第十章 粉体学基础
药剂学第十章-粉体学基础

药剂学第十章-粉体学基础成都医学院22考研药剂学第十章粉体学基础第一节概述粉:小于等于100微米粒:大于100微米单一粒子为一级粒子,单一粒子聚结体为二级粒子第二节粉体的基本性质基本性质:粉体的粒径及其分布和总表面积,单一粒子的形态及表面积一、粒径及粒径分布(一)粒径的表示方法1、几何学粒径1)三轴径:在粒子平面图上测定的长径l,短径b 和高度h2)定方向径:在粒子平面投影图上测得的特征径a)Fe ret:径:定方向接线径,在粒子投影图上画出外接平行线,其平行线见得距离即是定方向径b)Krummbein:定方向最大径,用一直线将粒子投影面按一定方向进行分割,分割的最大长度为定方向最大径c)Martin:定方向等分径,用一直线将粒子投影面按一定方向进行分割,恰好将投影面积等分时的长度为定方向等分径3)圆相当径a)Heywood:投影面积圆相当径,系与粒子投影面积相同的圆的直径b)周长圆相当径:系与投影面积周长相等的圆的直径4)球相当径a)球体积相当径:与粒子体积相同的球体的体积b)球面积相当径:与粒子体表面积相同的球体的直径5)纵横比:系颗粒的最大轴长度与最小轴长度之比2、筛分径:细孔通过相当径3、有效径:沉降速度相当径,与粒子在液相中具有相同沉降速度的球的直径4、比表面积等价径:与粒子具有相同比表面积的球的直径5、空气动力学相当径:空气动力学径,与不规则粒子具有相同动力学行为的单位密度球体的直径(二)粒径分布频率分布:表示各个粒径所对应的粒子在全体粒子群中所占的百分数累计分布:表示小于或大于某粒径的粒子在全体粒子群中所占的百分数粒度分布基准:个数基准、质量基准、面积基准、体积基准、长度基准(三)平均粒径:中位径:中值径,累计分布图中累计正好为50%所对应的粒径众数粒径:颗粒出现最多的粒度值,即频率分布曲线的最高峰值(四)粒径的测定方法显微镜法或筛分法测定药物制剂的粒子大小和限度,光散射法测定原料药或药物制剂的粒度分布1、显微镜法:将粒子放在显微镜下,根据投影测定等价粒径2、筛分法:筛孔机械阻挡的分级方法3、沉降法:液相中混悬粒子的沉降速度4、库尔特计数法:电阻法,等体积球的相当径5、激光散射/衍射法:光传播遇到颗粒阻挡发生散射,颗粒越大,散射光夹角越小6、比表面积法:吸附法和透过法测定7、级联撞击器法:测量可吸入颗粒物的空气动力学粒径和粒径分布的首选二、粒子形态:系指粒子的轮廓或表面个点所构成的图像(一)形态指数:将粒子某些性质与球或圆的理论值比较形成的无因次组合1、球形度:真球度,系指用粒子的球相当径计算的球的表面积与粒子实际面积之比2、圆形度:系指用粒子的投影面积相当径计算的圆周长与粒子投影面积周长之比(二)形状系数1、体积形状系数2、表面积形状系数3、比表面积形状系数三、粒子比表面积(一)比表面积的表示方法:单位体积或单位重量的表面积1、体积比表面积:单位体积粉体的表面积2、重量比表面积:单位重量粉体的比表面积(二)比表面积的测定方法1、气体吸附法:利用粉体吸附气体的性质2、气体透过法:气体通过粉体时的阻力与比表面积有关第三节粉体的其他性质一、粉体的密度(一)粉体密度分类和定义1、真密度:粉体质量除以真体积得到的密度,不包括颗粒内外空隙的体积2、粒密度:粉体质量除以粒体积得到的密度,包括内部空隙3、堆密度:,松密度,粉体质量除以该粉体所占体积得到的密度,包括内部空隙振实密度:经一定规律振动或轻敲后测得的堆密度理论上:真密度大于等于粒密度大于等于振实密度大于等于堆密度(二)粉体密度的测定方法1、真密度的测定1)氦气测定法:首先通入已知重量的氦气到代测定空仪器中,测得仪器容积V0,然后将供试品放入容器抽真空,完成后导入一定量氦气,而后计算出粉体周围及进入粉体孔径氦气体积Vt,V0-Vt既是粉体体积计算可得真密度2)液体汞、苯置换法2、粒密度的测定:比重瓶法(常用)、吊斗法3、堆密度与振实密度的测定方法:将约50立方厘米到的经过二号筛处理的粉体装入100ml量筒中,将量筒从一英寸处落下到坚硬木板三次,所得体积即为粉体堆体积,计算可得堆密度二、粉体的空隙率分类:颗粒内空隙率、颗粒间空隙率、总空隙率测定:压汞法、气体吸附法三、粉体的流动性(一)粉体流动性的评价方法1、休止角:粉体堆积层的自由斜面与水平面形成的最大夹角测定方法:固定圆锥底法、固定漏斗法动态休止角:流动粉体与水平面形成的夹角,可装入量筒后以一定速度旋转测定休止角小于等于30度时流动性好,小于等于40度时,可以满足生产需要2、流出速度:单位时间内从容器小孔中流出粉体的量表示3、压缩度和Hausenr测量方法:将一定量粉体装入量筒中测得最初堆体积,采用轻敲法测得粉体最紧状态得到最终体积,后根据相关公式计算出压缩度压缩度为20%以下流动性较好,增大流动性下降,超过30%很难流出HR在1.25以下流动性好,大于1.6时很难操作(二)改善流动性的方法1、增大粒子大小:250~2000微米流动性好,72~250微米流动性取决于形态和其他因素,小于100微米时流动性会出现问题2、改善粒子形态及表面粗糙度3、改变表面作用力4、助流剂的影响5、改变过程条件四、粉体的填充性(一)表示方法:堆容比:单位质量所占体积空隙率:堆体积中空隙所占体积堆密度:单位体积的质量空隙比:空隙体积与真体积之比充填率:堆密度与真密度之比配位数:一个粒子周围相邻其他粒子个数(二)颗粒的排列模型球形粒子规则排列,接触点最小为6,此时空隙率最大,为48%,接触点为12时最小为26%,粒径大小不影响空隙率和接触点(三)充填状态的变化和速度方程:久野方程、川北方程(四)影响粉体充填性的因素1、粒径大小及其分布2、颗粒的形状和结构3、颗粒的表面性质4、粉体处理及过程条件5、助流剂的影响五、粉体的吸湿性定义:固体表面吸附水分的现象(一)水溶性药物的吸湿性CRH:水溶性药物在较低的相对湿度环境中平衡水分含量较低,不吸湿,但当空气中相对湿度提高到一定值时吸湿量急剧增加,此时的相对湿度即为物料的临界相对湿度。
13-药剂学-粉体学基础

一、粒子径与粒度分布
(三)平均粒子径 中位径(中值径)是最常用的平均径。 在累计分布中累积值为50%所对应的粒子径为 中 值径。用D50表示。
(四)粒子径的测定方法
1、显微镜法 2、筛分法 3、沉降法 4、感应区测定法:1)电阻变化法:库尔特计数器 2)光散射法:激光散射仪 5、比表面积法 粒子粒径是测量方向的函数,也是测量方法的函 数。 相同粒子用不同方法测量会得到不同粒径。因为 各种方法依据不同的原理。
(二)粉体密度的的测定方法
1、真密度与颗粒密度的测定 (1)液浸法 求真密度时,将颗粒研细,消除开口与闭口细 孔,使用易润湿粒子表面的液体,将粉体浸入液 体中,采用加热或减压脱气法测定粉体所排开的 液体体积,即为粉体的真体积。 求颗粒密度时,使用的液体不同,应为与颗粒的 接触角大,难于浸入开口细孔的液体。 如水银或水
(二)粉体密度的的测定方法
2、松密度与振实密度的测定 将粉体装入容器中测得的体积包括粉体的真体 积、粒子内孔隙和粒子间空隙等,不施加任何外 力测得的密度为松密度.经一定规律振动或轻敲后 测得的密度称振实密度.
粉体的空隙率
孔隙率是粉体层中空隙所占有的比例。 颗粒内孔隙率: ε内=V内/(Vt+V内) 颗粒间孔隙率:ε间=V间/V 总孔隙率: ε总=(V内+V间)/V
第三节 粉体的密度与空隙率
一、粉体的密度 1、真密度(true density):粉体质量除以不包括 颗粒内外孔隙的体积求得的密度 2、颗粒密度(granule density):粉体质量除以 包括开口细孔与封闭细孔在内的体积求得的 密度 3、松密度(堆密度,bulk density):粉体质量 除以该粉体所占容器的体积求得的密度
筛号 一号筛 二号筛 三号筛 四号筛 五号筛 六号筛 七号筛 八号筛 九号筛 筛孔内径 (μm) 2000±70 850±29 355±13 250±9.9 180±7.6 150±6.6 125±5.8 90±4.6 75±4.1 工业筛目数 (孔/英寸) 10 24 60 65 80 100 120 150 200
药剂学:粉体学基础

物料风干示意图
44
6、粉体的吸湿性
水是化学反应的媒介。 固体药物吸附水份以后,在表面形成一层液膜,分解反
应就在液膜中进行。 药物是否容易吸湿,取决于其临界相对湿度(Critical
Relative Humidity),化合物的CRH越低对湿度越敏感。 药物的降解反应速度与环境的相对湿度成正比。
( ) g t
p
l
8
1、粒子径的表示方法
➢ 筛分径(sieving diameter)
当粒子通过粗筛网且被截留在细筛网上时,粗细筛 孔直径的算术或几何平均值称为筛分径。
算术平均值 几何平均值
D ab
A
2
D ab A
a—粒子通过的粗筛网直径, b—截留粒子的细筛网直径 9
1、粒子径的表示方法
4
1、粒子径的表示方法
➢ 几何学粒子径 geometric diameter
̶ 等体积径 equivalent volume diameter ̶ 比表面积等价径 equivalent specific surface diameter
➢ 有效径 (Stocks沉降径)settling velocity diameter ➢ 筛分径 sieving diameter
45
6、粉体的吸湿性
临界相对湿度(critical relative humidity, CRH)
水溶性的药物粉末在较低相对湿度环境时一般 不吸湿,但当相对湿度提高到某一定值时,吸 湿量急剧增加,此时的相对湿度即CRH。
• CRH是水溶性药物的固有特征; • 是药物吸湿性大小的衡量指标; • CRH越小则越易吸湿;反之,则不易吸湿。46
9. 平均面积径
nd 2 /
药剂学:粉体学基础

库尔特计数法(coulter counter): 测定 等体积球相当径; 可用于混悬剂、乳剂、脂质体、粉末药物等。 沉降法:可分Andreasen吸管法、离心法、比浊法、沉降 天平法、光扫描快速粒度测定法等,得到有效径/Stoke’s 径 比表面积法:气体吸附法和透过法。不能得到粒度分布。
三、粉体粒子的比表面积
(一)比表面积
粒子比表面积:指单位重量或体积所具有的粒 子表面积。
Sw=6/d; Sv=6/d
Sw ,Sv分别为重量和体积比表面积, 为粉体粒密度,d面积平均径。
16
(二)比表面积测定
1. 吸附法(BET法)
Sw=ANVm = AVm /22400 *6.028*1023
第七节 粉体的压缩性质
2
第一节 概 述
粉体学(micromeritics)是研究具有各种形状的粒子集合
体性质和应用的科学。
粉体中粒子大小范围一般在0.1~100m之间,有些粒子
大小可达1000m,小者可至0.001m。通常<100 m 的粒子叫“粉”,> 100 m者称“粒”。
粉体属于固体分散在空气中形成的粗分散体系,兼有气
分布两种形式。
区间分布又称为微分分布or频率分布,它表示一系
列粒径区间中颗粒的百分含量。
累计分布也叫积分分布,它表示小于或大于某粒径 颗粒的百分含量。
(二)粒度分布★
9
可参见P86 图6-6
频率最多 的粒子径
中位径/ 中直径
(三)平均粒径(mean diameter) P87
个数平均径/算术平均径 dln=(nd)/n
最新粉体学基础,药剂

压缩度20%以下流动性较 好。压缩度增大时流动性下
降。
粉体流动性的影响因素与改善方法
1.增大粒子大小 对于粘附性的粉状粒子进行造粒,以减少粒子间的接触点 数,降低粒子间的附着力、凝聚力。 2.粒子形态及表面粗糙度 球形粒子的光滑表面,能减少接触点数,减少摩擦力。 3.含湿量 适当干燥有利于减弱粒子间的作用力。 4.加入助流剂的影响 加入0.5%~2%滑石粉、微粉硅胶等助流剂可大大改善粉 体的流动性。但过多使用反而增加阻力。
休止角与流动性的关系
≤ 30°
流动性好 基本满足 流动性差
休止角
≤ 40° ≥ 40°
润滑剂的加入量?
2. 流出速度(flow velocity)
方法:将物料加入斗
中,测量全部物料流出
所需的时间,即为流出
速度。
3. 压缩度( compressibility)
C=(ρf - ρ0)/ ρf ×100% 式中, C为压缩度;ρ0为 最松密度;ρf为最紧密度。
根据Elder假说,水溶性药物混 合物的CRH约等于各成分CRH的
乘积,而与各成分的量无关。
(二) 水不溶性药物的吸湿性
水不溶性药物的吸湿性随着相对 湿度的变化而缓慢发生变化,没有
淀粉
临界点。 水不溶性药物的混合物的吸湿性 具有加和性。
应用?
粉体的润湿性
复方硫磺洗剂的制备 处方: 沉降硫: 3.0g 硫酸锌 3.0g 吐温-80 0.25ml 甘油 10ml 樟脑醑 2.5ml 蒸馏水加至100ml 粉体?
集合体(外延=单个粒子+聚结
粒子)
• 单个粒子叫一级粒子 (primary particles) • 聚结粒子叫二级粒子 (second particle)。 • 散剂?颗粒剂?
粉体学基础

(2)有效粒径(Stocks径) 在液相中和欲测质点具有相同沉降速度的球 形颗粒的直径。 (用沉降法测定) (3)比表面积径 与待测粒子具有相等比表面积的球的直径。 测定比表面(用吸附法或透过法)后再推算质 点的直径,故此法不知个别质点的直径。 (4)筛分径 粒子通过粗筛网且被截留在细筛网时,粗细筛 子的直径的算术或几何平均值称为筛分径。
混合物的吸湿性:
混合物的CRH值最小
。根据Elder假说, 水溶性药物混合物的CRH约等于各成分 CRH的乘积,而与各成分的比例无关。 CRHAB=CRHA· CRHB
Elder假设的条件是各成分间不发生相互
作用,不适用于能相互作用或受共同离 子影响的药物。
(二) 水不溶性药物的吸湿性
(二)粒子的形态
指一个粒子的轮廓或表面上各点所构成
的图像。
(三)比表面积
微粒的比表面积是指单位质量或容量微 粉所具有的表面积。
粒子的比表面积(specific surface area)的表 示方法根据计算基准不同可分为体积比表面积 SV和质量比表面积SW。 Sw=6/dvs; Sv=6/dvs Sw ,Sv分别为质量和体积比表面积, 为粉 体的粒密度,dvs粒径。
第八节 粘附性与凝聚性
粘附性(adhesion)是指不同分子产生的引
力,如粉体粒子与器壁间的粘附。 凝聚性 (cohesion,粘着性)是指同分子间产生的引 力,如粉体粒子之间发生粘附而形成聚集 体(random floc)。 产生粘附性和凝聚性的原因: 1、在干燥状 态下主要是由于范德华力与静电力发挥作 用; 2、在润湿状态下主要由于粒子表面存 在的水分形成液体桥或由于水分的蒸发而 产生固体桥发挥作用。
2. 流出速度(flow velocity)
粉体学基础

6.5 15.8 23.2 23.9 24.3 8.8 7.5
19.5 25.6 24.1 17.2 7.6 3.6 2.4
100.0 93.5 77.7 54.5 30.6 16.3 7.5
6.5 22.3 45.5 69.4 83.7 92.5 100.0
100.0 80.5 54.9 30.8 13.6 6.0 2.4
• 在固体剂型的制备过程中(如散剂、颗粒剂、
胶囊剂、片剂、粉针、混悬剂等,他们在医
药产品中约占70%-80%),必将涉及到固体药
物的粉碎、分级、混合、制粒、干燥、压片、
包装、输送、贮存等。
• 粉体技术在固体制剂的处方设计、生产工艺
和质量控制等方面具有重要的理论意义和实
际应用价值。
第二节
粉体的基础性质
• 将单一结晶粒子称为一级粒子(primary particle
),将一级粒子的聚结体称为二级粒子(second
particle)。
• (1)由范德华力、静电力等弱结合力的作用而发生
的不规则絮凝物(random floc)和(2)由粘合剂
的强结合力的作用聚集在一起的聚结物(agglomera • te)属于二级粒子。
颗粒间空隙率ε间=V间/V
总空隙率ε总=(V内+V间)/V
空隙率也可以通过相应的密度计算而求得:
内
g 1 t
间
总
b 1 g
b 1 t
第四节
粉体的流动性与充填性
一、粉体的流动性(flowability)
• 粉体的流动性与粒子的形状、大小、表面状态、 密度、空隙率等有关,加上颗粒之间的内摩擦力 和粘附力等的复杂关系,粉体的流动性无法用单 一的物性值来表达。
《粉体学基础》课件

药物载体
粉体可作为药物载体,将 药物包裹在粉体中,以控 制药物的释放速度和部位 。
医疗器械
粉体在医疗器械的制造中 也有应用,如用于制造人 工关节、牙科材料等。
化妆品工业
粉底
粉体作为化妆品中的主要成分,起到遮盖皮肤瑕疵、调整肤色等 作用。
眼影
不同颜色的粉体用于制造眼影,增加眼部层次感和立体感。
腮红
粉体腮红能够增添脸部红润感,提升整体妆容效果。
粉体作为食品添加剂,如面粉、 糖粉、奶粉等,用于改善食品的 口感、质地和外观。
食品包装材料
粉体材料如二氧化硅、滑石粉等 ,用于食品包装,起到防潮、防 霉、防虫等作用。
食品加工助剂
粉体如碳酸钙、碳酸镁等,作为 食品加工助剂,起到调节酸碱度 、增加食品稳定性等作用。
医药工业
药物制备
粉体在医药工业中用于制 备药物,如中药粉末、西 药颗粒等。
应用
在化工、陶瓷、制药等领域,粉体的密度与孔隙率对产品的性能和生 产工艺具有重要影响,如流动性和填充性等。
粉体的流动性与填充性
总结词
粉体的流动性与填充性是描述粉体流 动和填充性能的重要参数,它们对粉 体的加工和应用具有重要影响。
影响因素
粉体的流动性与填充性受到粒径、粒 径分布、颗粒形状、表面粗糙度、摩 擦系数等因素的影响。
干式粉碎
通过机械力将大颗粒物料 破碎成小颗粒,如球磨、 振动磨等。
湿式粉碎
将物料与液体一起送入粉 碎机,使物料在湿润状态 下进行粉碎。
超细粉碎
利用超音速气流、高能球 磨等技术将物料粉碎至纳 米级别。
物理粉碎法
结晶法
利用物质结晶时体积膨胀、硬度增加的特性,通 过反复结晶、破碎来制备粉体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章粉体学基础
第一节概述
粉:小于等于100微米粒:大于100微米
单一粒子为一级粒子,单一粒子聚结体为二级粒子
第二节粉体的基本性质
基本性质:粉体的粒径及其分布和总表面积,单一粒子的形态及表面积
一、粒径及粒径分布
(一)粒径的表示方法
1、几何学粒径
1)三轴径:在粒子平面图上测定的长径l,短径b和高度h
2)定方向径:在粒子平面投影图上测得的特征径
a)Feret:径:定方向接线径,在粒子投影图上画出外接平行线,其平行线见得距
离即是定方向径
b)Krummbein:定方向最大径,用一直线将粒子投影面按一定方向进行分割,
分割的最大长度为定方向最大径
c)Martin:定方向等分径,用一直线将粒子投影面按一定方向进行分割,恰好
将投影面积等分时的长度为定方向等分径
3)圆相当径
a)Heywood:投影面积圆相当径,系与粒子投影面积相同的圆的直径
b)周长圆相当径:系与投影面积周长相等的圆的直径
4)球相当径
a)球体积相当径:与粒子体积相同的球体的体积
b)球面积相当径:与粒子体表面积相同的球体的直径
5)纵横比:系颗粒的最大轴长度与最小轴长度之比
2、筛分径:细孔通过相当径
3、有效径:沉降速度相当径,与粒子在液相中具有相同沉降速度的球的直径
4、比表面积等价径:与粒子具有相同比表面积的球的直径
5、空气动力学相当径:空气动力学径,与不规则粒子具有相同动力学行为的单位密度
球体的直径
(二)粒径分布
频率分布:表示各个粒径所对应的粒子在全体粒子群中所占的百分数
累计分布:表示小于或大于某粒径的粒子在全体粒子群中所占的百分数
粒度分布基准:个数基准、质量基准、面积基准、体积基准、长度基准
(三)平均粒径:
中位径:中值径,累计分布图中累计正好为50%所对应的粒径
众数粒径:颗粒出现最多的粒度值,即频率分布曲线的最高峰值
(四)粒径的测定方法
显微镜法或筛分法测定药物制剂的粒子大小和限度,光散射法测定原料药或药物制剂的粒度分布
1、显微镜法:将粒子放在显微镜下,根据投影测定等价粒径
2、筛分法:筛孔机械阻挡的分级方法
3、沉降法:液相中混悬粒子的沉降速度
4、库尔特计数法:电阻法,等体积球的相当径
5、激光散射/衍射法:光传播遇到颗粒阻挡发生散射,颗粒越大,散射光夹角越小
6、比表面积法:吸附法和透过法测定
7、级联撞击器法:测量可吸入颗粒物的空气动力学粒径和粒径分布的首选
二、粒子形态:系指粒子的轮廓或表面个点所构成的图像
(一)形态指数:将粒子某些性质与球或圆的理论值比较形成的无因次组合
1、球形度:真球度,系指用粒子的球相当径计算的球的表面积与粒子实际面积之比
2、圆形度:系指用粒子的投影面积相当径计算的圆周长与粒子投影面积周长之比(二)形状系数
1、体积形状系数
2、表面积形状系数
3、比表面积形状系数
三、粒子比表面积
(一)比表面积的表示方法:单位体积或单位重量的表面积
1、体积比表面积:单位体积粉体的表面积
2、重量比表面积:单位重量粉体的比表面积
(二)比表面积的测定方法
1、气体吸附法:利用粉体吸附气体的性质
2、气体透过法:气体通过粉体时的阻力与比表面积有关
第三节粉体的其他性质
一、粉体的密度
(一)粉体密度分类和定义
1、真密度:粉体质量除以真体积得到的密度,不包括颗粒内外空隙的体积
2、粒密度:粉体质量除以粒体积得到的密度,包括内部空隙
3、堆密度:,松密度,粉体质量除以该粉体所占体积得到的密度,包括内部空隙
振实密度:经一定规律振动或轻敲后测得的堆密度
理论上:真密度大于等于粒密度大于等于振实密度大于等于堆密度
(二)粉体密度的测定方法
1、真密度的测定
1)氦气测定法:首先通入已知重量的氦气到代测定空仪器中,测得仪器容积V0
,然后将供试品放入容器抽真空,完成后导入一定量氦气,而后计
算出粉体周围及进入粉体孔径氦气体积Vt,V0-Vt既是粉体体积计
算可得真密度
2)液体汞、苯置换法
2、粒密度的测定:比重瓶法(常用)、吊斗法
3、堆密度与振实密度的测定
方法:将约50立方厘米到的经过二号筛处理的粉体装入100ml量筒中,将量筒从一英寸处落下到坚硬木板三次,所得体积即为粉体堆体积,计算可得堆密度二、粉体的空隙率
分类:颗粒内空隙率、颗粒间空隙率、总空隙率
测定:压汞法、气体吸附法
三、粉体的流动性
(一)粉体流动性的评价方法
1、休止角:粉体堆积层的自由斜面与水平面形成的最大夹角
测定方法:固定圆锥底法、固定漏斗法
动态休止角:流动粉体与水平面形成的夹角,可装入量筒后以一定速度旋转测定
休止角小于等于30度时流动性好,小于等于40度时,可以满足生产需要
2、流出速度:单位时间内从容器小孔中流出粉体的量表示
3、压缩度和Hausenr
测量方法:将一定量粉体装入量筒中测得最初堆体积,采用轻敲法测得粉体最紧状态得到最终体积,后根据相关公式计算出压缩度
压缩度为20%以下流动性较好,增大流动性下降,超过30%很难流出
HR在1.25以下流动性好,大于1.6时很难操作
(二)改善流动性的方法
1、增大粒子大小:250~2000微米流动性好,72~250微米流动性取决于形态和其他因
素,小于100微米时流动性会出现问题
2、改善粒子形态及表面粗糙度
3、改变表面作用力
4、助流剂的影响
5、改变过程条件
四、粉体的填充性
(一)表示方法:
堆容比:单位质量所占体积空隙率:堆体积中空隙所占体积
堆密度:单位体积的质量空隙比:空隙体积与真体积之比
充填率:堆密度与真密度之比配位数:一个粒子周围相邻其他粒子个数(二)颗粒的排列模型
球形粒子规则排列,接触点最小为6,此时空隙率最大,为48%,接触点为12时最小为26%,粒径大小不影响空隙率和接触点
(三)充填状态的变化和速度方程:久野方程、川北方程
(四)影响粉体充填性的因素
1、粒径大小及其分布
2、颗粒的形状和结构
3、颗粒的表面性质
4、粉体处理及过程条件
5、助流剂的影响
五、粉体的吸湿性
定义:固体表面吸附水分的现象
(一)水溶性药物的吸湿性
CRH:水溶性药物在较低的相对湿度环境中平衡水分含量较低,不吸湿,但当空气中相对湿度提高到一定值时吸湿量急剧增加,此时的相对湿度即为物料的临界相对湿度。
CRH越小越易吸湿,反之,不易吸湿
(二)水不溶性药物的吸湿性
具加和性,随相对湿度变化而缓慢变化
六、粉体的润湿性
接触角:液滴切线与固体表面的夹角,越小,润湿性越好
润湿(0~90)、不润湿(大于90,小于等于180),完全润湿(等于0)
规定:水在玻璃板接触角约等于0度,水银在玻璃板接触角越140度
测定方法:
1、液滴法:将粉体压制成大片,水平放置后在其表面中心轻轻滴液滴,直接用量角器测定
凸面和水平面的夹角
2、毛细管上升法:在圆筒管中精密填充粉体,在下端用滤纸轻轻堵住后浸入水中,测定水
在粉体中的上升速度,计算出接触角
七、液体的黏附与内聚
黏附:不同分子之间的结合
原因:1、干燥状态下粒子接触的或摩擦产生的静电力
2、在润湿状态下由于粒子表面吸附水分形成液体架桥,表面张力使粒子粘结
内聚:相同分子的结合
防止黏附和内聚:加大粒径、加入助流剂
八、粉体的压缩性质
(一)粉体的压缩特性
压缩的四个阶段
1、粉体层内粒子滑动或重新排列,形成新的充填结构,粒子形态不变
2、在粒子接触点发生弹性变形,产生临时架桥
3、粒子发生塑性变形或破碎,使空隙率显著减小,使粒子间接触面增大,产生新生的
界面增强结合力
4、固体晶格压密过程,空隙率有限体积变化不明显,以塑性变形为主,产生较大的结
合力
(二)压缩方程
1、压缩过程以塑性变形为主,与粒径有关
2、压缩过程以颗粒破碎为主,与粒径无关
3、压缩过程不发生粒子重新排列,只依靠塑性变形达到紧密结构,一定压力后空隙率
不发生变化。