高中数学之不等式及线性规划问题(含答案)
史上最全最好题集:一元二次不等式、基本不等式线性规划(含详解答案)

一元二次不等式、基本不等式、线性规划好题集一、单选题1.(2012•湖南)设 a>b>1,C<0,给出下列三个结论:①>;②a c<b c;③log b(a﹣c)>log a(b﹣c).其中所有的正确结论的序号()A.① B.①② C.②③ D.①②③2.已知,则下列不等式成立的是()A.B.C.D..3.不等式的解集为,则不等式的解集为()A.B.C.D.4.(附加题)设函数若对于,恒成立,则实数m的取值范围为()A.(﹣∞,0]B.C.D.5.若,,则一定有A.B.C.D.6.若角α,β满足-<2α<β<,则2α-β的取值范围是()A.(-π,0)B.(-π,π)C.(-,)D.(-,)7.下列说法正确的是()A.的最小值为 2 B.的最小值为4,C.的最小值为D.的最大值为18.设,,都是正数,则三个数,,()A.都大于2B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于29.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则a的取值范围是A.a<-1或a>24 B.a=7或a=24 C.-7<a<24 D.-24<a<7 10.若实数,满足,则的最小值为()A.B.C.D.11.已知变量,满足条件则目标函数的最大值为()A.B.C.D.12.若不等式组101210x yyx y-+≥⎧⎪⎪+≥⎨⎪+-≤⎪⎩表示的区域为Ω,不等式221124x y⎛⎫-+≤⎪⎝⎭表示的区域为τ,向Ω区域均匀随机撒360颗芝麻,则落在区域τ中芝麻数约为()A.114 B.10C.150D.5013.在平面直角坐标系中,点是由不等式组所确定的平面区域内的动点,是直线上任意一点,为坐标原点,则的最小值为()A.B.C.D.14.已知,满足,则的取值范围是()A.B.C.D.15.已知a>0,b>0,给出下列三个不等式:①;②;.其中正确的个数是()A . 0B . 1C . 2D . 3 16.设0b a >>,且222222,,,,111122a b a b P Q M ab N R a b a b ++=====++, 则它们的大小关系是( )A . P Q M N R <<<<B . Q P M N R <<<<C . P M N Q R <<<<D . P Q M R N <<<< 17.已知,,x y z 为正实数,则222xy yzx y z+++的最大值为( ) A .235 B . 45 C . 22 D . 2318.若实数,x y 满足0xy >,则22x yx y x y+++的最大值为( ) A .22- B .22+ C .422+ D .422-二、填空题19.已知正实数a ,b 满足,则的最小值是_______.20.实系数一元二次方程有两实根,一根在区间内,另一根在区间内.若,则的取值范围为__________.21.若满足不等式组,则目标函数的取值范围是_____.22.设实数x 、y 满足22428x xy y -+=,则2x y +的最大值为__________, 224x y+的最小值________.23.已知实数,x y 满足不等式组02100x x y x y ≥⎧⎪-+≥⎨⎪-≤⎩,且目标函数()0,0z ax by a b =+>>的最大值为2,则21a b+的最小值为______________.。
高一数学不等式试题答案及解析

高一数学不等式试题答案及解析1.已知a>b, c>d,则()A.ac>bd B.C.D.【答案】D【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
在第二小问中,将条件乘入到所求结果中去,再将式子进行展开,利用万能公式,解不等式即可求出最小值。
试题解析:(1)x<,∴4x-5<0.∴y=4x-5++3=-[(5-4x)+]+3=1.≤-2+3=1,ymax(2)∵x>0,y>0且=1,∴x+y=(x+y)=10+≥10+2=16,即x+y的最小值为16【考点】函数万能关系不等式4.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【答案】(1);(2)【解析】(1)定义域为,指被开方数恒大于等于0,讨论两种情况当或是两种情况;(2)函数的最小值,指被开方数为抛物线时的顶点函数值是,所以先根据顶点坐标求参数,然后将参数代入二次不等式,解不等式.试题解析:(1)∵函数y=的定义域为R,∴a=0时,满足题意;a>0时,△=4a2﹣4a≤0,解得0<a≤1;∴a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥, a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【考点】1.二次函数;2.二次函数的性质;3.解二次不等式.5.已知实数满足约束条件则的最大值是.【答案】9【解析】作出可行域及目标函数线如图,平移目标函数线使之经过可行域,当目标函数线过点时目标函数线的纵截距最大此时也最大.,所以.【考点】线性规划.6.下列结论正确的是A.若,则B.若,则C.若则D.若,则【答案】D【解析】对于A若c<0则错,对于B,若A,B都是负数则错,对于C,只有两个同向且全正的不等式才恒成立,故只有D正确.【考点】不等式的基本性质.7.(本小题满分8分)已知函数.(Ⅰ)当时,解关于的不等式;(Ⅱ)当时,解关于的不等式.【答案】(Ⅰ)(Ⅱ)当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或【解析】第一问考查了一元二次不等式的解法,第二问首先对二次三项式因式分解得到,再分类讨论两根的大小得到不等式的解集.试题解析:(Ⅰ)当时,不等式可化为,即,解得,所以不等式的解集为.(Ⅱ)当时,不等式可化为,即,则,当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或.【考点】一元二次不等式的解法,分类讨论的思想.8.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划9.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式10.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.11.若关于的不等式在区间上有解,则实数的取值范围为()A.B.C.(1,+∞)D.【答案】A【解析】因为,则不等式可化为:,设,由题意得只需,因为函数为区间上的减函数,所以,所以选A【考点】1.分离参数;2.存在性问题;12.若,且,则的最小值是()A.B.C.2D.3【答案】B【解析】由已知条件可得(b=c时等号成立),所以,故选B【考点】不等式和最值计算综合问题13.若,则()A.B.C.D.【答案】C【解析】不等式的两边同时乘以负数,不等号方向改变,故A错,B错,C错,只有B对,故选B.【考点】不等式的基本性质.14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.已知,则的最大值是.【答案】3【解析】求解该不等式组在第一象限及与坐标轴的交点坐标是(0,2),(1,4),(5,0),(0,0),分别代入目标函数z=-x+y,得2,3,-5,0比较得最大值是3,当且仅当x=1,y=4时取得最大.【考点】线性规划的应用.16.(12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1);(2)详见解析;(3)详见解析【解析】(1)当时,将不等式分解因式,得到解集;(2)比较大小,可以做差,然后通分,分解因式,然后讨论的范围,比较两数的大小;(3)第一步,先分解因式,第二步,根据上一问的结果得到与的大小关系,得到解集.试题解析:解:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.解二次不等式;2.比较大小.17.(本题满分12分)已知函数,的解集为(1)求,的值;(2)为何值时,的解集为R.【答案】(1);(2)【解析】(1)不等式的解集的端点就是其对应方程的实根,所以代入,解,然后根据韦达定理求;(2)代入上一问的结果,问题转化为解集为,所以讨论两种情况,和.试题解析:解(1)由已知得是方程的两根,的解集为(2)由(1)得解集为,当时,不等式解集为成立,当时,由(1)(2)可得.【考点】1.二次不等式的解法;2.二次不等式恒成立;3.韦达定理.18.不等式的解集是.【答案】【解析】根据解一元二次不等式得口诀“大于取两边,小于取中间”可得不等式的解集是【考点】解一元二次不等式19.关于不等式的解集为,则等于()A.B.11C.D.【答案】C【解析】二次不等式的解集的端点值就是二次方程的实根,所以根据韦达定理,,解得,,所以【考点】1.一元二次不等式的解法;2.韦达定理.20.(共10分)(1)解不等式:;(2)解关于的不等式:【答案】(1);(2)详见解析.【解析】(1)将此分式不等式转化为相乘形式,即,即,然后按二次不等式求解;(2)解此类型的含参二次不等式,第一步,先分解因式,第二步,讨论两根的大小关系,根据根的大小关系,写出不等式的解集.试题解析:解:(1)原不等式等价于故原不等式的解集为(2)原不等式可化为综上:不等式的解集为:【考点】1.解分式不等式;2.解含参二次不等式.21.已知,则的最小值是()A.10B.C.12D.20【答案】C【解析】,,当且仅当时取得等号.【考点】基本不等式.22.若,则下列正确的是()A.B.C.D.【答案】D【解析】A.若,则不成立,所以错误;B.若,则不成立,所以错误;C.若,则不成立,所以错误;D因为,不等式两边同时减去同一个数,不等号方向不变,所以正确,故选择D【考点】不等式性质23.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式24.函数f(x)=,若f(x0)=3,则x的值是()A.1B.C.D.【答案】D【解析】f(x)=3,所以,舍去,或,其中舍去,或,舍去,综上,故选D【考点】分段函数求值25.三个数,,的大小关系为()A.B.C.D.【答案】C【解析】,所以有,故选C.【考点】指数的大小比较.26.若,,且恒成立,则的最小值是()A.B.C.D.【答案】B【解析】分离参数得恒成立,两边平方得,而,当且仅当时等号成立,所以,故选B.【考点】1、不等式性质;2、均值不等式;3、不等式的恒成立.【方法点晴】本题主要考查的是含参不等式的恒成立问题,属于中档题题.首先利用不等式的性质将不等式变形分离出常数,转化为求的最大值问题,再平方后运用基本不等式求其最大值,注意分析等号能否取得.27.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.28.设,则的大小关系A.B.C.D.【答案】B【解析】在同一直角坐标系中画出函数:的图像(略),由图像可知.故选B.【考点】指数函数和对数函数的图像和性质.29.若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.【答案】【解析】关于x的不等式(2x-1)2<ax2等价于,其中且有,故有,不等式的解集为,所以解集中一定含有1,2,3,可得,所以,解得.【考点】含参数的一元二次方程的解法.30.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集31.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集32.已知实数满足,设,则的取值范围是()A.B.C.D.【答案】D【解析】设且,则,令,所以,当时上述不等式中的等号成立,所以.【考点】基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用,其中正确构造基本不等式的应用条件是使用基本不等式的基础和关键,试题思维量大,运算繁琐,属于难题,着重考查了构造思想和转化与化归思想的应用,本题的解答中,设且,得,即可利用基本不等式,可求得的值,即可求解取值范围.33.下列关于的不等式解集是实数集R的为()A.B.C.D.【答案】C【解析】A中的解集是,B中的解集是,C中的解集是R,D中的解集是,故答案为C.【考点】不等式的解法.34.已知,那么下列不等式中正确的是()A.B.C.D.【答案】D【解析】由题根据不等式的性质,A,B,C选项,数的正负不明,错误;而选项D,无论取任何数都成立。
高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.,满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.或B.或C.或D.或【答案】D.【解析】如图,画出线性约束条件所表示的可行域,坐出直线,因此要使线性目标函数取得最大值的最优解不唯一,直线的斜率,要与直线或的斜率相等,∴或.【考点】线性规划.2.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.3.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.4.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.5.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.【考点】线性规划6.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.7.若变量满足约束条件,则的最大值为_________.【答案】【解析】作出不等式组表示的区域如下,则根据线性规划的知识可得目标函数在点处取得最大值,故填.【考点】线性规划8.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程=(3+1)2+82=80.组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得zmax9.已知实数满足,则目标函数的取值范围是.【答案】【解析】可行域表示一个三角形ABC,其中当直线过点A时取最大值4,过点B时取最小值2,因此的取值范围是.【考点】线性规划求取值范围10.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【答案】B【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.11.(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.19【答案】B【解析】依题意作出可行性区域如图,目标函数z=3x+4y在点(4,1)处取到最小值z=16.故选B.12.若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为A.-6B.-2C.0D.2【答案】A【解析】的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y =" -" 6取最小值。
高一 二元一次不等式(组)与简单的线性规划问题知识点+例题+练习 含答案

1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知变量满足:,则的最大值为()A.B.C.2D.4【答案】D【解析】由约束条件画出可行域,令,可知在点处取得最大值,所以的最大值为。
【考点】线性规划及指数函数的单调性。
2.若二元一次线性方程组无解,则实数的值是__________.【答案】-2【解析】二元一次线性方程组无解,则直线x+ay=3与ax+4y=6平行,则解得.【考点】二元一次方程组.3.若实数,满足,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出可行域,由图可知,可行域三个顶点分别为,将三个点的坐标分别代入目标函数得,所以目标函数的取值范围为,故选A.【考点】线性规划.4.(本题满分10分)选修4—5:不等式选讲设对于任意实数,不等式≥恒成立.(1)求的取值范围;(2)当取最大值时,解关于的不等式:.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将不等式≥恒成立,转化为,用零点分段法,将转化为分段函数,再每一段分别求最值;第二问,结合第一问的结论,将m的值代入,利用零点分段法将绝对值不等式转化成不等式组,分别求解.试题解析:(1)设,则有当时有最小值8当时有最小值8当时有最小值8综上有最小值8所以(2)当取最大值时原不等式等价于:等价于:或等价于:或所以原不等式的解集为【考点】绝对值不等式的解法、恒成立问题.5.(本小题满分10分)选修4—5:不等式选讲设函数.(1)当时,解不等式;(2)若的解集为,,求证:.【答案】(1);(2)证明详见解析.【解析】本题主要考查绝对值不等式的解法、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用零点分段法去掉绝对值符号,转化为不等式组,解不等式;第二问,先解不等式,再结合的解集为,从而得到a的值,再利用特殊值1将转化为,再利用基本不等式求函数的取值范围.试题解析:(1)当a=2时,不等式为,不等式的解集为;(2)即,解得,而解集是,,解得,所以所以.【考点】绝对值不等式的解法、基本不等式.6.已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是()A.B.C.D.【答案】C【解析】满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式,当时,;当时,;当时,;故取值范围为,故选C.【考点】1.简单的线性规划;2.向量的数量积.7.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.(Ⅱ)【解析】(Ⅰ)这是含绝对值的不等式工,解法是由绝对值的定义对变量的范围进行分类讨论以去掉绝对值符号,化为普通的不等式(不含绝对值);(Ⅱ)不等式为,可两边平方去掉绝对值符号,再作差可证.试题解析:(Ⅰ)由题意,原不等式等价为,令 3分不等式的解集是 5分(Ⅱ)要证,只需证,只需证而,从而原不等式成立. 10分【考点】含绝对值不等式的解法,绝对值不等式的证明,分析法.8.若是任意实数,且,则下列不等式成立的是()A.B.C.D.【答案】D【解析】因为函数在上是减函数,又,所以,故选D.【考点】不等式的性质.9.选修4-5:不等式选讲已知x,y为任意实数,有(1)若求的最小值;(2)求三个数中最大数的最小值.【答案】(1);(2).【解析】(1)利用消元法可得关于x的二次三项式,从而用配方法可求得最小值.(2)利用绝对值不等式可求最大值的最小值.试题解析:(1)解:当时,最小值为(2)设,则所以即中最大数的最小值为【考点】配方法,绝对值不等式,最值.10.若实数,满足不等式组.则的最大值是()A.10B.11C.13D.14【答案】D【解析】画出可行域如图:当时,作出目标函数线,平移目标函数线使之经过可行域,当目标函数线过点时纵截距最大同时也最大, 最大值为;当时,作出目标函数线,平移目标函数线使之经过可行域四边形但不包括边,当目标函数线经过点时纵截距最大同时也最大, 的最大值为.综上可得的最大值为14.【考点】简单的线性规划.11.已知函数,.(1)若,解不等式;(3)若,且对任意,方程在总存在两不相等的实数根,求的取值范围.【答案】(1):,:;(2).【解析】(1)根据的取值情况进行分类讨论,将表达式中的绝对值号去掉,再利用二次函数的单调性讨论即可求解;(2)利用二次函数的单调性首先课确定的大致范围,再利根据条件方程在总存在两不相等的实数根,建立关于的不等式组,从而求解.试题解析:(1)∵,∴在单调递增,在单调递减,在单调递增,若:令解得:∴不等式的解为:;若:令,解得:,,根据图象不等式的解为:,综上::不等式的解为;:不等式的解为;(3),∵,∴在单调递增,在单调递减,在单调递增,∴或,∴在单调递增,∴,若:在单调递减,在单调递增,∴必须,即;若:在单调递增,在单调递减,,即;综上实数的取值范围是.【考点】1.二次函数的综合题;2.分类讨论的数学思想.【方法点睛】解决二次函数综合题常见的解题策略有:1.尽可能画图,画图时要关注已知确定的东西,如零点,截距,对称轴,开口方向,判别式等;2.两个变元或以上,学会变换角度抓主元;3.数形结合,务必要保持数形刻画的等价性,不能丢失信息;3.掌握二次函数,二次不等式,二次方程的内在联系,熟练等价转化和准确表述;4.恒成立问题可转化为最值问题.12.设函数.(1)若,解不等式;(2)如果,,求的取值范围.【答案】(1);(2).【解析】(1)当,圆不等式变为,可利用绝对值的集合意义求解,从而得到不等式的解集;(2)求当,,a的取值范围,可先对a进行分类讨论:,对后两种情形,只需求出的最小值,最后“,”的充要条件是,即可求得结果.试题解析:由题意得,(Ⅰ)当时,.由,得,(ⅰ)时,不等式化为,即.不等式组的解集为.(ⅱ)当时,不等式化为,不可能成立.不等式组的解集为.(ⅲ)当时,不等式化为,即.不等式组的解集为.综上得,的解集为.(Ⅱ)若,不满足题设条件.若的最小值为.若的最小值为.所以的充要条件是,从而的取值范围为.【考点】绝对值不等式的求解及其应用.13.变量满足约束条件,当目标函数取得最大值时,其最优解为.【答案】.【解析】作出可行域,画出目标函数的图象,由图知最优解为.【考点】线性规划.14.(1)选修4—4:坐标系与参数方程已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是(为参数),直线和曲线相交于两点,求线段的长.(2)选修4—5:不等式选讲已知正实数满足,求证:.【答案】(1);(2)证明见解析.【解析】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;曲线的参数方程化为直角坐标方程,把直线的参数方程与曲线联立,利用韦达定理求线段的长.(2)利用基本不等式得,,再根据不等式的性质得,因为,得证.试题解析:(1)由直线的极坐标方程是,可得由直线的直角坐标方程是,化为参数方程为(为参数);曲线(为参数)可化为.将直线的参数方程代入,得.设所对应的参数为,,,所以.(2)证明:因为正实数,所以.同理可证:..,.当且仅当时,等号成立.【考点】1、极坐标方程;2、参数方程;3、直线与椭圆;4、基本不等式;5、不等式的性质.【方法点睛】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;再把曲线的参数方程化为直角坐标方程,然后把直线的参数方程与曲线联立,利用韦达定理和弦长公式求出线段的长.把直线的参数方程与曲线的直角坐标方程联立能够简化解题过程;(2)利用基本不等式及不等式的性质进行证明.15.已知满足约束条件,若的最大值为4,则()A.3B.2C.-2D.-3【答案】B【解析】将化为,作出可行域(如图所示),当时,当直线向右下方平移时,直线在轴上的截距减少,当直线过原点时,(舍);当时,当直线向右上方平移时,直线在轴上的截距增大,若,即时,当直线过点时,,解得(舍),当,即时,则当直线过点时,,解得;故选B.【考点】1.简单的线性规划;2.数形结合思想.【易错点睛】本题主要考查简单的线性规划与数形结合思想的应用,属于中档题;处理简单的线性规划问题的基本方法是:先画出可行域,再结合目标函数的几何意义进行解决,往往容易忽视的是目标函数基准直线与可行域边界的倾斜程度,如本题中,不仅要讨论斜率的符号,还要讨论斜率与边界直线斜率的大小关系.16.如果实数满足关系,则的最小值是.【答案】2【解析】满足不等式组的平面区域,如图所示,因表示定点到平面区域内的点的距离,由图易知其最小距离为点到直线的距离,即,所以的最小值为2.【考点】1、平面区域;2、点到直线的距离公式.【方法点睛】(1)平面区域的确定,已知,则,表示的区域为直线的右方(右下方或右上方),表示的区域为直线的左方(左下方或左上方);(2)具有一定的几何意义,即几何意义为点到的距离的平方.17.(2014•河南模拟)已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(1)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【答案】(1)原不等式的解集为{x|x≤0,或}.(2)[﹣].【解析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].【考点】绝对值不等式的解法.18.不等式的解集是()A.B.C.D.【答案】B【解析】或.故B正确.【考点】一元二次不等式.19.直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,则+的最小值为()A.3+2B.4+2C.6+4D.8【答案】C【解析】根据已知条件得到a+b=,将其代入+,结合基本不等式的性质计算即可.解:∵直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,∴圆x2+y2+4x﹣2y﹣1=0的圆心(﹣2,1)在直线上,可得﹣2a﹣2b+1=0,即a+b=,因此2(+)(a+b)=2(3++)≥6+4,当且仅当:=时“=”成立,故选:C.【考点】直线与圆的位置关系.20.已知实数满足不等式组,则的最大值为________.【答案】9.【解析】作出不等式组表示的平面区域如下图:由图可知,当直线经过点时,取得最大值为:.故答案应填:9.【考点】线性规划.21.已知.(Ⅰ)求证:;(Ⅱ)若对任意实数都成立,求实数的取值范围.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)利用零点分段讨论法将绝对值符号去掉,得到分段函数,再求各段的值域即可;(Ⅱ)利用基本不等式和不等式恒成立进行求解.试题解析:(Ⅰ)∵,∴的最小值为5,∴.(Ⅱ)解:由(Ⅰ)知:的最大值等于5.∵,“=”成立,即,∴当时,取得最小值5.当时,,又∵对任意实数,都成立,∴.∴的取值范围为.【考点】1.零点分段讨论法;2.基本不等式.22.设函数,其中.(I)当时,解不等式;(II)若对于任意实数,恒有成立,求的取值范围.【答案】(I);(II).【解析】(I)采用零点分区间法求解;(II)先求出的最大值为,把问题转化为求解.试题解析:(Ⅰ)时,就是当时,,得,不成立;当时,,得,所以;当时,,即,恒成立,所以.综上可知,不等式的解集是.(Ⅱ) 因为,所以的最大值为.对于任意实数,恒有成立等价于.当时,,得;当时,,,不成立.综上,所求的取值范围是【考点】.绝对值不等式的解法;不等式恒成立问题23.已知函数.(1)解不等式;(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1) 不等式的解集为;(2) .【解析】(1)分区间去掉绝对值符号,将函数表示成分段函数的形式,在每个区间上分别解不等式,最后再求并集即可;(2) 不等式对任意的恒成立,由(1)求出函数的最小值,解不等式即可.试题解析:(1).当时,由,得,此时无解;当时,由,得,所以;当时,由,得,所以.综上,所求不等式的解集为.(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为不等式对任意的恒成立,即,解得,故的取值范围为.【考点】1.含绝对值不等式的解法;2.函数与不等式.24.设,若对任意的正实数,都存在以为三边长的三角形,则实数的取值范围是()A.B.C.D.以上均不正确【答案】A【解析】因为正实数,则,要使为三边的三角形存在,则,即恒成立,故,令,则,取,递减,所以时,;同理取,递增,可知时,,故实数的取值范围是,故选A.【考点】基本不等式的应用.方法点睛:本题结合三角形的基本性质考查了基本不等式的应用,属于中档题.解答本题应先根据基本不等式求得,再三角形的性质任意两边之和大于第三边,任意两边之差小于第三边得到即得的不等式组,再利用基本不等式结合函数的单调性求出的取值范围.25.已知函数(是常数)和是定义在上的函数,对任意的,存在使得,,且,则在集合上的最大值为()A.B.C.4D.5【答案】D【解析】由题知,易知在上是减函数,在上是增函数,所以,又因为,所以,化简得,再由,可求得,所以,并且可判定在上是减函数,在上是增函数,由于,所以在集合上的最大值为,故选D.【考点】1、导数在函数研究中的应用;2、函数的最值.【思路点睛】本题是一个利用导数研究函数的单调性、最值方面的综合性问题,属于难题.解决本题的基本思路是,首先根据题意判断出的最值关系,再由条件求出函数在定义域上的最小值,进而判断出的最值情况,并据此求出的值,从而得到的解析式,进一步可求出的最大值,问题得以解决.26.已知直线经过点,则的最小值为()A.B.C.D.【答案】B【解析】因为直线经过点,所以,故,当且仅当时,等号成立.【考点】基本不等式.27.已知函数.(1)求不等式的解集;(2)若关于的表达式的解集,求实数的取值范围.【答案】(1);(2)或.【解析】(1)由绝对值的定义可分类讨论去绝对值,再分别解不等式即可;(2)由题意可得的值域为,要,需,解得实数的取值范围是或.试题解析:(1)由题意得:,则不等式等价于或,解得:或,∴不等式的解集.(2)∵,∴的值域为,∴的解集.要,需,即或,∴或,∴实数的取值范围是或.【考点】含绝对值不等式的解法.28.设函数.(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若不等式的解集非空,求实数的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式、存在性问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,解绝对值不等式,先得到与解集对应系数相等,解出的值;第二问,先整理,构造函数,画出函数图象,结合图象,得到,或,从而解出的取值范围.试题解析:(1)∵,∴,∴,∴,因为不等式的解集为,所以,解得.(2)由(1)得.∴,化简整理得:,令,的图象如图所示:要使不等式的解集非空,需,或,∴的取值范围是【考点】本题主要考查:1.绝对值不等式;2.存在性问题.29.若,若的最大值为3,则的值是___________.【答案】【解析】画出可行域如下图所示,为最优解,故.【考点】线性规划.30.选修4-5:不等式选讲若,且.(1)求的最小值;(2)是否存在,使得?并说明理由.【答案】(1)(2)不存在【解析】(1)利用基本不等式得,即,而,等号都是取得,(2)利用基本不等式得,即与矛盾,故不存在试题解析:解:(Ⅰ)由,得,且当时等号成立,故,且当时等号成立,∴的最小值为.(Ⅱ)由,得,又由(Ⅰ)知,二者矛盾,所以不存在,使得成立.【考点】基本不等式【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.31.已知x、y满足,那么z=3x+2y的最大值为 .【答案】【解析】由题意得,作出不等式组表示平面区域,如图所示,可得平面区域为一个三角形,当目标函数经过点时,目标函数取得最大值,此时最大值为.【考点】简单的线性规划.32.已知实数x,y满足,则z=4x+y的最大值为()A.10B.2C.8D.0【答案】C【解析】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当过点时,取最大值8.【考点】简单的线性规划问题.33.若实数满足约束条件,则的最大值为()A.B.1C.D.【答案】A【解析】因画出不等式组表示的区域如图, 的几何意义是区域内的动点与定点连线的斜率,借助图形不难看出区域内的点与定点连线的斜率最大,最大值为,所以的最大值为,应选A.【考点】线性规划的知识及运用.34.已知,使不等式成立.(1)求满足条件的实数的集合;(2)若,对,不等式恒成立,求的最小值.【答案】(1);(2).【解析】(1)运用分类讨论的方法分段求解;(2)借助题设条件及基本不等式求解.试题解析:(1)令,则,由于使不等式成立,有(2)由(1)知,,根据基本不等式,从而,当且仅当时取等号,再根据基本不等式当且仅当时取等号,所以的最小值为6【考点】绝对值不等式、基本不等式及运用.35.设变量满足不等式组则目标函数的最小值是______.【答案】7【解析】不等式组对应的可行域如图,由图可知,,目标函数表示斜率为的一组平行线当目标函数经过图中点时取得最小值.故填:7.【考点】线性规划36.设x,y满足约束条件且的最大值为4,则实数的值为____________.【答案】-4【解析】作出可行域,令得 .结合图象可知目标函数在处取得最大值,代入可得.故本题答案应填.【考点】线性规划.37.已知函数,其中为常数.(1)当时,求不等式的解集;(2)设实数,,满足,若函数的最小值为,证明:.【答案】(1);(2)证明见解析.【解析】(1)由.再由或或解集为;(2)由当且仅当,即时取等号,,则.解法一:由题设.解法二:由题设,,即,.试题解析:(1)当时,由,得或,即或所以不等式的解集为(2)因为,当且仅当,即时取等号,则.由已知,,则解法一:由题设,则,,解法二:由题设,,据柯西不等式,有,即,所以【考点】1、绝对值不等式;2、重要不等式;3、柯西不等式.38.若满足约束条件,则的最大值为.【答案】【解析】作出可行域,如图内部(含边界),,,表示可行域内点与的连线的斜率,,因此最大值为.【考点】简单线性规划的非线性运用.39.已知变量满足约束条件,目标函数的最大值为10,则实数的值等于()A.4B.C.2D.8【答案】A【解析】由不等式组可得可行域(如图),当直线经过点时,取得最大值,且由已知,解得.【考点】简单线性规划.【方法点睛】本题主要考查简单线性规划问题,属于基础题.处理此类问题时,首先应明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围等.40.已知变量满足约束条件,则的最大值为__________.【答案】1【解析】可行域为一个三角形ABC及其内部,其中,直线过点C时取最大值1.【考点】线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.41.设,则a, b,c的大小关系是()A.a>c>b B.a>b>cC.c>a>b D.b>c>a【答案】A【解析】,考察函数,该函数在上单调递减,,考察函数,该函数在上单调递增,,故选A.【考点】指数函数的单调性与幂函数的单调性.42.若满足约束条件,则当取最大值时,的值为()A.B.C.D.【答案】D【解析】作出可行域如图中阴影部分所示,的几何意义是:过定点与可行域内的点的直线的斜率,由图可知,当直线过点时,斜率取得最大值,此时的值分别为,所以.故选D.【考点】简单线性规划.43.若,则()A.B.C.D.【答案】A【解析】因为即,,所以,故选A.【考点】指数函数、对数函数的性质.44.已知实数满足不等式组则的最大值是___________.【答案】6【解析】作出不等式组表示的平面区域,如图所示,由图知当目标函数经过点时取得最大值,即.【考点】简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值,正确作出可行域是解答此类问题的前提条件.45.选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集为非空集,求的取值范围.【答案】(1)详见解析;(2)(-1,0)【解析】(1)(当且仅当时取等号);(2)作出函数的图象,由图像可求出结果.试题解析:解:(1)(当且仅当时取等号)(2)函数的图象如图所示.当时,,依题意:,解得,∴的取值范围是(-1,0).【考点】1.绝对值不等式;2.基本不等式.46.选修4—5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若存在实数,使得,求实数的取值范围.【答案】(I);(II).【解析】(I)分,,三种情况讨论,去掉绝对值符号,转化不等式求出解集,取并集即可;(II)移项可得,根据绝对值的几何意义,求出的最大值,即可求得实数的取值范围.试题解析:(I)①当时,,所以②当时,,所以为③当时,,所以综合①②③不等式的解集(II)即由绝对值的几何意义,只需【考点】绝对值不等式的解法和绝对值的几何意义.47.设,满足约束条件则的取值范围为.【答案】【解析】画出可行域如下图所示,由图可知,目标函数在点处取得最小值为,在点处取得最大值为.【考点】线性规划.48.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处的最大值是,在最小值是,所以而,所以的最大值是,故选B.【考点】1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.49.选修4-5:不等式选讲已知函数.(Ⅰ)若,解不等式;(Ⅱ)若存在实数,使得不等式成立,求实数的取值范围.【答案】(I)(II)【解析】(I)先根据绝对值定义将不等式转化为三个不等式组:,或,或,最后求三个不等式组解集的并集得原不等式的解集(II)先化简不等式为,再利用绝对值三角不等式求最值:,再转化解不等式得实数的取值范围.试题解析:不等式化为,则,或,或,……………………3分解得,所以不等式的解集为.……………………5分(2)不等式等价于,即,由绝对值三角不等式知.……………………8分若存在实数,使得不等式成立,则,解得,所以实数的取值范围是.……………………10分【考点】绝对值三角不等式,绝对值定义【名师】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.50.选修4-5:不等式选讲已知函数.(1)解不等式;。
高中数学第3章不等式3.5.2简单线性规划练习

3.5.2 简单线性规划课时跟踪检测 [A 组 基础过关]1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为( )A .5B .3C .7D .-8解析:作出不等式组所表示的可行域,如图所示:当目标函数z =3x +y 过C 点时,z 有最大值.由⎩⎪⎨⎪⎧x +y =1,y =-2得C (3,-2),∴z max =3×3-2=7.故选C. 答案:C2.(2018·吉林延边月考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,3x +y -6≥0,y ≤3,则z =-2x+y 的最小值为( )A .-7B .-6C .-1D .2解析:不等式组所表示的平面区域如图所示,当目标函数z =-2x +y 过C 点时,z 有最小值,C (5,3), ∴z min =-2×5+3=-7,故选A.答案:A3.图中阴影部分的点满足不等式组⎩⎪⎨⎪⎧x +y ≤5,2x +y ≤6,x ≥0,y ≥0,在这些点中,使目标函数z =6x+8y 取得最大值的点的坐标是()A .(0,5)B .(1,4)C .(2,4)D .(1,5)解析:目标函数改写为y =-34x +z 8表示斜率为-34,纵截距为z8的平行直线系,其中经过点A 时,纵截距最大(其z 最大).由⎩⎪⎨⎪⎧x +y =5,x =0得A (0,5),故选A.答案:A4.(2018·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x+5y 的最大值为( )A. 6 B . 19 C. 21D. 45解析:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程⎩⎪⎨⎪⎧x +y =5,-x +y =1,可得点A 的坐标为A (2,3),据此可知目标函数的最大值为z max =3x +5y =3×2+5×3=21.故选C.答案:C5.某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱解析:设甲加工原料x 箱,乙加工原料y 箱,获利为z 元.则⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤70,10x +6y ≤480,且z =7×40x +4×50y =280x +200y .作出可行域(图略),易知x =15,y =55时,z 取最大值. 答案:B6.(2018·浙江卷)若x 、y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤6,x +y ≥2,则z =x +3y 的最小值是________,最大值是________.解析:作可行域,如图中阴影部分所示,则直线z =x +3y 过点A (2,2)时z 取最大值8,过点B (4,-2)时z 取最小值-2.答案: -2 87.(2018·江苏南京师范大学附属中学月考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,若目标函数z =ax +y 的最小值为-2,则a =________.解析:可行域为一个三角形ABC 及其内部,其中A (1,3),B (1,1),C (2,2),因为目标函数z =ax +y 的最小值为-2,所以a <0,因此⎩⎪⎨⎪⎧-a <1,a +1=-2 或⎩⎪⎨⎪⎧-a ≥1,2a +2=-2,解得a =-2. 答案:-28.求z =3x +5y 的最大值和最小值,其中x ,y 满足约束条件⎩⎪⎨⎪⎧5x +3y ≤15,y ≤x +1,x -5y ≤3.解:由不等式组⎩⎪⎨⎪⎧5x +3y ≤15,y ≤x +1,x -5y ≤3作出可行域,如图所示.∵目标函数为z =3x +5y , ∴作直线l :3x +5y =t (t ∈R ).当直线l 在l 0:3x +5y =0的右上方时,l 上的点(x ,y )满足3x +5y >0,即t >0,而且直线l 向右平移时,t 随之增大,在可行域内以经过点A ⎝ ⎛⎭⎪⎫32,52的直线l 1所对应的t 最大.类似地,在可行域内,以经过点B (-2,-1)的直线l 2所对应的t 最小.∴z max =3×32+5×52=17,z min =3×(-2)+5×(-1)=-11.[B 组 技能提升]1.实数x ,y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则W =y -1x +1的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-1,13B .⎣⎢⎡⎦⎥⎤-12,13 C.⎣⎢⎡⎭⎪⎫-12,+∞ D.⎣⎢⎡⎭⎪⎫-12,1 解析:利用数形结合思想,把所求问题转化为动点P (x ,y )与定点A (-1,1)连线的斜率问题.画出题中不等式组所表示的可行域如图所示,目标函数W =y -1x +1表示阴影部分的点与定点A (-1,1)的连线的斜率,由图可见点(-1,1)与点(1,0)连线的斜率为最小值,最大值趋近于1,但永远达不到1,故-12≤W <1,故选D.答案:D2.已知O 是坐标原点,点A (-1,0),若M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则|OA →+OM →|的取值范围是( )A.[]1,5 B .[]2,5 C .[1,2]D.[]0,5解析:∵|OA →+OM →|= (x -1)2+y 2, 不等式组所表示的平面区域如图所示: 由图可知:D (0,2),B (1,1),C (1,2),令z =|OA →+OM →|,z max =5,z min =1,故选A.答案:A3.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +5y 的最大值为4,则实数m 的值为________.解析:如图所示,由z =x +5y 得y =-15x +z5.故目标函数在P 点处取最大值,由⎩⎪⎨⎪⎧y =mx ,x +y =1得P1m +1,m m +1,代入目标函数得4=1m +1+5mm +1,解得m =3.答案:34.(2019·重庆月考)某玩具生产厂计划每天生产卡车模型、赛车模型、小汽车模型这三种玩具共100个,生产一个卡车模型需5分钟,生产一个赛车模型需7分钟,生产一个小汽车模型需4分钟,已知总生产时间不超过10小时,若生产一个卡车模型可获利8元,生产一个赛车模型可获利润9元,生产一个小汽车模型可获利润6元,该公司合理分配生产任务使每天的利润最大,则最大利润是________元.解析:设生产卡车模型为x 个,赛车模型y 个,所以小汽车模型为(100-x -y )个. ∴⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,x +y ≤100,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,x ∈N ,y ≥0,y ∈N .利润z =8x +9y +6(100-x -y )=2x +3y +600, 不等式组所表示的平面区域如图所示,当目标函数过A 点时,z 有最大值, 由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50,∴z max =2×50+3×50+600=850. 答案:8505.已知⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x +2y -4的最大值; (2)z =x 2+y 2-10y +25的最小值; (3)z =2y +1x +1的范围.解:作出可行域,如图阴影部分所示.并求出顶点的坐标A (1,3)、B (3,1)、C (7,9).(1)易知可行域内各点均在直线x +2y -4=0的上方,故x +2y -4>0,把C (7,9)代入z ,得最大值为21.(2)z =x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方,过M 作直线AC 的垂线,易知垂足N 在线段AC 上,故z 的最小值是|MN |2=92.(3)z =2·y -⎝ ⎛⎭⎪⎫-12x -(-1)表示可行域内任一点(x ,y )与定点Q ⎝⎛⎭⎪⎫-1,-12连线的斜率的两倍,因为k QA =74,k QB =38,故z 的取值范围为⎣⎢⎡⎦⎥⎤34,72. 6.某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需要煤、电力、劳动力,获得利润及每天资源限额(最大供应量)如表所示:产品消耗量 资源甲产品(每吨)乙产品(每吨)资源限额(每天)煤(吨) 9 4 360 电力(千瓦时) 4 5 200 劳动力(个) 3 10 300 获得利润(万元)612解:设此工厂每天应分别生产甲、乙两种产品x 吨、y 吨,获得利润z 万元.则⎩⎪⎨⎪⎧9x +4y ≤360,4x +5y ≤200,3x +10y ≤300,x ≥0,y ≥0.利润目标函数为z =6x +12y .如图,作出可行域,作直线l :z =6x +12y ,把直线l 向右上方平移至l 1位置,直线经过可行域上的点M ,且与原点距离最大,此时z =6x +12y 取得最大值.解方程⎩⎪⎨⎪⎧3x +10y =300,4x +5y =200,得M (20,24).所以每天生产甲种产品20吨,乙种产品24吨,才能使此工厂获得最大利润.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式及线性规划问题(讲义)知识点睛一、 不等式的基本性质 性质1:a b b a >⇔< 性质2:a b b c a c >>⇒>, 性质3:a b a c b c >⇒+>+性质4:a b >,0c >ac bc ⇒>;a b >,0c <ac bc ⇒< 性质5:a b c d a c b d >>⇒+>+, 性质6:00a b c d ac bd >>>>⇒>,性质7:0(2)n n a b a b n n >>⇒>∈≥,N 性质8:02)a b n n >>⇒>∈≥,N 二、 一元二次不等式及其解法一般地,对于解一元二次不等式20(0)ax bx c a ++>≠,通常步骤如下: (1)解方程20(0)ax bx c a ++=≠常用方法:直接开平方法、配方法、公式法、分解因式法. (2)解不等式 考虑两种解法:函数法:借助函数图象求解①画出对应函数2y ax bx c =++的图象; ②依据图象得出不等式的解集.代数法:借助实数乘法法则,解不等式组. 三、 绝对值不等式的解法1. 解绝对值不等式的核心:去绝对值去绝对值方法:以||x a -为例 (1)绝对值的几何意义:①||x a -表示数轴上x a -,0对应两点之间的距离②||x a -表示数轴上 x a ,对应两点之间的距离 (2)绝对值法则: ||0x a x a x a x a x a x a ->⎧⎪-==⎨⎪-+<⎩,,,(3)偶次方:221||() ( )n n x a x a n n -=-∈≥,N2. 解绝对值不等式常见题型(1)单个绝对值型不等式:如||ax b c +≤或||ax b c +≥ 思路一:依据绝对值的几何意义 ①||ax b c +≤转化为c ax b c -+≤≤②||ax b c +≥转化为c c ax b ax b ++-≥或≤思路二:依据绝对值的“零点”,由绝对值法则去绝对值,再解不等式 思路三:由相应函数()||f x ax b c =+-,利用数形结合思想,依据图象处理. (2)多个绝对值型不等式:如||||x a x b c -+-≥ 思路一:依据绝对值的几何意义数轴上到a 、b 对应两点的距离之和不小于c 的点的集合; 思路二:依据绝对值的“零点”依据绝对值的“零点”分段,由绝对值法则去绝对值,再解不等式; 思路三:依据函数图象由相应函数()||||f x x a x b c =-+--,利用数形结合思想,依据图象处理. (3)常见函数图象 ①()|1|f x x =-②()|1|f x x =+结论推广:①||||||x a x b a b -+--≥;②||||||||a b x a x b a b ------≤≤.四、 二元一次不等式(组)及线性规划 1. 二元一次不等式与平面区域若方程0Ax By C ++=表示直线l ,则 不等式0Ax By C ++>表示直线l 某一侧所有点组成的平面区域,将该侧任一点坐标00()x y ,代入Ax By C ++,000Ax By C ++>恒成立.同理,不等式0Ax By C ++<表示直线l 的另一侧. 2. 由二元一次不等式组判断平面区域 (1)直线定界(注意虚线与实线);(2)特殊点定域(如:原点,(0 1),,(1 0),等);(3)不等式组找公共区域.3.线性规划相关概念约束条件:关于x,y的不等式(或方程)线性约束条件:关于x,y的一次不等式(或方程)目标函数:要求的关于变量x,y的函数线性目标函数:目标函数为关于变量x,y的一次函数可行解:满足约束条件的解(x,y)可行域:所有可行解组成的集合最优解:使目标函数取得最大值或最小值的可行解线性规划问题:在线性约束条件下求线性目标函数的最大值或最小值问题4.求目标函数z=ax+by的最值利用线性规划求最值,一般用图解法求解,其步骤是:(1)根据约束条件画出可行域;(2)考虑目标函数的几何意义,令z=0,画出直线l0;(3)在可行域内平行移动直线l0,从而确定最优解;(4)将最优解代入目标函数即可求出最大值或最小值.精讲精练1.下列命题中正确的是()A.a b c d a c b d>>⇒->-,B.a b a bc c >⇒>C.ac bc a b<⇒<D.22ac bc a b>⇒>2.若01a b<<<,则()A.11b a>B.11()()22a b<C.n na b>D.11 lg lg a b>3. 当0a b >>,0c d <<时,给出以下结论:①ad bc <;②22a c b d +>+;③b c a d ->-; ④3330c d a <<<. 其中正确结论的序号是______________.4. 设方程20(0)ax bx c a ++=≠的两根为12 x x ,,且12x x <. (1)若0a <,则20ax bx c ++<的解集为____________; (2)若0a >,则20ax bx c ++≥的解集为____________.5. 已知不等式230x x t -+<的解集为{}|1 x x m x <<∈,R .(1)t =_________,m =_________;(2)若函数2()4f x x ax =-++在区间( 1]-∞,上递增,求关于x 的不等式2log (32)0a mx x t -++-<的解集.6.解下列不等式.(1)|21||21|6++-≤x x(2)|21||4|2+-->x x7.已知函数()|4||3|=-+-.f x x x(1)若()<有解,则实数a的取值范围为_________.f x a(2)若()<无解,则实数a的取值范围为___________.f x a(3)若()>对一切实数x均成立,则实数a的取值范f x a围为_______________.(4)若()2|3|a--≥有解,则实数a的取值范围为f x x_______________.8.写出下列平面区域表示的二元一次不等式组.(1)____________________;(2)___________________.(1)9.(21)(4)0x y x y++-+≤表示的平面区域为下图中的()A.B.C.D.10.不等式组3434xx yx y⎧⎪+⎨⎪+⎩≥≥≤所表示的平面区域的面积等于()A.32B.23C.43D.3411.设变量x,y满足约束条件53151053x yx yx y+⎧⎪-+⎨⎪-⎩≤≥≤,则目标函数z=3x+5y 的最大值为__________,最小值为_________.12.设变量x,y满足约束条件3602030x yx yy+-⎧⎪--⎨⎪-⎩≥≤≤,则目标函数z=2x-y的最小值为()A.7B.-4C.-1D.413.设变量x,y满足3010350x yx yx y+-⎧⎪-+⎨⎪--⎩≥≥≤,设ykx=,则k的取值范围是()A.14[]23,B.4[2]3,C.1[2]2,D.1[)2+∞,14.给出平面区域如图中的阴影部分所示,若使目标函数z=ax+y(a>0)取得最大值时的最优解有无穷多个,则a的值为__________________.15.某厂拟生产甲、乙两种适销产品,每件产品销售收入分别为3 000元、2 000元.甲、乙产品都需要在A、B两种设备上进行加工.在每台A、B设备上加工1件甲,设备所需工时分别为1 h、2 h;加工1件乙,设备所需工A、B两种设备每月有效使用台时数分别为400 h和500 h.问:如何安排生产可使收入最高?回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________【参考答案】1. D2. D3. ①②④4. (1)12( )( )x x -∞+∞,,; (2)12( ][ )x x -∞+∞,, 5. (1)22t m ==;;(2)13(0 )(1 )22,,6. (1)33[ ]22-,;(2)5( 7)( )3-∞-+∞,,7. (1)(1 )+∞,;(2)( 1]-∞,;(3)( 1)-∞,;(4)( 1]-∞, 8. (1)04150220x y x y x y ->⎧⎪+-<⎨⎪+-⎩≥;(2)036020y x y x y ⎧⎪-+⎨⎪-+<⎩≥≥9. B10. C11. 17 -11 12. C 13. C14. 3515. 每月生产甲产品200件,乙产品100件,可使收入最高.不等式及线性规划问题(随堂测试)1. 解不等式:|21|1x x --<.2. 已知不等式|2|||a x x ++≤的解集不是空集,则实数a 的取值范围是________________.3. 已知变量 x y ,满足约束条件2020x y y x y +-⎧⎪⎨⎪-⎩≥≤≤,则2z x y =-的最大值为_______.【参考答案】1.{}|02x x <<2. [2 )+∞, 提示:min ()|2|||2a x x ++=≥.3. 2提示:2z x y =-在点(2,2)处取得最大值.不等式及线性规划问题(作业)例1: 解不等式2|2||1|1x x --+≥.【思路分析】由绝对值的零点,可得三段:1x <-,12x -<≤,2x ≥,由此解不等式组即可. 【过程示范】 原不等式转化为(1)12(2)(1)1x x x <-⎧⎨-+---⎩≥,解得1x <-.(2)122(2)(1)1x x x -<⎧⎨-+-+⎩≤≥,解得213x -≤≤.(3)22(2)(1)1x x x ⎧⎨--+⎩≥≥,解得6x ≥.综上,不等式的解集为62{|}3x x x ≤≥或.例2: 若实数 x y ,满足不等式组3113x y x y x y +--⎧⎪⎨⎪-⎩≤≥≥,则23z x y =+的最大值为________.【思路分析】本题属于线性规划问题.由题意得1330010x y x y x y +---⎧⎪⎨⎪-+⎩≤≥≥,如图,阴影部分即为可行域.令z =0,画出直线230x y +=,在可行域内平行移动直线230x y +=,当直线233zy x =-+经过点(2 3)A ,时,纵截距最大,则23z x y =+的最大值为223313⨯+⨯=.1. 如果0a b >>,0m >,那么下列不等式中一定成立的是( )A .b b m a a m +>+B .a a m b b m ->-C .b b m a a m +<+D .a a m b b m-<-2. 设1a b >>,0c <,给出下列四个结论:①c ca b>;②c c a b <;③log ()log ()b a a c b c ->-; ④2( )n n a b n n >∈≥,N . 其中所有正确结论的序号是( ) A .①②④ B .①②③ C .②③④D .①②③④3. 不等式2230x x -++<的解集是( ) A .{}|1x x <-B .3{|}2x x >C .3{|1}2x x -<<D .3{|1}2x x x <->或4. 若关于x 的不等式||b x a -≤的解集为{|24}x x ≤≤,则a =______,b =______.5. 若不等式|2|1x ->与不等式20x ax b ++>的解集相同,则a =______,b =______.6.解下列不等式.(1)()(1)0x x+-+≥a x x--<(2)|2||21|0(3)|21||3|5+--≥x xx x-+-≤(4)2|1||3|57.已知()|3||1|=-++.f x x x(1)若()af x≥对一切实数x均成立,则实数a的取值范围是___________;(2)若存在实数x使()af x>成立,则实数a的取值范围是___________;(3)若不存在实数x使()2|1|f x x a-+<成立,则实数a的取值范围是__________.8.设x y,满足约束条件3101x yx--⎧⎨⎩≤≤≤≤,则2z x y=-的最大值为________.9.设变量x,y满足约束条件260260x yx yy+-⎧⎪+-⎨⎪⎩≥≤≥,则目标函数z=x+2y的最大值为()A.3B.4C.6D.810. 设 x y ,满足约束条件110y x y y x -+⎧⎪⎨⎪⎩≤≤≥,则1x y +的取值范围为________.11. 设D 是不等式组12121000y x y x y +++-+⎧⎪⎨⎪⎩≥≥≤表示的平面区域,则区域D 中的点( )P x y ,到直线10x y +-=的距离的最小值是______.12. 甲、乙两校计划周末组织学生参加敬老活动,甲校每位同学往返车费是5元,每人可为3位老人服务;乙校每位同学往返车费是3元,每人可为5位老人服务.两校都有学生参加,甲校参加活动的学生比乙校至少多1人,且两校同学往返总车费不超过45元.问:如何安排甲、乙两校参加活动的人数,才能使受到服务的老人最多?受到服务的老人最多是多少?【参考答案】1. C2. D提示:③log ()log ()log ()b a a a c a c b c ->->-.3. D4. 3 1提示:||b x a -=的解即为2 4,,∴将2 4x =,代入方程中求解即可. 5. -436. (1)当1a ≥时,解集为{}|1x x a x ><或; 当1a <时,解集为{}|1x x x a ><或. (2)1{|1}x x -≤≤(3)31{|}3x x -≤≤(4)10{|2}x x x -≤≥或7. (1)( 4]-∞,;(2)R ;(3)( 4]-∞-, 8. 3 9. C 10. [ 1 1]-, 提示:目标函数1x z y =+可以转化为11(1)y y z x x +--==-,(1)0y x ---即可行域中的点与点(0 1)-,的连线的斜率的取值范围,再求其倒数即可. 11.412. 甲校参加6人,乙校参加5人,受到服务的老人最多,为43人.提示:设甲校参加活动的人数为x ,乙校参加活动的人数为y ,则x ,y 满足*53145N x y x y x y +⎧-⎪⎨⎪∈⎩≥≤,,目标函数为35z x y =+,求目标函数的最大值.。