锐角三角函数同步练习及答案
九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)

九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为A.15tan37︒B.15sin37︒C.15tan 37°D.15sin 37°【答案】C【解析】如图,在Rt△ABC中,∠B=90°,∠C=37°,BC=15,∴tan C=ABBC,则AB=BC•tan C=15tan37°.故选C.【名师点睛】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.2.如图,在海拔200米的小山顶A处,观察M,N两地,俯角分别为30°,45°,则M,N两地的距离为A.200米B.2003米C.400米D.200(3+1)米【答案】D【解析】过A作AB⊥MN于B,在Rt △ABM 中, 90,200,30ABM AB M ∠==∠=,tan AB M BM∴∠=, 2003BM ∴=,在Rt △ABN 中, 90,45ABN N BAN ∠=∠=∠=,∴BN =AB =200,()200320020031MN ∴=+=+米.故选D.3.如图是一张简易活动餐桌,测得30cm OA OB ==,50cm OC OD ==,B 点和O 点是固定的.为了调节餐桌高矮,A 点有3处固定点,分别使OAB ∠为30,45,60,问这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)A .402cmB .40cmC .403cmD .30cm【答案】B【解析】过点D 作DE ⊥AB 于点E ,∵∠OAB =30时,桌面离地面最低, ∴DE 的长即为最低长度, ∵OA =OB =30cm ,OC =OD =50cm , ∴AD =OA +OD =80cm , 在Rt △ADE 中,∵∠OAB =30,AD =80cm , ∴140cm.2DE AD ==故选:B.4.如图,某水库堤坝横截面迎水坡AB的坡度是1:3,堤坝高为40m,则迎水坡面AB的长度是A.80m B.803mC.40m D.403m【答案】A5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.409秒B.16秒C.403秒D.24秒【答案】B【解析】如图,以点A为圆心,取AB=AD=200米为半径,过点A作AC⊥MN,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时开始对A处产生噪音影响,到点D时结束影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得: BC=160米∴BD=2BC=320米,∵72千米/小时=20米/秒,∴影响时间应是320÷20=16 (秒),故选B.6.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是A.6千米B.8千米C.10千米D.14千米【答案】B【解析】∵∠ABG=48°,∠CBE=42°,∴∠ABC=180°-48°-42°=90°,∴A到BC的距离就是线段AB的长度,∴AB=8千米.BE=,她7.如图,小颖利用有一锐角是30的三角板测量一棵树的高度,已知她与树之间的水平距离6mAB=,那么这棵树高的眼睛距地面的距离 1.5m23 1.5mA.23m B.()32 1.5m D.4.5mC.()【答案】B【解析】在直角三角形ACD中,∠CAD=30°,AD=6m,∴CD=AD tan30°=6×33=23,∴CE=CD+DE=23+1.5(m).故选B.8.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B 两点间的距离为多少米.A.7502B.3752C.3756D.7506【答案】A二、填空题:请将答案填在题中横线上.9.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后楼梯AC长为_____m.【答案】26【解析】在Rt△ABD中,∵sin∠ABD=AD AB,∴AD=4sin60°=23(m),在Rt△ACD中,∵sin∠ACD=AD AC,∴AC=23sin45=26(m).故答案是:26.10.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A 的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+3)nmile处,则海岛A,C之间的距离为______nmile.【答案】2【解析】作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=22x,则CD=22x,在Rt△ABD中,BD=6 tan2ADABD=∠x,则22x+62x=18(1+3),解得,x=182,答:A,C之间的距离为182海里.故答案为:182.11.如图,一轮船由南向北航行到O处时,发现与轮船相距40海里的A岛在北偏东33方向.已知A岛周围20海里水域有暗礁,如果不改变航向,轮船________(填“有”或“没有”)触暗礁的危险.(可使用科学记算器)【答案】没有【解析】已知OA=40,∠O=33°,则AB=40•sin33°≈21.79>20.所以轮船没有触暗礁的危险.故答案为: 没有.12.数学组活动,老师带领学生去测塔高,如图,从B点测得塔顶A的仰角为60,测得塔基D的仰角为45,已知塔基高出测量仪20m,(即20mDC=),则塔身AD的高为________米.【答案】()2031-【解析】在Rt △ABC 中,AC =3BC .在Rt △BDC 中有DC =BC =20,∴AD =AC−DC =3BC−BC =20(3−1)米. 故答案为:20(3−1).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端A 处,测得仰角为45,再往建筑物的方向前进6米到达D 处,测得仰角为60,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈【解析】设AB x =米, ∵∠C =45°,∴在Rt ABC △中,BC AB x ==米,60ADB ∠=, 6CD =米,∴在Rt ADB △中tan ∠ADB =ABBD, tan60°=6xx -, 解得)333114.2x =≈米答,建筑物的高度为14.2米.14.如图,一个热气球悬停在空中,从热气球上的P点测得直立于地面的旗杆AB的顶端A与底端B的俯角分别为34°和45°,此时P点距地面高度PC为75米,求旗杆AB的高度(结果精确到0.1米).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67)15.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)【解析】如图所示,延长BA交FD延长线于点G,过点A作AH⊥DG于点H.由题意知,AB=300cm,BE=AC=50cm,AH=50cm,∠AGH=30°.在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,则CD=12CG=75cm.∵EG=AB﹣BE+AG=300﹣50+100=350(cm).在Rt△EFG中,EF=EG tan∠EGF=350tan30°=350×33503(cm).答:支撑角钢CD的长为75cm,EF 3503.。
【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题(含答案)

锐角三角函数我们知道,在Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则有:sin cos a A B c ==,cos sin b A B c ==,tan aA b=,这就是锐角三角函数的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系. 一、余角关系由上面的定义我们已得到sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A +∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在Rt△ABC 中,∠C =90°,CD ⊥AB 于D ,已知1sin 2A =,BD =2,求BC 的长.解:由于∠A +∠B =90°,所以1cos sin(90)sin 2B B A =-==.在Rt△BCD 中,cos BD B BC =,所以212BC =.所以BC =4. 二、平方关系 由定义知sin a A c =,cos b A c=, 所以222222222sin cos a b a b A A c c c++=+=(sin 2A 、cos 2A 分别表示sin A 、cos A 的平方).又由勾股定理,知a 2+b 2=c 2,所以sin 2A +cos 2A =22c c=1.应用此关系式我们可以进行有关锐角三角函数平方的计算. 例2 计算:sin256°+sin245°+sin234°.解:由余角关系知sin56°=cos(90°-56°)=cos34°. 所以原式=sin245°+(sin234°+cos234°)223122⎛⎫=+= ⎪ ⎪⎝⎭. 三、相除关系 由定义中sin a A c =,cos bA c=, 得sin tan cos aA a c ac A b A c b bc==⨯==.利用这个关系式可以使一些化简求值运算过程变得简单. 例3 已知α为锐角,tan α=2,求3sin cos 4cos 5sin αααα+-的值.解:因为sin tan 2cos ααα==,所以sin α=2cos α, 所以原式6cos cos 6174cos 10cos 4106αααα++===---.求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例4 如图1, 在△ABC 中,∠C =90°,如果t a n A =125,那么sin B 等于( ) (A)135 (B) 1312 (C) 125 (D)512 分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为tan A =125=b a ,所以可设a =5k ,b =12k (k >0),根据勾股定理得c =13k , 所以sin B =1312=c b .应选(B).五、等线段代换法例5 如图2,小明将一张矩形的纸片ABC D 沿C E 折叠,B 点恰好落在A D 边上,设此点为F ,若BA :BC =4:5,则c os∠DCF 的值是______.分析:根据折叠的性质可知△E BC ≌△EF C ,所以C F=CB , 又C D=AB ,AB :BC =4:5, 所以C D :C F=4:5,图1 图2在Rt△D C F 中,c os∠D C F=54=CF DC . 六、等角代换法例6 如图3,C D 是平面镜,光线从A 点出发经C D 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC ⊥C D ,B D⊥C D ,垂足分别为C 、D ,且AC =3,B D =6,C D =11,则tan α的值为( ) (A )311 (B )113 (C )119 (D )911分析:根据已知条件可得∠α=∠CA E ,所以只需求出tan∠CA E .根据条件可知△AC E∽△B DE,所以ED CE BD AC =,即CECE-=1163, 所以C E=311,在Rt△A E C 中,tan∠CA E=9113311==AC CE .所以tan α=911.七、等比代换法例7 如图4, 在Rt△ABC 中,ACB =90,C D⊥AB 于点D ,BC =3,AC =4,设BC D=α,tan α的值为( )(A)43 (B)34 (C)53 (D)54分析:由三角形函数的定义知tan α=DCDB, 由Rt△C D B ∽Rt△ACB , 所以43==AC BC DC DB ,所以tan α=43,选(A). ABCDEα 图3图4锐角三角函数测试1.比较大小:sin41°________sin42°.2.比较大小:cot30°_________cot22°.3.比较大小:sin25°___________cos25°.4.比较大小:tan52°___________cot52°.5.比较大小:tan48°____________cot41°.6.比较大小:sin36°____________cos55°.7、下列命题①sinα表示角α与符号sin的乘积;②在△ABC中,若∠C=90°,则c=αsinA成立;③任何锐角的正弦和余弦值都是介于0和1之间实数.其正确的为()A、②③ B.①②③ C.② D. ③8、若Rt△ABC的各边都扩大4倍得到Rt△A′B′C′,那么锐角A和锐角A′正切值的关系为( )A.tanA′=4tanA B.4tanA′=tanA C.tanA′=tanA D.不确定.9(新疆中考题)(1)如图(1)、(2),锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小。
锐角三角函数(附答案)

教材过关二十八 锐角三角函数一、填空题1.在直角三角形中,斜边和一直角边的比是5∶3,最小角为α,则sin α=_______________,cos α=_________________,tan α=__________________. 答案:53 54 43 提示:假如两边长分别为5、3,则另一边为4,且3所对的角最小,由此可得答案. 2.在△ABC 中,若︱sinA-21︱+(23-cosB)2=0, 则∠C=___________________. 答案:120° 提示:由sinA=21,可得∠A=30°, 由cosB=23,得∠B=30°,则∠C=120°. 3.6tan 230°-3sin60°-2cos45°=__________________. 答案:21-2 提示:tan30°=33,sin60°=23,cos45°=22. 4.等腰三角形的两条边长分别是 4 cm ,9 cm ,则等腰三角形的底角的余弦值是________________. 答案:92 提示:三角形三边只能为4,9,9.5.若∠A 为锐角,且tan 2A+2tanA-3=0,则∠A=__________________. 答案:45°提示:解这个一元二次方程,可得tanA 的值,但∠A 为锐角,所以只能取正值. 6.如图9-43,AB 、CD 是两栋楼,且AB=CD=30 m,两楼间距AC=24 m,当太阳光与水平线的夹角为30°时,AB 楼在CD 楼上的影子是m.(精确到0.1 m )图9-43答案:16.2提示:画出图形,解直角三角形. 二、选择题7.在△ABC 中,∠C=90°,下列式子正确的是A.b=atanAB.b=csinAC.a=ccosBD.c=asinA 答案:C 提示:因为cosB=ca,所以a=ccosB. 8.在Rt △ABC 中,各边都扩大四倍,则锐角A 的各三角函数值 A.没有变化 B.分别扩大4倍 C.分别缩小到原来的41D.不能确定 答案:A提示:因为各边都扩大四倍,它们的比值不变,故三角函数值也不变. 9.在Rt △ABC 中, 2sin(α+20°)=3,则锐角α的度数是A.60°B.80°C.40°D.以上结论都不对 答案:C提示:2sin(α+20°)=3,得sin(α+20°)=23, 所以α+20°=60°,α=40°.10.在Rt △ABC 中, ∠C=90°,已知tanB=25,则cosA 等于 A.25 B.35 C.552 D.32答案:B 提示:∵tanB=25,a b =25,可令b=5,a=2,则c=3,cosA=35. 11.有一个角是30°的直角三角形,斜边为1 cm ,则斜边上的高为 A.41 cm B.21cmC.43 cm D.23 cm 答案:C 提示:直角三角形中30°角所对的边等于斜边的一半,求出两直角边再利用面积或射影定理. 三、解答题12.(2010四川泸洲中考)如图9-44,在一次实践活动中,小兵从A 地出发,沿北偏东45°方向行进了53千米到达B 地,然后再沿北偏西45°方向行进了5千米到达目的地点C.图9-44(1)求A 、C 两地之间的距离;(2)试确定目的地C 在点A 的什么方向? 解:根据题意,可知∠ABC=90°,∵AB=53,BC=5, AC 2=AB 2+BC 2 =75+25 =100.∴AC=10千米.(2)在Rt △ABC 中,tan ∠BAC=AB BC =355=33, ∴∠BAC=30°.∴C 在点A 的北偏东15°.提示:根据方向角,先确定出△ABC 是直角三角形,可用勾股定理求AC,再利用三角函数求出CA.13.如图9-45,用测角仪测得铁塔顶点A 的仰角为30°,测角仪离铁塔中心线AB 的距离为40米,测角仪CD 高1.5米,求铁塔的高度.(精确到0.1米)图9-45答案:24.6米.提示:铁塔的高度AB=40tan30°+1.5≈24.6(米). 14.如图9-46,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.图9-46解:在Rt △ABD 中, ∵tan ∠ADB=BDAB=1,∴BD=AB. 又在Rt △ABC 中,∵tanC=BC AB =33, ∴BC=30tan AB=3AB.又∵BC-BD=14,∴3AB-AB=14. ∴AB=7(3+1)(米).15.如图9-47,水面上有一浮标,在高于水面1米的地方观察,测得浮标顶的仰角30°,同时测得浮标在水中的倒影顶端俯角45°,观察时水面处于平静状态,求水面到浮标顶端的高度.(精确到0.1米)图9-47答案:3.7米.提示:过A 作AD ⊥BC 于D,则∠BAD=30°,∠DAC=45°. 设BD=x,则AD=xcot30°.又AD=DC 且BE=DC,即x+1=xcot30°. 求得x ≈2.73.∴BE=2.73+1≈3.7(米).16.如图9-48,在一次暖气管道的铺设工作中,工程是由A 点出发沿正西方向进行的,在A 点的南偏西60°的方向上有一所学校,学校占地是以B 点为中心方圆100米的圆形,当工程进行了200米时到达C 处,此时B 在C 的南偏西30°的方向上,请根据题中所提供的信息计算、分析一下,工程继续进行下去,是否会穿过学校?图9-48解:过B 作BD ⊥AC 于D,在Rt △BCD 中,∠BCD=60°,∵tan60°=CD BD ,∴CD=︒60tan BD. 同理,在Rt △BAD 中,AD=︒30tan BD,又∵AD-CD=200,∴3BD-33BD=200. ∴BD=1003>100.∴不会穿过学校.。
锐角三角函数练习题及答案

锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。
2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。
浙教新版九年级下册《1.2_锐角三角函数的计算》2024年同步练习卷(4)+答案解析

浙教新版九年级下册《1.2锐角三角函数的计算》2024年同步练习卷(4)一、选择题:本题共4小题,每小题3分,共12分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算的值约是()A. B.C.D.2.如图,在中,,,若用科学计算器求边AC 的长,则下列按键顺序正确的是()A. B.C.D.3.如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点.已知山高千米,小路千米.用科学计算器计算坡角的度数,下列按键顺序正确的是()A.B.C.D.4.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为()A.24米B.20米C.16米D.12米二、填空题:本题共5小题,每小题3分,共15分。
5.用“>”或“<”填空:______可用计算器计算6.如图,某营业大厅自动扶梯AB 的倾斜角为,AB 的长为12米,则大厅两层之间的高度BC 为______米.参考数据:,,7.在中,,,,那么______精确到8.如图,一根竖直的木杆在离地面3m处折断,木杆顶端落在地面上,且与地面成角,则木杆折断之前高度约为______参考数据:,,9.用计算器计算,,,…,的值,总结规律,并利用此规律比较当时,与的大小,即______三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
10.本小题8分如图,在中,,求边AB上的高精确到11.本小题8分如图,游艇的航速为,它从灯塔S正南方向的点A处向正东方向航行至点B处需要,且在点B处测得灯塔S在北偏西方向,求BS的长精确到12.本小题8分用计算器求下列各式的值:精确到;13.本小题8分如图,在四边形ABCD中,,,,,,求AB的长结果取整数,参考数据:,,答案和解析1.【答案】C【解析】解:,,,故选:根据余弦的增减性以及,可以进行估算.本题考查余弦函数,解题关键是明确余弦函数的增减性以及特殊角的三角函数值.2.【答案】D【解析】解:,,故选:根据正切的定义求出AC的表达式即可得出答案.本题考查了计算器,根据正切的定义求出AC的表达式是解题的关键.3.【答案】B【解析】解:,度数的按键顺序为:故选:根据正弦函数的定义得出,从而知度数的按键顺序,即可得出答案.本题主要考查解直角三角形的应用-坡度坡角问题,熟练掌握正弦函数的定义和三角函数的计算器使用是解题的关键.4.【答案】D【解析】解:,米,,,把米,代入得,米.故选:直接根据锐角三角函数的定义可知,,把米,代入进行计算即可.本题考查的是解直角三角形的应用,熟记锐角三角函数的定义是解答此题的关键.5.【答案】>【解析】解:,故答案为:熟练应用计算器,对计算器给出的结果,精确到千分位,再根据有理数的大小比较,可得答案.本题考查了计算器,结合算器的用法,再取近似数.6.【答案】【解析】解:由题意可得:则故答案为:直接利用锐角三角函数关系得出,进而得出答案.此题主要考查了解直角三角形的应用,正确掌握边角关系是解题关键.7.【答案】【解析】解:,,故答案为:利用正弦的定义得到,则,然后进行近似计算.本题考查了近似数:“精确到第几位”是精确度的常用的表示形式.也考查了解直角三角形.8.【答案】8【解析】解:如图:,,,木杆折断之前高度故答案为在中,由AC的长及的值可得出AB的长,即可解答.本题考查了解直角三角形的应用,通过解直角三角形选择适当的三角函数求出三角形边长是解题的关键.9.【答案】>【解析】解:用计算器计算,,,…,的值,可发现在到之间,角越大,余弦值越小;故当时,与的大小,即故答案为熟练应用计算器求值,总结三角函数的规律.借助计算器计算的结果,发现并总结应用规律解题.10.【答案】解:过C点作于D,如图,在中,,,所以边AB上的高约为【解析】过C点作于D,如图,利用正弦的定义得到,然后进行近似计算.本题考查了近似数:“精确到第几位”是精确度的常用的表示形式.11.【答案】解:由题意得:,,,在中,,,即BS的长约为【解析】由题意得,,,再由锐角三角函数定义得,即可得出BS的长.本题考查了解直角三角形的应用-方向角问题,熟练掌握锐角三角函数定义是解题的关键.12.【答案】解:;【解析】先利用科学计算器求出正弦、余弦和正切值,再计算加减可得;先利用科学计算器求出正弦、余弦和正切值,再计算加减可得.本题考查了计算器-三角函数、近似数和有效数字,解决本题的关键是熟练运用计算器.13.【答案】解:如图,过点C作于点E,过点D作于点F,,又,四边形AEFD是矩形,,,,,在中,,,,,,,,在中,,,,,则【解析】过点C作于点E,过点D作于点F,利用垂直的定义得到两个角为直角,再由为直角,利用三个角为直角的四边形是矩形得到四边形AEFD为矩形,可得出矩形的内角为直角,,由求出的度数,在中,利用余弦函数定义求出DF 的长,即为AE的长,在中,利用正弦函数定义求出EB的长,由求出AB的长即可.此题考查了解直角三角形,勾股定理,矩形的性质与判定,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.。
九年级数学锐角三角函数考试题及答案解析
达标训练基础•巩固1.在Rt △ABC 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定 思路解析:当Rt △ABC 的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角A 大小不变. 答案:A2.已知α是锐角,且cosα=54,则sinα=( )A.259 B.54 C.53 D.2516 思路解析:由cosα=54,可以设α的邻边为4k ,斜边为5k ,根据勾股定理,α的对边为3k ,则sinα=53. 答案:C 3.Rt △ABC 中,∠C=90°,AC ∶BC=1∶3,则cosA=_______,tanA=_________.思路解析:画出图形,设AC=x ,则BC=x 3,由勾股定理求出AB=2x ,再根据三角函数的定义计算. 答案:21,34.设α、β为锐角,若sinα=23,则α=________;若tanβ=33,则β=_________.思路解析:要熟记特殊角的三角函数值 答案:60°,30°5.用计算器计算:sin51°30′+ cos49°50′-tan46°10′的值是_________. 思路解析:用计算器算三角函数的方法和操作步骤. 答案:0.386 06.△ABC 中,∠BAC=90°,AD 是高,BD=9,tanB=34,求AD 、AC 、BC.思路解析:由条件可知△ABC 、△ABD 、△ADC 是相似的直角三角形,∠B=∠CAD ,于是有tan ∠CAD=tanB=34,所以可以在△ABD 、△ADC 中反复地运用三角函数的定义和勾股定理来求解.解:根据题意,设AD=4k ,BD=3k ,则AB=5k.在Rt △ABC 中,∵tanB=34,∴AC=34AB=320k.∵BD=9,∴k=3. 所以AD=4×3=12,AC=320×3=20. 根据勾股定理25152022=+=BC .综合•应用7.已知α是锐角,且sinα=54,则cos(90°-α)=( )A.54B.43C.53D.51 思路解析:方法1.运用三角函数的定义,把α作为直角三角形的一个锐角看待,从而对边、邻边、斜边之比为4∶3∶5,(90°-α)是三角形中的另一个锐角,邻边与斜边之比为4∶5,cos(90°-α)=54.方法2.利用三角函数中互余角关系“sinα=cos(90°-α)”. 答案:A8.若α为锐角,tana=3,求ααααsin cos sin cos +-的值. 思路解析:方法1.运用正切函数的定义,把α作为直角三角形的一个锐角看待,从而直角三角形三边之比为3∶1∶10,sinα=103,cosα=101,分别代入所求式子中.方法2.利用tanα=ααcos sin 计算,因为cos α≠0,分子、分母同除以cosα,化简计算. 答案:原式=213131tan 1tan 1cos sin cos cos cos sin cos cos =+-=+-=+-αααααααααα. 9.已知方程x 2-5x·sinα+1=0的一个根为32+,且α为锐角,求tanα. 思路解析:由根与系数的关系可先求出方程的另一个根是32-,进而可求出sinα=54,然后利用前面介绍过的方法求tanα.解:设方程的另一个根为x 2,则(32+)x 2=1 ∴x 2=32-∴5sinα=(32+)+(32-),解得sinα=54.设锐角α所在的直角三角形的对边为4k ,则斜边为5k ,邻边为3k , ∴tanα=3434=k k . 10.同学们对公园的滑梯很熟悉吧!如图28.1-13是某公园(六·一)前新增设的一台滑梯,该滑梯高度AC=2 m ,滑梯着地点B 与梯架之间的距离BC=4 m.图28.1-13(1)求滑梯AB 的长(精确到0.1 m);(2)若规定滑梯的倾斜角(∠ABC)不超过45°属于安全范围,请通过计算说明这架滑梯的倾斜角是否要求?思路解析:用勾股定理可以计算出AB 的长,其倾斜角∠ABC 可以用三角函数定义求出,看是否在45°范围内.解:(1)在Rt △ABC 中,2242+=AB ≈4.5. 答:滑梯的长约为4.5 m.(2)∵tanB=5.0=BCAC ,∴∠ABC≈27°, ∠ABC≈27°<45°.所以这架滑梯的倾斜角符合要求. 11.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?图28.1-14思路解析:面积的改变实际上是平行四边形的高在改变,结合图形,可以知道h=b 21,再在高所在的直角三角形中由三角函数求出α的度数.解:设原矩形边长分别为a ,b ,则面积为ab , 由题意得,平行四边形的面积S=21ab.又因为S=ah=a(bsinα),所以21ab=absinα,即sinα=21.所以α=30°.回顾•展望12.(2010海南模拟) 三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是( )图28.1-15A.43B.34C.53D.54思路解析:观察格点中的直角三角形,用三角函数的定义. 答案:C13.(2010陕西模拟) 如图28.1-17,⊙O 是△ABC 的外接圆,AD 是⊙O的直径,连接CD ,若⊙O 的半径23 r ,AC=2,则cosB 的值是( )图28.1-17A.23B.35C.25D.32 思路解析:利用∠BCD=∠A 计算. 答案:D14.(浙江模拟) 在△ABC 中,∠C=90°,AB=15,sinA=31,则BC=( )A.45B.5C.51D.451 思路解析:根据定义sinA=ABBC ,BC=AB·sinA. 答案:B 15.(广西南宁课改模拟) 如图28.3-16,CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD=( )图28.1-16A.53B.43C.34D.54思路解析:直径所对的圆周角是直角,设法把∠B 转移到Rt △ADC 中,由“同圆或等圆中,同弧或等弧所对的圆周角相等”,得到∠ADC=∠B. 答案:B16.(浙江舟山模拟) 课本中,是这样引入“锐角三角函数”的:如图28.1-18,在锐角α的终边OB 上,任意取两点P 和P 1,分别过点P和P 1做始边OA 的垂线PM 和P 1M 1,M 和M 1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与P 点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.图28.1-18思路解析:正弦、余弦函数的定义.答案:11111,,,OP OM OP OM OP M P OP PM OP OM OP PM ==,锐角α 17.(2010重庆模拟) 计算:2-1-tan60°+(5-1)0+|3|;思路解析:特殊角的三角函数,零指数次幂的意义,负指数次幂的意义. 解:2-1-tan60°+(5-1)0+|3|=21-3+1+3=23.18.(2010北京模拟) 已知:如图28.1-19,△ABC 内接于⊙O ,点D 在OC 的延长线上,sinB=21,∠CAD=30°.图28.1-19(1)求证:AD 是⊙O 的切线; (2)若OD ⊥AB ,BC=5,求AD 的长. 思路解析:圆的切线问题跟过切点的半径有关,连接OA ,证∠OAD=90°.由sinB=21可以得到∠B=30°,由此得到圆心角∠AOD=60°,从而得到△ACO 是等边三角形,由此∠OAD=90°.AD 是Rt △OAD 的边,有三角函数可以求出其长度.(1)证明:如图,连接OA.∵sinB=21,∴∠B=30°.∴∠AOD=60°.∵OA=OC ,∴△ACO 是等边三角形. ∴∠OAD=60°.∴∠OAD=90°.∴AD 是⊙O 的切线.(2)解:∵OD ⊥AB ∴ OC 垂直平分AB. ∴ AC=BC=5.∴OA=5. 在Rt △OAD 中,由正切定义,有tan ∠AOD=OA AD . ∴ AD=35.。
人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案
第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。
《24.3.2用计算器求锐角三角函数值》同步练习含答案解析
华师大版数学九年级上册第24章解直角三角形24.3.2用计算器求锐角三角函数值同步练习一、选择题1、如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5 .若用科学计算器求边AC的长,则下列按键顺序正确的是()A、B、C、D、2、利用计算器求tan45°时,依次按键则计算器上显示的结果是()A、0.5B、0.707C、0.866D、13、用科学记算器计算锐角α的三角函数值时,不能直接计算出来的三角函数值是()A、cotαB、tanαC、cosαD、sinα4、Rt△ABC中,∠C=90°,a:b=3:4,运用计算器计算,∠A的度数(精确到1°)()A、30°B、37°C、38°D、39°5、如果tanα=0.213,那么锐角α的度数大约为()A、8°B、10°C、12°D、15°6、四位学生用计算器求sin62°20′的值正确的是()A、0.8857B、0.8856C、0.8852D、0.88517、用计算器求sin20°+tan54°33′的结果等于(结果精确到0.01)()A、2.25B、1.55C、1.73D、1.758、一个直角三角形有两条边长为3,4,则较小的锐角约为()A、37°B、41°C、37°或41°D、以上答案均不对9、用计算器求tan26°,cos27°,sin28°的值,它们的大小关系是()A、tan26°<cos27°<sin28°B、tan26°<sin28°<cos27°C、sin28°<tan26°<cos27°D、cos27°<sin28°<tan16°10、按科学记算器MODE MODE 1,使显示器显示D后,求sin90°的值,以下按键顺序正确的是()A、sin ,9=B、9,sin=C、sin ,9,0=D、9,0=11、用计算器验证,下列等式中正确的是()A、sin18°24′+sin35°26′=sin54°B、sin65°54′-sin35°54′=sin30°C、2sin15°30′=si n31°D、sin70°18′-sin12°18′=sin47°42′12、用计算器求cos15°,正确的按键顺序是()A、cos15=B、cos15C、Shift15D、15cos13、已知tanα=0.3249,则α约为()A、17°B、18°C、19°D、20°14、按键,使科学记算器显示回后,求sin90°的值,以下按键顺序正确的是()A、B、C、D、15、已知sinα= ,求α ,若用计算器计算且结果为“30”,最后按键()A、AC10NB、SHIETC、MODED、SHIFT二、填空题16、用计算器求tan35°的值,按键顺序是________ .17、已知tanβ=22.3,则β=________(精确到1″)18、如果cosA=0.8888,则∠A≈ ________(精确到1″)19、cos35°≈________(结果保留四个有效数字).20、小虎同学在计算a+2cos60°时,因为粗心把“+”看成“-”,结果得2006,那么计算a+2cos60°的正确结果应为________ .三、解答题21、已知下列锐角三角函数值,用计算器求锐角A ,B的度数.(1)sinA=0.7,sinB=0.01;(2)cosA=0.15,cosB=0.8;(3)tanA=2.4,tanB=0.5 .22、已知下列锐角三角函数值,用计算器求其相应的锐角:(1)sinA=0.7325,sinB=0.0547;(2)cosA=0.6054,cosB=0.1659;(3)tanA=4.8425,tanB=0.8816 .23、已知∠A为锐角,求满足下列条件的∠A的度数(精确到1″).(1)sinA=0.9816;(2)cosA=0.8607;(3)tanA=0.1890;(4)tanA=56.78 .24、等腰三角形中,两腰和底的长分别是10和13,求三角形的三个内角的度数(精确到1′).答案解析部分一、选择题1、【答案】D【考点】计算器—三角函数【解析】【解答】由tan∠B= ,得AC=BC•tanB=5×tan26 .故选:D.【分析】根据正切函数的定义,可得tan∠B= ,根据计算器的应用,可得答案.2、【答案】D【考点】计算器—三角函数【解析】【解答】依次按键则计算器上显示的tan45°的值,即1 .故选D.【分析】本题要求熟练应用计算器.3、【答案】A【考点】计算器—三角函数【解析】【解答】用科学记算器计算锐角α的三角函数值时,只能计算正弦、余弦、正切的值,要计算余切的值,需先计算正切值,在借助倒数进行计算得出答案,故答案为A.【分析】本题要求熟练应用计算器.4、【答案】B【考点】计算器—三角函数【解析】【解答】∵a:b=3:4,∴设a=3x ,b=4x ,由勾股定理知,c=5x .∴sinA=a:c=3:5=0.6,运用计算器得,∠A=37°.故选B.【分析】根据题中所给的条件,在直角三角形中解题,根据角的正弦值与三角形边的关系,可求出各边的长,然后求出∠A.5、【答案】C【考点】计算器—三角函数【解析】【解答】∵tanα=0.213,∴∠α≈12° .故选C.【分析】正确使用计算器计算即可.使用2nd键,然后按tan-10.213即可求出∠α的度数;【解析】【解答】sin62°20′≈0.8857,故选A.【分析】本题要求熟练应用计算器,根据计算器给出的结果进行判断.7、【答案】D【考点】计算器—三角函数【解析】【解答】sin20°+tan54°33′=sin20°+tan54.55°=0.3420+1.4045=1.7465≈1.75 .故选D.【分析】先把54°33′化为54.55°,然后利用计算器分别算出sin20°和tan54.55°的值,相加后四舍五入即可.8、【答案】C【考点】计算器—三角函数【解析】【解答】①若3、4是直角边,∵两直角边为3,4,∴斜边长=∴较小的锐角所对的直角边为3,则其正弦值为;②若斜边长为4,则较小边= ≈2.65,∴较小边所对锐角正弦值约= =0.6625,利用计算器求得角约为37°或41°.故选C.【分析】此题分情况计算:①若3、4是直角边,利用勾股定理可求斜边,从而可求较小锐角的正弦值,再利用计算器可求角;②4是斜边,利用勾股定理可求较小边,从而求出其所对角的正弦值,再利用计算器可求角.9、【答案】C【考点】计算器—三角函数【解析】【解答】∵tan26°≈0.488,cos27°≈0.891,sin28°≈0.469 .故sin28°<tan26°<cos27°.故选C.【分析】先用计算器求出tan26°、cos27°、sin28°的值,比较即可.【解析】【解答】显示器显示D后,即弧度制;求sin90°的值,需按顺序按下:sin ,9,0= .故选C.【分析】要求熟练应用计算器.11、【答案】D【考点】计算器—三角函数【解析】【解答】利用计算器分别计算出各个三角函数的数值,进行分别检验.正确的是sin70°18′-sin12°18′=sin47°42′ .故选D.【分析】本题考查三角函数的加减法运算.12、【答案】A【考点】计算器—三角函数【解析】【解答】先按键“cos”,再输入角的度数15,按键“=”即可得到结果. 故选A【分析】根据用计算器算三角函数的方法:先按键“cos”,再输入角的度数,按键“=”即可得到结果.13、【答案】B【考点】计算器—三角函数【解析】【解答】tanα=0.3249,α约为18°.故选:B.【分析】一般先按键“SHIFT”,再按键“tan”,输入“0.3249”,再按键“=”即可得到结果.14、【答案】A【考点】计算器—三角函数【解析】【解答】第一步按sin ,第二步90,最后按=,故选A.【分析】首先知道用计算器求一个角度的函数值的操作过程,然后作出选择.15、【答案】D【考点】计算器—三角函数【解析】【解答】“SHIET”表示使用该键上方的对应的功能.故选D.【分析】本题要求熟练应用计算器.二、填空题16、【答案】先按tan ,再按35,最后按=【考点】计算器—三角函数【解析】【解答】用计算器求tan35°的值,按键顺序是先按tan ,再按35,最后=,故答案为:先按tan ,再按35,最后按= .【分析】根据计算器的使用,可得答案.17、【答案】87°25′56″【考点】计算器—三角函数【解析】【解答】∵tanβ=22.3,∴β=87°25′56″ .故答案为:87°25′56″ .【分析】利用计算器首先按2ndf ,再按tan22.3,即可得出β的角度.18、【答案】27°16′38″【考点】计算器—三角函数【解析】【解答】如果cosA=0.8888,则∠A≈27°16′38″.故答案为:27°16′38″【分析】首先按2ndF键,再按cos键,再输入0.8888,再按DMS即可得出答案19、【答案】0.8192【考点】计算器—三角函数【解析】【解答】cos35°≈0.8192.故答案为:0.8192 .【分析】利用计算器,先按35,再按cos即可求出(计算器的型号不同可能按键的顺序有所不同,要具体情况具体对待).20、【答案】2008【考点】计算器—三角函数【解析】【解答】∵a-2cos60°=2006,∴a=2007 .∴a+2cos60°=2007+1=2008 .故答案为:2008 .【分析】根据错误的运算先确定a的值,然后求出正确的结果.三、解答题21、【答案】(1)解:sinA=0.7,得A=44.4°;sinB=0.01得B=0.57°;(2)解:cosA=0.15,得A=81.3°;cosB=0.8,得B=36.8°;(3)解:由tanA=2.4,得A=67.4°;由tanB=0.5,得B=26.5°.【考点】计算器—三角函数【解析】熟练应用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.23、【答案】(1)解:∵sinA=0.7325,∴∠A≈47.1°,∵sinB=0.0547,∴∠B≈3.1°;(2)解:∵cosA=0.6054,∴∠A≈52.7°,∵cosB=0.1659,∴∠B≈80.5°;(3)解:∵tanA=4.8425,∴∠A≈78.3°,∵tanB=0.8816,∴∠B≈41.4° .【考点】计算器—三角函数【解析】(1)直接利用计算器借助sin-1求出即可;(2)直接利用计算器借助cos-1求出即可;(3)直接利用计算器借助tan-1求出即可.24、【答案】(1)解答:∵sinA=0.9816,∴∠A≈78.991°≈78°59′28″;(2)解答:∵cosA=0.8607,∴∠A≈30.605°=30°36′18″;(3)解答:∵tanA=0.1890,∴∠A≈10.703°≈10°42′11″;(4)解答:∵tanA=56.78,∴∠A≈88.991°≈88°59′28″ .【考点】计算器—三角函数【解析】(1)熟练应用计算器,使用2nd键,然后按sin-10.9816,即可求出∠A的度数,对计算器给出的结果,用四舍五入法取近似数.(2)、(3)、(4)方法同(1).25、【答案】解:如图所示,AB=AC=10,BC=13,AD是底边上的高,∵AD是底边上的高,∴AD⊥BC ,又∵AB=AC ,∴BD=CD=6.5,∠BAD=∠CAD= ∠BAC ,在Rt△ABD中,sin∠BAD= =0.65,∴∠BAD≈40°32′,∴∠BAC≈2∠BAD≈81°4′,∠B=∠C≈49°28′ .故△ABC的三个内角分别为:81°4′,49°28′,49°28′ .【考点】计算器—三角函数【解析】先画图,AB=AC=10,BC=13,AD是底边上的高,利用等腰三角形三线合一定理可知BD=CD=6.5,∠BAD=∠CAD= ∠BAC ,在Rt△ABD中,利用∠BAD的正弦值的计算,结合计算器,可求∠BAD ,从而可求∠B、∠BAC ,那么∠C=∠B即可求.。
中考数学提高题专题复习锐角三角函数练习题及答案解析
中考数学提高题专题复习锐角三角函数练习题及答案解析一、锐角三角函数1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•A E 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×103=10;(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数3.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形4.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan∠ABC=,∴,∴,∴,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.考点:1圆;2相似三角形;3三角函数;4直角三角形.5.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.【答案】(1)证明见解析; (2) tan∠BCO=3 .【解析】试题分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)过O作OF⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=32OB∵BD=DC, BF=FD,∴FC=3BF=332OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,BF=3OB,FC=3BF=33OB是解题关键.6.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为23,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(0,3)(3)见解析【解析】【分析】(1)把点B的坐标代入抛物线解析式求得系数b的值即可;(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=12AD,MT=MD,推知MD=12AD,根据△ADT的外接圆圆心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD=12AD.根据点A、D的坐标求得点M的坐标即可;(3)如图3,作MH⊥x于点H,则AH=HT=12AT.易得H(a﹣1,0),T(2a﹣1,0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a﹣1≤x≤2a﹣1.需要分类讨论:(i)当2111(1)211aa a-⎧⎨----⎩……,即413a<…,根据抛物线的增减性求得y的极值.(ii )当0112111(1)211a a a a <-⎧⎪->⎨⎪--<--⎩…,即43<a≤2时,根据抛物线的增减性求得y 的极值.(iii )当a ﹣1>1,即a >2时,根据抛物线的增减性求得y 的极值. 【详解】解:(1)把点B (3,0)代入y =x 2+bx ﹣3,得32+3b ﹣3=0, 解得b =﹣2,则该二次函数的解析式为:y =x 2﹣2x ﹣3; (2)①∠DMT 的度数是定值.理由如下: 如图1,连接AD .∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4. ∴抛物线的对称轴是直线x =1. 又∵点D 的纵坐标为∴D (1,由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1), ∴A (﹣1,0),B (3,0). 在Rt △AED 中,tan ∠DAE=2DE AE ==. ∴∠DAE =60°.∴∠DMT =2∠DAE =120°.∴在点T 的运动过程中,∠DMT 的度数是定值; ②如图2,∵MT =12AD .又MT =MD , ∴MD =12AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上,∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12AD . ∵A (﹣1,0),D (1,∴点M 的坐标是(0(3)如图3,作MH ⊥x 于点H ,则AH =HT =12AT . 又HT =a ,∴H (a ﹣1,0),T (2a ﹣1,0). ∵OH≤x≤OT ,又动点T 在射线EB 上运动, ∴0≤a ﹣1≤x≤2a ﹣1. ∴0≤a ﹣1≤2a ﹣1. ∴a≥1,∴2a﹣1≥1.(i)当2111(1)211aa a-⎧⎨----⎩……,即14a3剟时,当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;当x=1时,y最小值=4.(ii)当0112111(1)211aaa a<-⎧⎪->⎨⎪--<--⎩…,即43<a≤2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.(iii)当a﹣1>1,即a>2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.7.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.(1)求证:AE=CE(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=34,DE=394时,N为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.【答案】(1)详见解析;(2)详见解析;(3)4013 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB ,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL =10,BL =16,FL =22FH HL + =413, ∵LN •LF =AL •BL ,∴413•LN =10•16,∴LN =401313. 【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.8.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径,∴¶¶ADAC =,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG5 6 =,GD23 =,∴PD=PG+GD【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG ∽△EDG 是解题的关键.9.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--. 【解析】【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4)把点C (0,3)代入得:﹣8a =3∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ =∴FG =35FQ =95∴x Q =1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论10.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4.理由见解析.3【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH⊥MN于H.先证△ABE≌△EHF,得到对应边相等,从而推出△CHF是等腰直角三角形,∠FCH的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,得出EH=AD=BC=8,由三角函数定义即可得出结论.【详解】(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG=EF,∠BAD=∠EAG=∠ADC=90°,∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,∴∠BAE =∠DAG ,在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ABE (AAS ).(2)解:∠FCN =45°,理由如下:作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE ,∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFH ≌△ABE (AAS ),∴FH =BE ,EH =AB =BC ,∴CH =BE =FH ,∵∠FHC =90°,∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,∴EH =AD =BC =8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.11.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.【答案】(1)证明见解析(2)613【解析】【分析】(1)根据▱ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.【详解】(1)证明:∵将△ABC沿AC翻折得到△AEC,∴BC=CE,AC⊥CE,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AC⊥CE,∴四边形ACED是矩形.(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,∵BE=2BC=2×3=6,DE=AC=4,∴在Rt △BDE 中, 2222BD BE DE 64213=+=+=∵S △BDE =12×DE•AD=12AF•BD , ∴AF =613213=, ∵Rt △ABC 中,AB =2234+=5,∴Rt △ABF 中,sin ∠ABF =sin ∠ABD =61361313655AF AB ==.方法二、如图2所示,过点O 作OF ⊥AB 于点F ,同理可得,OB =1132BD =, ∵S △AOB =11OF AB OA BC 22⋅=⋅, ∴OF =23655⨯=, ∵在Rt △BOF 中,sin ∠FBO =0613513F OB ==, ∴sin ∠ABD =613.【点睛】本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .12.在Rt △ABC 中,∠ACB=90°,AB=7,AC=2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A′B′C(点A ,B 的对应点分别为A',B′),射线CA′,CB′分別交直线m 于点P ,Q .(1)如图1,当P 与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P ,Q 分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q 的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ =72;(3)存在,S 四边形PA 'B ′Q =33【解析】 【分析】 (1)由旋转可得:AC =A 'C =2,进而得到BC 3=∠A 'BC =90°,可得cos ∠A 'CB 3'BC A C ==∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 3=32=,依据tan ∠Q =tan ∠A 3=BQ =BC 3=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 32=PQ ,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=AC =2,∴BC 3=∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 32=,∴PB 32=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.13.关于三角函数有如下的公式:sin (α+β)=sinαcosβ+cosαsinβ①cos (α+β)=cosαcosβ﹣sinαsinβ②tan (α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如: tan105°=tan (45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题: 如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α=60°,底端C 点的俯角β=75°,此时直升飞机与建筑物CD 的水平距离BC 为42m ,求建筑物CD 的高.【答案】建筑物CD的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.14.如图,正方形ABCD2+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC2,∵BC2+1,∴x+x2+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan ∠EAB =221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC 22AB BC +2,∴OA =OC =OB =12AC 22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH 2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=22+.. ∴PE+PF 22+【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.15.如图,半圆O 的直径AB =20,弦CD ∥AB ,动点M 在半径OD 上,射线BM 与弦CD 相交于点E (点E 与点C 、D 不重合),设OM =m .(1)求DE 的长(用含m 的代数式表示);(2)令弦CD 所对的圆心角为α,且sin 4=25α. ①若△DEM 的面积为S ,求S 关于m 的函数关系式,并求出m 的取值范围; ②若动点N 在CD 上,且CN =OM ,射线BM 与射线ON 相交于点F ,当∠OMF =90° 时,求DE 的长.【答案】(1)DE =10010m m -;(2)①S =2360300m m m-+,(5013<m <10),②DE =52. 【解析】【分析】 (1)由CD ∥AB 知△DEM ∽△OBM ,可得DE DM OB OM=,据此可得; (2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =12∠COD ,据此可得sin ∠DOP =sin ∠DMQ =45、sin ∠ODP =35,继而由OM =m 、OD =10得QM =DM sin ∠ODP =35(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得CD DM BO OM =,求得OM =5013,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×35=6,可得OM =8,根据(1)所求结果可得答案.【详解】(1)∵CD ∥AB ,∴△DEM ∽△OBM ,∴DE DM OB OM =,即1010DE m m-=, ∴DE =10010m m-; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,∵OC =OD 、OP ⊥CD ,∴∠DOP =12∠COD , ∵sin 2α=45, ∴sin ∠DOP =sin ∠DMQ =45,sin ∠ODP =35, ∵OM =m 、OD =10, ∴DM =10﹣m , ∴QM =DM sin ∠ODP =35(10﹣m ), 则S △DEM =12DE •MQ =12×10010m m -×35(10﹣m )=2360300m m m-+, 如图2,∵PD =OD sin ∠DOP =10×45=8, ∴CD =16,∵CD ∥AB ,∴△CDM ∽△BOM ,∴CD DM BO OM =,即1610=10OM OM-, 解得:OM =5013, ∴5013<m <10, ∴S =2360300m m m-+,(5013<m <10). ②当∠OMF =90°时,如图3,则∠BMO=90°,在Rt△BOM中,BM=OB sin∠BOM=10×35=6,则OM=8,由(1)得DE=100108582-⨯=.【点睛】本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数同步练习及答案Final approval draft on November 22, 2020锐角三角函数(一)一、课前预习 (5分钟训练)1.如图28-1-1-1所示,某斜坡AB 上有一点B′,B′C′、BC 是边AC 上的高,则图中相似的三角形是______________,则B′C′∶AB′=______________,B′C′∶AC′=______________.2.在Rt△ABC 中,如果边长都扩大5倍,则锐角A 的正弦值、余弦值和正切值 ( )A.没有变化B.都扩大5倍C.都缩小5倍D.不能确定 3.在△ABC 中,∠C=90°,sinA=53,则sinB 等于( ) A.52 B.53 C.54 D.43 二、课中强化(10分钟训练)1.在Rt△ABC 中,∠C=90°,已知tanB=25,则cosA 等于( ) A.25 B.35 C.552 D.32 2.如果α是锐角,且sinα=54,那么cos(90°-α)的值为( ) A.54 B.43 C.53 D.51 3.在△ABC 中,∠C=90°,AC=2,AB=5,则cosB 的值为( )A.210 B.510 C.515 D.5153 4.在Rt△ABC 中,∠C=90°,sinA=135,BC=15,则AC=______________. 5.如图28-1-1-2,△ABC 中,AB =AC =6,BC =4,求sinB 的值.图28-1-1-1图28-1-1-2三、课后巩固(30分钟训练)1.如图28-1-1-3,已知菱形A BCD ,对角线AC=10 cm,BD=6 cm,,那么tan2A等于( ) A.53 B.54C.343D.345图28-1-1-3 图28-1-1-42.如果sin 2α+cos 230°=1,那么锐角α的度数是( )° ° ° °3.如图28-1-1-4,在坡度为1∶的楼梯表面铺地毯,地毯长度至少是________________.4.在Rt△ABC 中,斜边AB=22,且tanA+tanB=22,则Rt△ABC 的面积是___________. 5.在Rt△ABC 中,∠C=90°,a、b 、c 分别是∠A、∠B、∠C 的对边,且a=3,c=5,求∠A、∠B 的三角函数值.6.在Rt△ABC 中,∠C=90°,a、b 、c 分别是∠A、∠B、∠C 的对边,且b=6,tanA=1,求c.7.如图28-1-1-5,在Rt△ABC 中,∠C=90°,sinA=53,D 为AC 上一点,∠BDC=45°,DC =6 cm ,求AB 、AD 的长.图28-1-1-58.如图28-1-1-6,在△ABC中,AB=AC,AD⊥B C于D点,BE⊥AC于E点,AD=BC,BE=4.求:(1)tanC的值;(2)AD的长.图28-1-1-69.如图28-1-1-7,某人从山脚下的点A沿着斜坡走了1 000米到达山顶B点,已知山顶到山脚的垂直距离为500米,求山坡的坡度.图28-1-1-7参考答案一、课前预习 (5分钟训练)1.如图28-1-1-1所示,某斜坡AB 上有一点B′,B′C′、BC 是边AC 上的高,则图中相似的三角形是______________,则B′C′∶AB′=______________,B′C′∶AC′=______________.图28-1-1-1解析:由相似三角形的判定得△AB′C′∽△ABC ,由性质得B′C′∶AB′=BC∶AB,B′C′∶AC′=BC∶AC.答案:△AB′C′∽△ABC BC∶AB BC∶AC2.在Rt△ABC 中,如果边长都扩大5倍,则锐角A 的正弦值、余弦值和正切值 ( )A.没有变化B.都扩大5倍C.都缩小5倍D.不能确定 解析:三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 答案:A3.在△ABC 中,∠C=90°,sinA=53,则sinB 等于( ) A.52 B.53 C.54 D.43 解析:sinA=53,设a=3k,c=5k,∴b=4k.∴sinB=5454==k k c b .答案:C二、课中强化(10分钟训练)1.在Rt△ABC 中,∠C=90°,已知tanB=25,则cosA 等于( ) A.25 B.35 C.552 D.32解析:tanB=25,设b=5k,a=2k.∴c=3k. ∴cosA=3535==k k c b . 答案:B2.如果α是锐角,且sinα=54,那么cos(90°-α)的值为( ) A.54 B.43 C.53 D.51 解析:cos(90°-α)=sinα=54.答案:A3.在△ABC 中,∠C=90°,AC=2,AB=5,则cosB 的值为( )A.210 B.510 C.515 D.5153 解析:由勾股定理,得BC=3,∴cosB=51553==AB BC . 答案:C4.在Rt△ABC 中,∠C=90°,sinA=135,BC=15,则AC=______________. 解析:∵sinA=135=AB BC ,BC=15,∴AB=39.由勾股定理,得AC=36. 答案:365.如图28-1-1-2,△ABC 中,AB =AC =6,BC =4,求sinB 的值.图28-1-1-2分析:因为三角函数值是在直角三角形中求得,所以构造直角三角形就比较重要,对于等腰三角形首先作底边的垂线.解:过A 作AD⊥BC 于D, ∵AB=AC,∴BD=2.在Rt△ADB 中,由勾股定理,知AD=24262222=-=-BD AB ,∴sinB=322=AB AD . 三、课后巩固(30分钟训练)1.如图28-1-1-3,已知菱形A BCD ,对角线AC=10 cm,BD=6 cm,,那么tan2A等于( )图28-1-1-3A.53 B.54C.343D.345 解析:菱形的对角线互相垂直且平分,由三角函数定义,得tan 2A=tan∠DAC=53.答案:A2.如果sin 2α+cos 230°=1,那么锐角α的度数是( )° ° ° ° 解析:由sin 2α+cos 2α=1,∴α=30°. 答案:B3.如图28-1-1-4,在坡度为1∶的楼梯表面铺地毯,地毯长度至少是________________.图28-1-1-4解析:坡度=BCAC,所以BC=5,由割补法知地毯长=AC+BC =7(米).答案:7米4.在Rt△ABC 中,斜边AB=22,且tanA+tanB=22,则Rt△ABC 的面积是___________. 解析:∵tanA=AC BC ,tanB=BCAC ,且AB 2=BC 2+AC 2,由tanA+tanB=22,得AC BC +BCAC=22,即AC·BC=28.∴S △ABC =24.答案:245.在Rt△ABC 中,∠C=90°,a、b 、c 分别是∠A、∠B、∠C 的对边,且a=3,c=5,求∠A、∠B 的三角函数值.解:根据勾股定理得b=4,sinA=53,cosA=54,tanA=43;sinB=54,cosB=53,tanB=34. 6.在Rt△ABC 中,∠C=90°,a、b 、c 分别是∠A、∠B、∠C 的对边,且b=6,tanA=1,求c.解:由三角函数定义知a=btanA ,所以a=6,根据勾股定理得c=26. 7.如图28-1-1-5,在Rt△ABC 中,∠C=90°,sinA=53,D 为AC 上一点,∠BDC =45°,DC =6 cm ,求AB 、AD 的长.图28-1-1-5解:如题图,在Rt△BCD 中,∠BDC=45°, ∴BC=DC =6.在Rt△ABC 中,sinA=53, ∴AB BC =53. ∴AB=10. ∴AC=2222610-=-BC AB =8.∴AD=AC -CD=8-6=2.8.如图28-1-1-6,在△ABC 中,AB=AC,AD⊥B C 于D 点,BE⊥AC 于E 点,AD=BC,BE=4.求:(1)tanC 的值;(2)AD 的长.图28-1-1-6解:(1)∵AB=AC,AD⊥BC, ∴AD=BC =2DC. ∴tanC=2.(2)∵tanC=2,BE⊥AC,BE=4,∴EC=2. ∵BC 2=BE 2+EC 2,∴BC=52.∴AD=52.9.如图28-1-1-7,某人从山脚下的点A 沿着斜坡走了1 000米到达山顶B 点,已知山顶到山脚的垂直距离为500米,求山坡的坡度.图28-1-1-7解:∵AC 2=AB 2-BC 2,∴AC=3500.∴tanA=33,即山坡的坡度为33.。