能量管理系统

合集下载

面向高效能源利用的能量管理系统设计与实现

面向高效能源利用的能量管理系统设计与实现

面向高效能源利用的能量管理系统设计与实现前言:如今,面向高效能源利用已经成为全球的重要议题,提高能源利用效率也成为了重要目标。

在这个背景下,能量管理系统这个概念被提出,它旨在通过对能源的使用情况进行管理和优化来提高能源利用效率。

本文旨在对能量管理系统的设计和实现进行探讨和分析,以期为能源管理领域的发展提供一定的参考和借鉴。

一、能量管理系统概述能量管理系统,简称EMS,是指一种可以通过对能源的使用情况进行管理和优化来提高能源利用效率的系统。

它可以帮助机构、企业和个人管理和优化能源的使用,从而提高节能降耗的效果,并促进可持续发展的实现。

二、能量管理系统的设计原则设计能量管理系统时,需要根据一定的原则进行设计。

下面是一些常用的能量管理系统设计原则:1. 可靠性:能量管理系统的设计应具有可靠性和稳定性,可以保证正常运行,并预防系统故障。

2. 灵活性:能量管理系统应该具备灵活性,可以根据实际情况进行调整和优化,并可以适应各种不同的环境和应用场景。

3. 效率:能量管理系统应该具备高效率,可以通过对能源的使用和管理来提高能源利用效率,并实现节能降耗的目标。

4. 可拓展性:能量管理系统应该具有良好的可拓展性,可以随着实际需求的变化进行扩展和升级。

三、能量管理系统的实现方式能量管理系统的实现方式有多种,下面介绍几种常用的实现方式:1. 建立能源管理系统平台,通过对能源开支的收录和监测来分析能源的使用情况,从而发现能源的使用异常和浪费情况,进而提出相应的管理和优化方案。

2. 采用智能化的能源控制系统,通过无线通信与能源设备之间的互联,实现对多种能源设备的监测和管控,从而达到节能降耗的效果。

3. 建立计量监测系统,通过对能源使用的计量和监测,能够及时发现能源的浪费和异常情况,并提出相应的管理和优化方案。

四、应用实例目前,能量管理系统在不同领域已经被广泛应用。

下面是几个应用实例:1. 运用于航空领域:美国航空通用公司应用了能量管理系统,可以实现对机身内的电源分配和使用情况的监测和管理,从而有效地优化使用能源。

储能EMS能量管理系统(二)

储能EMS能量管理系统(二)

储能EMS能量管理系统(二)引言概述:储能EMS(能量管理系统)是一种智能化的系统,用于管理和优化储能设备的能量存储和释放。

本文将会对储能EMS的功能和特点进行详细阐述,包括能源存储和监控、电池健康管理、系统调度和优化、安全性能以及未来发展趋势等方面。

正文:1. 能源存储和监控:- 实时能量监测:储能EMS通过传感器监测能量存储系统的充放电状态,以实现对能量储存情况的实时监控。

- 能量计划管理:储能EMS能够制定并管理能量计划,根据能源需求和价格波动来调整储能装置的充放电策略,以实现经济和高效的能量使用。

- 能源流量控制:通过储能EMS优化能量的流动和分配,实现能源的有效利用和可靠分配,从而最大限度地减少能源浪费。

2. 电池健康管理:- 储能设备状态监测:储能EMS能够监测和分析储能设备的实时状态,包括电池温度、电压和电容等参数,以确保设备正常运行。

- 电池寿命预测:通过对电池的循环和老化进行分析,储能EMS能够预测电池的剩余寿命,并提供合理的维护和更换建议,延长电池的使用寿命。

- 故障诊断和预警:储能EMS能够及时发现储能设备的故障,并提供警报和报警信息,以便及时采取相应的修复措施,确保设备的正常运行。

3. 系统调度和优化:- 能量需求预测:根据历史数据和算法模型,储能EMS能够对能量需求进行准确的预测,从而在负荷高峰期提供高效的能量支持。

- 能量供应调度:储能EMS能够根据能源市场价格和能量需求,自动调整储能设备的充放电策略,以实现能源的高效利用和节约成本。

- 各种能源集成:储能EMS能够与其他能源管理设备(如太阳能电池、风力发电机等)集成,形成综合能源管理系统,提高整体能源利用效率。

4. 安全性能:- 故障保护和应急措施:储能EMS具备故障保护功能,能够及时检测并解决储能设备的故障问题,确保设备的安全运行。

- 安全规范和标准遵守:储能EMS遵循相关的安全规范和标准要求,包括电池安全性能测试和设备防护要求,以确保系统的安全性和稳定性。

能量管理系统

能量管理系统

能量管理系统摘要能源是现代社会发展所必需的资源,而能源管理的有效性对于实现可持续发展和资源节约至关重要。

能量管理系统是一种用于监测、分析和控制能源使用的工具。

本文将介绍能量管理系统的定义、功能和重要性,并探讨其应用领域和优势。

引言随着能源供应紧张和能源消耗的不断增加,能源管理变得越来越重要。

传统的能源管理方法已经无法满足日益增长的能源需求和环境保护的要求。

为了解决这一问题,能量管理系统应运而生。

一、能量管理系统的定义能量管理系统(Energy Management System,EMS)是一种专门为组织和企业设计的系统,旨在监测、分析和控制能源的使用。

它提供了对能源消耗的实时数据,帮助用户识别并改进能源效率,减少能源浪费。

能量管理系统通过综合应用技术手段,包括传感器、数据采集设备、软件和算法等,实现能源监测和优化管理。

二、能量管理系统的功能1. 能源监测:能量管理系统可以实时监测和记录能源的使用情况,包括电力、燃气、水等能源类型。

用户可以通过系统查看能源使用量的实时数据和历史数据,以便了解能源消耗的变化趋势。

2. 能源分析:能量管理系统可以对能源消耗数据进行分析,帮助用户了解能源使用的模式和主要消耗点。

通过能源分析,用户可以识别出能源浪费的原因,并采取相应措施进行改进。

3. 能源控制:能量管理系统可以通过智能控制设备实现对能源的精细管理。

用户可以设定能源使用的各项参数和限制条件,系统会自动控制设备工作状态,以使能源使用效率最大化。

4. 能源报告:能量管理系统可以生成定期的能源报告,向用户提供关于能源使用情况的详细信息。

这些报告可以用于评估能源管理的效果,帮助用户制定更合理的能源管理策略。

三、能量管理系统的重要性能量管理系统在实现可持续发展和资源节约方面起到了至关重要的作用。

以下是能量管理系统的重要性体现:1. 节约能源:能量管理系统通过监测和控制能源使用,能够发现并纠正能源浪费的问题,从而减少能源的浪费,实现能源的高效利用。

能量管理系统(EMS)-20211106123420

能量管理系统(EMS)-20211106123420

能量管理系统(EMS)2021110620一、系统概述能量管理系统(EMS)是一种集监测、分析、控制、优化于一体的智能化能源管理平台。

它旨在帮助企业和个人实现能源消耗的实时监控、数据分析、节能优化,从而降低能源成本,提高能源利用效率,助力绿色可持续发展。

二、系统功能1. 实时监测:EMS系统能够实时采集各类能源数据,包括电力、水、气、热等,为用户提供详细的用能信息。

2. 数据分析:通过对能源数据的深度挖掘,系统可各类统计报表,帮助用户了解用能状况,为节能决策提供依据。

3. 能耗预警:当能耗异常时,系统会自动发出预警,提醒用户及时采取措施,防止能源浪费。

4. 节能控制:EMS系统可根据用户需求,自动调整用能设备运行状态,实现节能目标。

5. 报表输出:系统可定期能耗报表,便于用户了解能源使用情况,为企业节能考核提供数据支持。

6. 系统兼容性:EMS系统支持多种通信协议,可轻松接入各类用能设备,实现能源管理的全面覆盖。

三、应用场景1. 工业企业:通过EMS系统,企业可实时掌握生产线能耗情况,优化生产流程,降低能源成本。

2. 商业综合体:EMS系统助力商业综合体实现能源精细化管理,提高能源利用率,降低运营成本。

3. 公共建筑:公共建筑通过部署EMS系统,可实现能耗监测与控制,为节能减排提供有力支持。

4. 住宅小区:EMS系统帮助小区居民了解家庭用能情况,培养节能意识,共创绿色家园。

四、实施效益1. 经济效益:通过节能降耗,降低企业运营成本,提高经济效益。

2. 社会效益:促进绿色低碳发展,提升企业形象,履行社会责任。

3. 环保效益:减少能源消耗,降低污染物排放,保护生态环境。

4. 管理效益:提升能源管理水平,优化资源配置,提高企业竞争力。

五、系统特点2. 灵活性:系统可根据用户需求进行定制,满足不同场景下的能源管理需求。

3. 易用性:界面设计简洁直观,操作便捷,无需专业培训即可上手。

4. 安全性:系统采用多重安全防护措施,确保数据安全和系统稳定运行。

基于群智能优化算法的能量管理系统设计

基于群智能优化算法的能量管理系统设计

基于群智能优化算法的能量管理系统设计能量管理系统是指通过智能化技术实现对能源的监控、控制和优化利用的系统。

随着能源资源的稀缺和环境问题的日益严重,能源管理系统的研究和应用成为了当今科技发展的热点之一。

基于群智能优化算法的能量管理系统设计是一种智能化的能源管理方法,其通过群体智能的方式对能源系统进行优化调度,以降低能源消耗、提高能源利用效率,实现可持续发展。

群智能优化算法是一种基于群体行为的算法,它模拟了社会群体中的协同行为,通过群体内信息共享和相互作用,寻找到最优解。

在能量管理系统设计中,群智能优化算法可以应用于电力系统优化调度、能源供需匹配、能源网络规划等方面。

下面将从这几个方面来介绍基于群智能优化算法的能量管理系统设计。

首先,基于群智能优化算法的能量管理系统设计可以应用于电力系统优化调度。

电力系统的优化调度主要包括负荷调度、发电机组出力控制、输电线路转电容调整等。

传统的电力系统优化调度往往依赖于人工经验和简化模型,无法全面考虑各种因素的综合影响。

而基于群智能优化算法的能量管理系统设计能够通过建立多个个体的优化模型,并通过协同合作,快速找到全局最优解。

例如,可以利用粒子群优化算法对电力系统进行调度,使得系统负荷、发电和输电等方面的效益最大化,从而实现电力系统的稳定运行和节能减排。

其次,基于群智能优化算法的能量管理系统设计可以应用于能源供需匹配。

能源供需匹配是指根据用户需求和能源供给情况,在保证供能可靠性的前提下,对能源的供需进行有效调配。

传统的能源供需匹配主要基于预测和规划,存在着预测不准确和能源浪费的问题。

而基于群智能优化算法的能量管理系统设计可以通过实时监测和响应,对能源供需进行实时优化调整,从而降低能源浪费,提高能源利用效率。

例如,可以利用遗传算法对小区或工业园区的能源供需进行调配,根据历史用电数据和实时需求情况,自动调整能源的分配,提高供能的可靠性和能源利用效率。

最后,基于群智能优化算法的能量管理系统设计可以应用于能源网络规划。

能量管理系统

能量管理系统
THANK YOU FOR WATCHING
谢谢观看 DOCS
• 核心功能包括: • 数据采集:通过各种传感器和仪表收集能源使用数据 • 数据处理:对采集到的数据进行清洗、整理和分析 • 数据分析:利用统计和预测技术,挖掘能源使用中的潜在问题和优化空间 • 能源优化:根据分析结果,提供节能措施和管理策略,指导企业合理使用和分配能源
能量管理系统在工业领域的应用背景
• 统计分析:利用统计方法分析能源数据,发现数据中的规律和趋势 • 预测分析:利用预测技术预测未来能源消耗,为能源优化提供依据 • 数据挖掘:利用数据挖掘技术发现数据中的潜在问题和优化空间
能量管理系统的性能评估与优化方法
性能评估方法:
• 定量评估:通过数据指标评估系统性能,如响应时间、准确率等 • 定性评估:通过用户体验和专家意见评估系统性能,如易用性、实用性等
02
能量管理系统的组成与结构
能量管理系统的硬件组成及其作用
硬件组成主要包括:
• 传感器:用于测量各种能源参数,如温度、压力、流量等 • 仪表:用于显示和记录能源数据,如电能表、燃气表等 • 通信设备:用于实现数据传输和通信,如以太网交换机、无线通信模块等 • 服务器:用于存储和管理能源数据,如工业控制计算机、数据库服务器等
04
能量管理系统的分析与评估
能量管理系统的数据分析与挖掘技术
数据分析与挖掘的应用:
• 设备性能分析:分析设备运行数据,发现设备性能的优劣和改进空间 • 生产过程优化:分析生产过程数据,发现生产过程中的瓶颈和优化方向 • 能源消耗预测:预测未来能源消耗,为能源管理和优化提供决策支持
数据分析与挖掘技术:
对能量管理系统未来研究的建议与展望
研究建议:
• 加强理论研究:深入研究能量管理系统的原理和方法,提高系统的科学性和实用性 • 注重技术创新:关注新技术的发展,将新技术应用于能量管理系统,提高系统技术水平 • 深化应用研究:针对不同行业和企业特点,开展能量管理系统的应用研究,提高系统的适 用性和效果

智能电网中的能量管理系统设计

智能电网中的能量管理系统设计

智能电网中的能量管理系统设计在当今社会,随着能源需求的不断增长和对电力供应可靠性的要求日益提高,智能电网已成为电力领域发展的重要方向。

而在智能电网中,能量管理系统(Energy Management System,简称 EMS)扮演着至关重要的角色。

它就像是电网的“大脑”,负责优化能源的分配、监控电网的运行状态,并确保电力系统的稳定和高效运行。

能量管理系统的主要功能包括电力负荷预测、发电计划制定、输电和配电的优化调度、以及故障诊断和应急处理等。

通过实时收集和分析来自电网各个节点的数据,EMS 能够做出明智的决策,以实现能源的高效利用和成本的降低。

在设计智能电网中的能量管理系统时,首先要考虑的是数据采集和通信架构。

大量的传感器和智能电表被部署在电网中,用于采集电压、电流、功率等关键参数。

这些数据需要通过高速、可靠的通信网络传输到中央控制中心,以便进行处理和分析。

常见的通信技术包括光纤通信、无线通信和电力线载波通信等。

为了确保数据的准确性和完整性,还需要采用先进的数据校验和纠错机制。

电力负荷预测是能量管理系统的一项重要任务。

准确的负荷预测对于合理安排发电计划、优化电网运行至关重要。

负荷预测通常基于历史数据、天气信息、经济活动指标等多种因素。

通过运用统计分析、机器学习和人工智能等方法,可以建立精确的负荷预测模型。

例如,基于时间序列分析的方法可以捕捉负荷的周期性变化规律;而基于神经网络的方法则能够处理复杂的非线性关系,提高预测的精度。

发电计划的制定也是 EMS 的核心功能之一。

根据负荷预测结果和各类电源的特性,系统需要合理安排不同类型发电机组的出力。

这包括传统的火力发电机组、水力发电机组,以及新兴的风力发电、太阳能发电等可再生能源机组。

在制定发电计划时,需要考虑到发电成本、环保要求、机组的运行限制等多个因素,以实现经济效益和环境效益的平衡。

输电和配电的优化调度是为了降低电网的损耗,提高输电效率。

通过对电网拓扑结构的分析和潮流计算,可以确定最佳的输电线路和变压器的运行方式。

能量管理系统

能量管理系统

能量管理系统简介能量管理系统(EMS)包括:数据采集和监控系统(SCADA系统),自动发电控制(AGC)和经济调度控制(EDC),电力系统状态估计(State Estimator),安全分析(Security Analysis),调度员模拟培训系统(DTS)。

EMS的总体结构主要组成部分有:计算机、操作系统、支持系统、数据收集、能量管理(发电控制和发电计划)、网络分析及调度员培训模拟系统。

计算机、操作系统、支持系统构建了EMS的支撑平台。

数据收集、能量管理、网络分析组成了EMS的应用软件。

数据收集是能量管理和网络分析的基础和基本功能;能量管理是EMS的主要功能;网络分析是EMS的高级应用软件功能。

培训模拟系统则可以分为两种类型:一是离线运行的独立系统,一是作为在线运行的EMS组成部分。

一、EMS的计算机结构如今常见的EMS计算机体系结构为开放式计算机体系结构。

它们的主要思想是强调多厂家的系统集成和用户界面及各方面软件接口的标准化。

开放式计算机结构应满足:①工作站为基本单元,系统可灵活组成。

②各子系统冗余配置。

③严格遵守工业标准,它包括操作系统的POSIX标准。

④采用外壳技术,将专用软件与操作系统相隔离,这个外壳软件层是一个符合POSIX标准的插头,可插到符合该标准化的各种操作系统上。

⑤采用商用数据库。

⑥硬件可采用多家产品。

⑦实现系统内部采用局域网互联,并可与其他信息系统相连。

二、EMS的数据库EMS的数据库是实现EMS所有功能的所需的数据源。

EMS数据库设计是将物理模型化为数学模型的定义过程。

不同公司设计的EMS数据库有不同的定义及不同的数据库形式。

但就EMS的数据来源而言无非有这样一些类型:实时量测数据、预测与计划数据、基本数据、历史数据和临时数据。

1)实时量测数据由遥信、遥测而来,主要反映当前电力系统运行状态。

它包括设备的状态量和设备运行的模拟量和累加量。

2)预测和计划数据向EMS提供当时或未来的电力系统运行状态数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能量管理系统能量管理系统(EMS)包括:数据采集和监控系统(SCADA系统),自动发电控制(AGC)和经济调度控制(EDC),电力系统状态估计(State Estimator),安全分析(Security Analysis),调度员模拟培训系统(DTS)。

科技名词定义中文名称:能量管理系统英文名称:energy management system,EMS;energy management system定义1:一种计算机系统,包括提供基本支持服务的软件平台,以及提供使发电和输电设备有效运行所需功能的一套应用,以便用最小成本保证适当的供电安全性。

所属学科:电力(一级学科);调度与通信、电力市场(二级学科)定义2:用能量状态近似法作为飞行轨迹优化算法的性能管理系统。

所属学科:航空科技(一级学科);飞行控制、导航、显示、控制和记录系统(二级学科)能量管理系统(EMS)包括:数据采集和监控系统(SCADA系统),自动发电控制(AGC)和经济调度控制(EDC),电力系统状态估计(State Estimator),安全分析(Security Analysis),调度员模拟培训系统(DTS)。

配电网管理系统(DMS)包括:配电自动化系统(DAS),地理信息系统(GIS),配电网重构,管理信息系统(MIS),需求侧管理(DSM)。

1、SCADA系统SCADA(Supervisory Control And Data Acquisition)系统,即数据采集与监视控制系统。

SCADA系统是以计算机为基础的DCS与电力自动化监控系统;它应用领域很广,可以应用于电力、冶金、石油、化工等领域的数据采集与监视控制以及过程控制等诸多领域。

简介在电力系统中,SCADA系统应用最为广泛,技术发展也最为成熟。

它在远动系统中占重要地位,可以对现场的运行设备进行监视和控制,以实现数据采集、设备控制、测量、参数调节以及各类信号报警等各项功能,即我们所知的"四遥"功能.RTU(远程终端单元),FTU(馈线终端单元)是它的重要组成部分.在现今的变电站综合自动化建设中起了相当重要的作用.编辑本段系统概述SCADA系统概述一、SCADA系统概述SCADA系统是以计算机为基础的生产过程控制与调度自动化系统。

它可以对现场的运行设备进行监视和控制,以实现数据采集、设备控制、测量、参数调节以及各类信号报警等各项功能。

由于各个应用领域对SCADA的要求不同,所以不同应用领域的SCADA系统发展也不完全相同。

在电力系统中,SCADA系统应用最为广泛,技术发展也最为成熟。

它作为能量管理系统(EMS系统)的一个最主要的子系统,有着信息完整、提高效率、正确掌握系统运行状态、加快决策、能帮助快速诊断出系统故障状态等优势,现已经成为电力调度不可缺少的工具。

它对提高电网运行的可靠性、安全性与经济效益,减轻调度员的负担,实现电力调度自动化与现代化,提高调度的效率和水平中方面有着不可替代的作用。

SCADA在铁道电气化远动系统上的应用较早,在保证电气化铁路的安全可靠供电,提高铁路运输的调度管理水平起到了很大的作用。

在铁道电气化SCADA系统的发展过程中,随着计算机的发展,不同时期有不同的产品,同时我国也从国外引进了大量的SCADA产品与设备,这些都带动了铁道电气化远动系统向更高的目标发展。

二、SCADA系统发展历程SCADA(Supervisory Control and Data Acquisition)系统,全名为数据采集与监视控制系统。

SCADA系统自诞生之日起就与计算机技术的发展紧密相关。

SCADA系统发展到今天已经经历了三代。

第一代是基于专用计算机和专用操作系统的SCADA系统,如电力自动化研究院为华北电网开发的SD176系统以及在日本日立公司为我国铁道电气化远动系统所设计的H-80M系统。

这一阶段是从计算机运用到SCADA系统时开始到70年代。

第二代是80年代基于通用计算机的SCADA系统,在第二代中,广泛采用VAX等其它计算机以及其它通用工作站,操作系统一般是通用的UNIX操作系统。

在这一阶段,SCADA系统在电网调度自动化中与经济运行分析,自动发电控制(AGC)以及网络分析结合到一起构成了EMS系统(能量管理系统)。

第一代与第二代SCADA系统的共同特点是基于集中式计算机系统,并且系统不具有开放性,因而系统维护,升级以及与其它联网构成很大困难。

90年代按照开放的原则,基于分布式计算机网络以及关系数据库技术的能够实现大范围联网的EMS/SCADA系统称为第三代。

这一阶段是我国SCADA/EMS系统发展最快的阶段,各种最新的计算机技术都汇集进SCADA/EMS系统中。

这一阶段也是我国对电力系统自动化以及电网建设投资最大的时期,国家计划未来三年内投资2700亿元改造城乡电网可见国家对电力系统自动化以及电网建设的重视程度。

第四代SCADA/EMS系统的基础条件已经或即将具备,预计将与21世纪初诞生。

该系统的主要特征是采用Internet技术、面向对象技术、神经网络技术以及JAVA技术等技术,继续扩大SCADA/EMS系统与其它系统的集成,综合安全经济运行以及商业化运营的需要。

SCADA系统在电气化铁道远动系统的应用技术上已经取得突破性进展,应用上也有迅猛的发展。

由于电气化铁道与电力系统有着不同的特点,在SCADA系统的发展上与电力系统的道路并不完全一样。

在电气化铁道远动系统上已经成熟的产品有由我所自行研制开发的HY200微机远动系统以及由西南交通大学开发的DWY微机远动系统等。

这些系统性能可靠、功能强大,在保证电气化铁道供电安全,提高供电质量上起到了重要的作用,对SCADA系统在铁道电气化上的应用功不可没。

三、SCADA系统发展瞻望SCADA系统在不断完善,不断发展,其技术进步一刻也没有停止过。

当今,随着电力系统以及铁道电气化系统对SCADA系统需求的提高以及计算机技术的发展,为SCADA系统提出新的要求,概括地说,有以下几点:1、SCADA/EMS系统与其它系统的广泛集成SCADA系统是电力系统自动化的实时数据源,为EMS系统提供大量的实时数据。

同时在模拟培训系统,MIS系统等系统中都需要用到电网实时数据,而没有这个电网实时数据信息,所有其它系统都成为“无源之水”。

所以在这今十年来,SCADA系统如何与其它非实时系统的连接成为SCADA研究的重要课题;现在在SCADA系统已经成功地实现与DTS(调度员模拟培训系统)、企业MIS系统的连接。

SCADA系统与电能量计量系统,地理信息系统、水调度自动化系统、调度生产自动化系统以及办公自动化系统的集成成为SCADA系统的一个发展方向。

2、变电所综合自动化以RTU、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变电所的占地面积和设备投资,提高二次系统的可靠性。

变电所的综合自动化已经成为有关方面的研究课题,我国东方电子等公司已经推出相应的产品,但在铁道电气化上还处于研究阶段。

3、专家系统、模糊决策、神经网络等新技术研究与应用2、自动发电控制科技名词定义中文名称:自动发电控制英文名称:automatic generation control,AGC其他名称:负荷频率控制(load-frequency control)定义:随着系统频率、联络线所带负荷或者它们相互之间关系的变化,调节指定区域内各发电机的有功出力来维持计划的系统频率或使其与其他区域的既定交换在预定限值内或二者兼顾。

所属学科:电力(一级学科);调度与通信、电力市场(二级学科)利用调度监控计算机、通道、远方终端、执行(分配)装置、发电机组自动化装置等组成的闭环控制系统,监测、调整电力系统的频率,以控制发电机出力。

它是电力系统调度自动化的主要内容之一。

简介系统频率和联编辑本段控制指标自动发电控制的功能指标为①电力系统频率偏差(Δf)小于±0.1Hz。

②与邻区电力系统联络线净交换功率保持在计划值。

净交换功率误差的随机电量可以按峰、谷负荷时段计量和偿还。

③保证电力系统时差不超过±5秒,超出时可自动或手动进行修正。

编辑本段控制方式一般采用联络线净交换功率偏差和频率偏差控制方式(TBC)。

这种控制方式编辑本段调频厂与非调频厂参加调频的发电厂称为调频厂。

区域调度中心的监控计算机,对调频火电厂是计算出机组功率,因为目前10万kW及以上的火电机组绝大部分为单元机组,故可直接将控制信号发送到单元机组;对调频水电站是计算出全站的总功率,当此设定功率到达水电站后需经过站内分配装置才去控制机组。

非调频厂是指不参加调频的电厂,一般指10万kW以下的火电机组和母管式火电厂以及暂不参加在线控制的电厂,但必需按日计划负荷曲线进行手动调整,承担电网的调峰、谷任务(包括按开停机计划启停)。

自动发电控制对调频厂的要求为:①所有调频厂的调速系统均应符合自动控制的要求,调整灵敏,死区小,无卡滞现象。

调差系数应统一整定。

②消除调频厂内主、辅机设备的各种缺陷,水电厂的机组自动装置和火电厂的常规热工自动装置应完好地投用。

③水电站的机组振动区应设法消除,可调容量应满足0~100%的要求。

④火电厂的可调容量,对老机组应力争满足70~100%额定范围内进行调整;对新装机组则要求满足50~100%额定范围内调整。

负荷变动速度要求最大为每分钟3%额定值。

⑤火电厂新装机组都应有炉随机方式的机炉协调自动装置。

现代电力系统的自动发电控制不单是为了调整电网频率,更重要的是在控制各机组发电出力时实现经济负荷分配,为了明确起见把自动发电控制和自动经济调度(EDC)连在一起,简称为AGC/EDC,这时须考虑实时控制。

3、经济调度控制经济调度控制(EDC)用以确定最经济的发电调度以满足给定的负荷水平。

4、电力系统状态估计电力系统状态估计是电力系统调度中心的能量管理系统(EMS)的核心功能之一,其功能是根据电力系统的各种量测信息,估计出电力系统当前的运行状态。

现代电网的安全经济运行依赖于能量管理系统(EMS),而能量管理系统的众多功能又可分成针对电网实时变化进行分析的在线应用和针对典型潮流断面进行分析的离线应用两大部分。

电力系统状态估计可以说是大部分在线应用的高级软件的基础。

如果电力系统状态估计结果不准确,后续的任何分析计算将不可能得到准确的结果。

1.电力系统的量测系统电力系统的量测分为遥测和遥信两种。

遥测是模拟量的量测结果,包括支路功率或电流,节点电压等。

传统的SCADA系统不能测量节点电压的相角。

随着WAMS的发展,节点电压相角的量测也逐渐变为可能。

但具体的实施还有诸多困难,这里不详述。

遥信是开关量的量测结果,即开关(断路器)或刀闸的开合状态,变压器的档位等。

相关文档
最新文档