验内容与步骤1、观察光的偏振现象(1)打开钠光灯,让光线通过起偏器,旋转起偏器,观察白屏上光强的变化。
(2)在起偏器后加上检偏器,旋转检偏器,观察光强的变化,并记录消光位置。
2、验证马吕斯定律(1)将起偏器和检偏器的偏振化方向调到夹角为\(0^{\circ}\),记录此时的光强\(I_0\)。
(2)逐渐增大两偏振片的夹角\(\theta\),每隔\(10^{\circ}\)记录一次光强\(I\)。
(3)根据马吕斯定律\(I = I_0 \cos^2 \theta\),绘制\(I \cos^2 \theta\)关系曲线。
3、测量布儒斯特角(1)将玻璃堆放在光具座上,让钠光灯的光线以一定角度入射到玻璃堆上。
光的偏振实验的实验报告(3篇)

第1篇一、实验目的1. 观察光的偏振现象,加深对光波偏振特性的理解。
2. 学习直线偏振光、圆偏振光和椭圆偏振光的产生与检验方法。
3. 掌握利用偏振光进行相关物理量测量的原理与技巧。
二、实验原理1. 光的偏振现象:光波是横波,其电矢量振动方向与传播方向垂直。
自然光在传播过程中,电矢量振动方向在垂直于传播方向的平面内取所有可能的方向,称为非偏振光。
而偏振光是指电矢量振动方向局限在某一确定平面内的光波。
2. 偏振光的产生:自然光通过起偏器(如偏振片)后,只有某一方向的振动成分能够通过,从而产生偏振光。
3. 偏振光的检验:利用检偏器(如偏振片)可以检验光的偏振状态。
当偏振光通过检偏器时,若电矢量振动方向与检偏器光轴平行,则光强不变;若电矢量振动方向与检偏器光轴垂直,则光强为零。
4. 偏振光的分解:利用波片可以将偏振光分解为两个正交的偏振光。
其中,1/4波片可以将线偏振光分解为圆偏振光和椭圆偏振光。
三、实验仪器1. 激光器:产生单色光。
2. 偏振片:产生和检验偏振光。
3. 波片:分解偏振光。
4. 光具座:固定实验器材。
5. 照度计:测量光强。
6. 支架:固定实验器材。
四、实验步骤1. 将激光器发出的光通过偏振片,得到线偏振光。
2. 将线偏振光通过1/4波片,得到圆偏振光和椭圆偏振光。
3. 利用偏振片和检偏器检验圆偏振光和椭圆偏振光的偏振状态。
4. 通过改变偏振片和检偏器的相对位置,观察光强变化,验证马吕斯定律。
5. 测量圆偏振光和椭圆偏振光的光强,分析其偏振特性。
五、实验数据及处理1. 观察到线偏振光通过偏振片后,光强减弱;圆偏振光和椭圆偏振光通过检偏器时,光强有规律地变化。
2. 当偏振片和检偏器的光轴平行时,光强最大;当偏振片和检偏器的光轴垂直时,光强为零。
验证了马吕斯定律。
3. 测量得到圆偏振光和椭圆偏振光的光强,分析其偏振特性。
六、实验结果与分析1. 通过实验,观察到光的偏振现象,加深了对光波偏振特性的理解。
偏振光实验的实验报告(3篇)

第1篇一、实验目的1. 观察光的偏振现象,加深对光的偏振理论的认识。
2. 学习直线偏振光、圆偏振光和椭圆偏振光的产生与检验方法。
3. 掌握使用偏振片、波片等光学元件进行偏振光实验的基本操作。
二、实验原理1. 光的偏振:光波是一种横波,其振动方向与传播方向垂直。
当光波在某一方向上的振动占优势时,称为偏振光。
偏振光可以分为线偏振光、圆偏振光和椭圆偏振光。
2. 线偏振光:当光波的振动方向在某一平面内时,称为线偏振光。
线偏振光可以通过以下方法产生:自然光经过偏振片后,光波的振动方向被限制在偏振片的光轴方向。
3. 圆偏振光和椭圆偏振光:当光波的振动方向在两个相互垂直的平面内时,称为圆偏振光和椭圆偏振光。
圆偏振光和椭圆偏振光可以通过以下方法产生:线偏振光经过1/4波片后,其振动方向在两个相互垂直的平面内,且相位差为90°。
4. 偏振光的检验:利用偏振片和波片可以检验光的偏振状态。
当偏振光通过偏振片时,光强会发生变化;当偏振光通过波片时,光强会根据波片的角度发生变化。
三、实验仪器1. He-Ne激光器2. 光具座3. 偏振片(两块)4. 1/4波片(两块)5. 玻璃平板6. 0°、90°任意刻度盘7. 白屏四、实验步骤1. 将He-Ne激光器放置在光具座上,调整激光器使其发出平行光。
2. 将偏振片1放置在光具座上,调整偏振片1的光轴与激光器发出的光束方向垂直。
3. 将偏振片2放置在偏振片1的后面,调整偏振片2的光轴与偏振片1的光轴成一定角度。
4. 观察白屏上的光斑,调整偏振片2的角度,使光斑消失。
5. 将1/4波片放置在偏振片2的后面,调整1/4波片的光轴与偏振片2的光轴成一定角度。
6. 观察白屏上的光斑,调整1/4波片的角度,使光斑消失。
7. 重复步骤4和5,观察不同角度下的光斑变化。
8. 改变偏振片1和偏振片2的相对位置,观察光斑的变化。
五、实验结果与分析1. 当偏振片1和偏振片2的光轴垂直时,光斑消失,说明此时光为线偏振光。
光的偏振性实验报告

一、实验目的1. 理解光的偏振性及其产生机制。
2. 掌握使用偏振片和偏振光实验装置观察和分析光的偏振现象。
3. 验证马吕斯定律,即偏振光通过偏振片后的光强与偏振片的角度关系。
4. 探究不同类型偏振光(如线偏振光、圆偏振光和椭圆偏振光)的产生和检测方法。
二、实验原理光是一种电磁波,具有横波性质。
在垂直于光传播方向的平面上,光矢量(即电场矢量E)可以有不同的振动方向。
当光矢量在某一固定平面上振动时,称为线偏振光;若光矢量绕传播方向旋转,则形成圆偏振光;若光矢量绕传播方向旋转的轨迹为椭圆,则形成椭圆偏振光。
偏振片是一种选择性吸收特定方向光振动的光学元件。
当自然光通过偏振片时,只允许与偏振片方向平行的光振动通过,从而产生线偏振光。
通过改变偏振片的方向,可以观察偏振光的强度变化,验证马吕斯定律。
三、实验仪器与材料1. 偏振片(起偏器、检偏器)2. 自然光源(如白炽灯、激光器)3. 毫米尺4. 透明玻璃板5. 旋转台6. 光强计7. 记录纸及笔四、实验步骤1. 将自然光源放置在实验台上,调整光路使其成为平行光。
2. 将起偏器放置在光路中,调整其方向,使自然光通过起偏器后成为线偏振光。
3. 将检偏器放置在起偏器之后,调整其方向,观察光强变化。
4. 记录检偏器方向与起偏器方向之间的夹角θ,以及相应的光强I。
5. 改变检偏器的方向,重复步骤3和4,记录不同夹角θ下的光强I。
6. 根据实验数据,绘制光强I与夹角θ之间的关系曲线,验证马吕斯定律。
7. 将透明玻璃板放置在光路中,观察光通过玻璃板后的偏振现象。
8. 通过旋转透明玻璃板,观察不同角度下的偏振现象,探究不同类型偏振光(如线偏振光、圆偏振光和椭圆偏振光)的产生和检测方法。
五、实验结果与分析1. 验证马吕斯定律:根据实验数据绘制光强I与夹角θ之间的关系曲线,发现光强I与夹角θ之间呈余弦关系,验证了马吕斯定律。
2. 探究偏振光类型:通过旋转透明玻璃板,观察到不同角度下的偏振现象。
偏振光原理实验实验报告(3篇)

第1篇一、实验目的1. 深入理解光的偏振现象,巩固相关理论知识。
2. 掌握直线偏振光、圆偏振光和椭圆偏振光的产生方法。
3. 学会使用偏振片、波片等实验仪器,进行光的偏振状态分析。
二、实验原理1. 偏振光的产生:自然光经过起偏器后,其振动方向变得有规律,成为偏振光。
2. 偏振光的检验:通过观察光的偏振现象,判断光的偏振状态。
3. 偏振光的分解:利用波片可以将偏振光分解为两个相互垂直的偏振光。
三、实验仪器1. 激光器:提供稳定的单色光。
2. 偏振片:用于产生和检验偏振光。
3. 波片:用于分解偏振光。
4. 光具座:用于固定实验仪器。
5. 光屏:用于观察光斑。
6. 秒表:用于测量时间。
四、实验步骤1. 将激光器发出的光束调整至水平传播。
2. 将偏振片固定在光具座上,使光束通过偏振片。
3. 观察光屏上的光斑,记录光斑形状和亮度。
4. 将波片固定在光具座上,使光束通过波片。
5. 调整波片的角度,观察光屏上的光斑变化,记录光斑形状和亮度。
6. 重复步骤4和5,分别使用两个偏振片和两个波片进行实验。
五、实验数据及处理1. 观察到,当光束通过偏振片后,光屏上的光斑形状变为明暗相间的条纹,说明光束被分解为两个相互垂直的偏振光。
2. 调整波片角度,当波片的光轴与偏振片的光轴平行时,光屏上的光斑最亮;当波片的光轴与偏振片的光轴垂直时,光屏上的光斑最暗。
3. 通过实验,验证了直线偏振光、圆偏振光和椭圆偏振光的产生方法。
六、实验结果与分析1. 通过实验,我们深入理解了光的偏振现象,掌握了直线偏振光、圆偏振光和椭圆偏振光的产生方法。
2. 实验过程中,我们发现波片的光轴与偏振片的光轴平行时,光屏上的光斑最亮;当波片的光轴与偏振片的光轴垂直时,光屏上的光斑最暗。
这验证了偏振光的分解原理。
3. 实验过程中,我们使用偏振片和波片等实验仪器,成功进行了光的偏振状态分析。
七、实验总结本次实验通过观察光的偏振现象,加深了对光的偏振理论知识的理解。
偏振光分析实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振现象的认识。
2. 学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生与检验方法。
3. 掌握1/4波片、1/2波片等光学元件的作用及使用方法。
4. 验证马吕斯定律,加深对光的偏振理论的理解。
二、实验原理1. 光的偏振现象:光是一种电磁波,其电矢量在垂直于传播方向的平面上振动。
当光波的电矢量振动方向固定时,光称为线偏振光;当电矢量振动方向随时间作有规律的变化时,光称为圆偏振光或椭圆偏振光。
2. 偏振光的产生与检验:利用偏振片、波片等光学元件可以产生和检验偏振光。
偏振片可以使自然光变为线偏振光,波片可以改变光的偏振状态。
3. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系满足马吕斯定律。
三、实验仪器1. He-Ne激光器2. 光具座3. 偏振片(两块)4. 1/4波片(两块)5. 1/2波片(两块)6. 玻璃平板及刻度盘7. 白屏四、实验步骤1. 将激光器发出的光束通过偏振片P1,得到线偏振光。
2. 将线偏振光通过1/4波片B1,得到圆偏振光。
3. 将圆偏振光通过1/2波片B2,观察出射光的偏振状态。
4. 将线偏振光通过1/4波片B1,得到椭圆偏振光。
5. 将椭圆偏振光通过1/2波片B2,观察出射光的偏振状态。
6. 重复以上步骤,改变偏振片P1和波片B1、B2的相对位置,观察出射光的偏振状态。
7. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。
五、实验结果与分析1. 观察到当线偏振光通过1/4波片B1时,出射光变为圆偏振光;当圆偏振光通过1/2波片B2时,出射光变为线偏振光。
2. 观察到当线偏振光通过1/4波片B1时,出射光变为椭圆偏振光;当椭圆偏振光通过1/2波片B2时,出射光变为线偏振光。
3. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。
光的偏振研究实验报告

一、实验目的1. 观察光的偏振现象,加深对光的波动性质的认识。
2. 掌握产生和检验偏振光的方法和原理。
3. 学习使用偏振片、波片等光学元件,了解其工作原理。
4. 验证马吕斯定律,研究偏振光透过两个偏振器后的光强与夹角的关系。
二、实验原理光是一种电磁波,其电场矢量E的振动方向决定了光的偏振状态。
自然光中的电场矢量在垂直于光传播方向的平面内振动方向是随机的,而偏振光则具有特定的振动方向。
偏振光可以通过以下几种方法产生:1. 利用起偏器(如偏振片)将自然光变为线偏振光。
2. 利用双折射现象将一束光分解为两束具有不同振动方向的偏振光。
3. 利用反射、折射等光学现象使自然光部分偏振。
检验偏振光的方法有:1. 利用检偏器(如偏振片)观察光强变化。
2. 利用光电池、光电倍增管等光电探测器检测偏振光。
马吕斯定律指出,当完全线偏振光通过检偏器时,光强I与入射光强I0、检偏器透光轴与入射线偏振光的光矢量振动方向的夹角θ的关系为:I = I0 cos²θ。
三、实验仪器与用具1. 中央调节平台和两臂调节机构2. 半导体激光器和电源3. 偏振片(两块)4. 1/4波片(两块)5. 光电倍增管探头及电源6. 光电流放大器7. 光具座8. 白屏9. 刻度盘四、实验步骤1. 将激光器、偏振片、1/4波片和光电倍增管探头依次放置在光具座上,调整光路,使激光束通过偏振片后成为线偏振光。
2. 将线偏振光通过1/4波片,观察光强变化,记录数据。
3. 将1/4波片旋转一定角度,观察光强变化,记录数据。
4. 将线偏振光通过第二个偏振片,观察光强变化,记录数据。
5. 将第二个偏振片旋转一定角度,观察光强变化,记录数据。
6. 根据记录的数据,验证马吕斯定律。
五、实验结果与分析1. 观察到线偏振光通过1/4波片后,光强发生变化,说明1/4波片具有改变光偏振状态的作用。
2. 当1/4波片旋转一定角度时,光强也随之变化,说明光强与偏振片透光轴与入射线偏振光的光矢量振动方向的夹角θ有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏振光的产生和检验一.实验目的1、掌握偏振光的产生原理和检验方法,观察线偏振光2. 验证马吕斯定律,测量布儒斯特角;二.实验原理1.光的偏振性光波是波长较短的电磁波,电磁波是横波,光波中的电矢量与波的传播方向垂直。
光的偏振观象清楚地显示了光的横波性。
光大体上有五种偏振态,即线偏振光、圆偏振光、椭圆偏振光、自然光和部分偏振光。
而线偏振光和圆偏振光又可看作椭圆偏振光的特例。
(1)自然光光是由光源中大量原子或分子发出的。
普通光源中各个原子发出的光的波列不仅初相彼此不相关,而且光振动方向也是彼此不相关的,呈随机分布。
在垂直于光传播方向的平面内,沿各个方向振动的光矢量都有。
平均说来,光矢量具有轴对称而且均匀的分布,各方向光振动的振幅相同,各个振动之间没有固定的相联系,这种光称为自然光或非偏振光(见下图)。
我们设想把每个波列的光矢量都沿任意取定的x轴和y轴分解,由于各波列的光矢量的相和振动方向都是无规则分布的,将所有波列光矢量的x分量和y分量分别叠加起来,得到的总光矢量的分量Ex 和Ey之间没有固定的相关系,因而它们之间是不相干的。
同时Ex 和Ey的振幅是相等的,即Ax=Ay。
这样,我们可以把自然光分解为两束等幅的、振动方向互相垂直的、不相干的线偏振光。
这就是自然光的线偏振表示,如下图(a)所示。
分解的两束线偏振光具有相等的强度Ix =Iy,又因自然光强度I=Ix +Iy所以每束线偏振光的强度是自然光强度的1/2,即通常用图(b)的图示法表示自然光。
图中用短线和点分别表示在纸面内和垂直于纸面的光振动,点和短线交替均匀画出,表示光矢量对称而均匀的分布。
(2)线偏振光光矢量只沿一个固定的方向振动时,这种光称为线偏振光,又称为平面偏振光。
光矢量的方向和光的传播方向所构成的平面称为振动面,如图(a )所示。
线偏振光的振动面是固定不动的,图(b )所示是线偏振光的表示方法,图中短竖线表示光振动在纸面内,点表示光振动垂直于纸面。
(3)部分偏振光这是介于线偏振光与自然光之间的一种偏振光,在垂直于这种光的传播方向的平面内,各方向的光振动都有,但它们的振幅不相等,如图(a )所示。
这种部分偏振光用数目不等的点和短线表示。
在图(b )中,上图表示在纸面内的光振动较强,下图表示垂直纸面的光振动较强。
要注意,这种偏振光各方向的光矢量之间也没有固定的相的关系。
(4)圆偏振光和椭圆偏振光这两种光的特点是在垂直于光的传播方向的平面内,光矢量按一定频率旋转(左旋或右旋)。
如果光矢量端点轨迹是一个圆,这种光叫圆偏振光(见图(a ))。
如果光矢量端点轨迹是一个椭圆,这种光叫椭圆偏振光(见图(b ))。
2. 布儒斯特角当光从折射率为n 1的介质(例如空气)入射到折射率为n 2的介质(例如玻璃)交界面,而入射角又满足12B arctan n n =θ 时,反射光即成完全偏振光,其振动面垂直于入射面。
i B 称布儒斯特角,上式即布儒斯特定律。
显然,θB 角的大小因相关物质折射率大小而异。
若n 1表示的是空气折射率,(数值近似等于1)上式可写成2B arctan n =θ反射光入射光图 3-13.马吕斯定律如果光源中的任一波列(用振动平面E 表示)投射在起偏器P 上(如下图),只有相当于它的成份之一的E y (平行于光轴方向的矢量)能够通过,另一成份E x (=E cos θ)则被吸收。
与此类似,若投射在检偏器A 上的线偏振光的振幅为E 0,则透过A 的振幅为E 0 cos θ(这里θ是P 与A 偏振化方向之间的夹角)。
由于光强与振幅的平方成正比,可知透射光强I 随θ而变化的关系为θ20cos I I =这就是马吕斯定律。
4.波片若使线偏振光垂直入射一透光面平行于光轴,厚度为d 的晶片,此光因晶片的各向异性而分裂成遵从折射定律的寻常光(o 光)和不遵从折射定律的非常光(e 光)。
因o 光和e 光在晶体中这两个相互垂直的振动方向有不同的光速,分别称做快轴和慢轴。
设入射光振幅为A ,振动方向与光轴夹角为θ,入射晶面后o 光和e 光振幅分别为A sin θ和A cosθ,出射后相位差d n ne o )(20-=λπϕ式中λ0是光在真空中的波长,n o 和n e 分别是o 光和e 光的折射率。
这种能使相互垂直振动的平面偏振光产生一定相位差的晶片就叫做波片。
如果以平行于波片光轴方向为x 坐标,,垂直于光轴方向为y 坐标出射的o光和e 光可用两个简谐振动方程式表示:t A x e ωsin =)sin(ϕω+=t A y o该两式的合振动方程式可写成ϕϕ22222sin cos 2=-+oe o e A A xy A y A x 一般说来,这是一个椭圆方程,代表椭圆偏振光。
但是当πϕk 2= (k =1、2、3…)或πϕ)12(+=k(k =0、1、2…) 时,合振动变成振动方向不同的线偏振光。
后一种情况,晶片厚度2)12(λe o n n k d -+= 可使o 光和e 光产生(2k +1)λ/2的光程差,这样的晶片称做半波片,而当2)12(πϕ+=k (k =1、2、3…)时,合振动方程化为正椭圆方程12222=+oe A y A x 这时晶片厚度4)12(λe o n n k d -+=,称做1/4波片。
它能使线偏振光改变偏振态,变成椭圆偏振光。
但是当入射光振动面与波片光轴夹角θ=45°时,A e =A o ,合振动方程可写成 222A y x =+即获得圆偏振光。
5.偏振光的获得自然界的大多数光源所发出的是自然光。
为了从自然光得到各种偏振光,需要采用偏振器件。
偏振片、玻片堆和尼科耳棱镜等都可以用作起偏器,自然光通过这些起偏器后就变成了线偏振光。
偏振片常用具二向色性的晶体制成,这些晶体对不同方向的电磁振动具有选择吸收的性质,当光线射在晶体的表面上时,振动的电矢量与光轴平行时吸收得较少,光可以较多地通过;电矢量与光轴垂直时被吸收得较多,光通过得很少。
通常的偏振片是在拉伸了的塞璐璐基片上蒸镀一层硫酸碘奎宁的晶粒,基片的应力可以使晶粒的光轴定向排列起来,这样可得到面积很大的偏振片。
为了得到椭圆偏振光,使自然光通过一个起偏器和一个波片即可。
由起偏器出射偏振光正入射到波片中去时,只要其振动方向不与波片的光轴平行或垂直,就会分解成0光和e 光,穿过波片时在它们之间就有一定的附加相位差δ。
射出波片之后,传播方向相同的这两束光的速度恢复到一样,它们在一起一般是合成椭圆偏振光。
只有当这两面束光之间的相位差等于±π/2,且振幅相同时,才有可能得到圆偏振光。
换言之,令一束线偏振光垂直通过一波片,一般我们得到一束椭圆偏振光;只有通过1/4波片,且波片的光轴与入射光的振动面成对45°角时,我们才能得到一束圆偏振光。
三.实验装置;白光源,凸透镜(f=150mm),二维调节架(SZ-03)三个,可调狭缝,光学测角台,升降调节架,黑玻璃片,偏振片,X轴旋转二维架(SZ-06),二维平移底座(SZ-02),另需钠灯、氦氖激光器、1/4玻片及转动架和扩束器。
四.实验步骤1)测布儒斯特角,定偏振片光轴:按上图所示,使白光源灯丝位于透镜的焦平面上(此时二底座相距162mm),近似平行光束通过狭缝,向光学台分度盘中心的黑玻璃入射,并在台面上显出指向圆心的光迹。
此时转动分度盘,对任意入射角,利用偏振片和X轴旋转二维架组成的偏振器检验反射光,转动360,观察部分偏振片的强度变化。
而当光束以布儒斯特角iB入射时,反射的线偏振光可被减偏器消除(对n=1.51,iB=57)。
该入射角需要反复仔细校准。
因偏振光的振动面垂直于入射面,按减偏器消光方向可以定出偏振片的易透光轴。
2)线偏振光分析:使纳光通过偏振片起偏振,用装在X轴旋转二维架上(对准指标线)的偏振片在转动中捡偏振,分析透过光强变化与角度的关系。
3)椭圆偏振光的分析:使激光束通过扩束器、狭缝和黑镜产生线偏振光,再通过1/4玻片之后,用装在X轴旋转二维架上的偏振片在旋转中观察透射光强度变化,是否有两明两暗位置(注意与上一项实验现象有何不同),暗位置在,检偏器的透振方向即椭圆的短轴方向。
4)圆偏振光分析:在透振轴正交的二偏振片之间加入1/4玻片,旋转至透射光强恢复为零处,从该位置再转动45,即可产生圆偏振光。
此时若用检偏器转动检查,透射光强是不变的。
3)和4)应使用白屏观察。
五.数据处理1、布儒斯特角:57。
2、线偏振光强符合I2=I1cos2θ——马吕斯定律,当θ为0 时(平行),透射光最大;当θ为π/2时(垂直),透射光强为零。
3、是,暗的地方光强不为零。
六.实验感想做光学实验中体会最深的就是我们需要耐心细致和严谨,这不仅锻炼了我们实验的素质而且增强了我们做实验的兴趣。
指导书上只有大纲,很多地方都需要我们自己去多问几个为什么,所以实验前的预习显得尤其重要,它可以使我们宏观地把握做实验的全程,做到成竹于胸;实验过程中最重要的便是要做到用心观察及如实的记录,有些时候,实验的具体步骤与参考书中有所不同,这就需要我们用心思考;实验后的数据处理及分析充分体现了我们对该实验的整体把握,应该好好分析,参考相应资料,分析出自己在实验过程中的得失,只有这样才能真正有所收获。
这些实验需要两个人共同完成,这两个人便形成了一个小的团队。
一个实验需要两人配合才能完成,这充分体现了团队的重要性。
两人共同做一个实验,需要分工明确,每人负责一部分,当出现差错时可以及时找出并纠正。
只有很好的接受汲取前者给予的帮助和指导,很好的与后者协同合作,才能使实验进行顺利,结果理想。
所以光学实验很能培养我们的团队精神,合作意识。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。