新人教版九年级上《圆的概念》
人教版九年级数学上册第24章第1节《圆》课件

A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:
•
垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O
•
r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质
•
垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.
人教版九年级上册二十四章《圆》单元知识点

人教版九年级上册二十四章《圆》单元知识点知识点一:圆的两种定义(动态、静态)1、圆的表示2、圆心确定圆的位置、半径确定圆的大小3、通过定义2证明几点共圆(难点)知识点二:圆有关的概念(弦、弧、半圆、等圆、等弧)知识点三:垂径定理及推论(过圆心、垂直弦、平分弦(不是直径)、平分弦所对的优弧、平分弦所对的劣弧)知二推三在解决圆中半径、弦长时,一般通过过圆心作弦的垂线、连半径构造直角三角形,再通过勾股定理解决。
知识点四:弧、弦、圆心角之间的关系在同圆或等圆中:两个圆心角、两条弧、两条弦中有一组量相等,则它们所对的其余各组量都相等(知一推二)知识点五:圆周角的定义:特别注意顶点在圆周上,两边和圆相交知识点六:弧、圆周角、圆心角的对应关系一条弧所对的圆心角等于它所对的圆心角的一半知识点七:圆周角定理及推论同弧或等弧所对的圆周角相等半径(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径知识点八:圆内接四边形性质:圆内接四边形的对角互补圆内接四边形的一个外角等于它的内对角知识点九:点和圆的位置关系通过点到圆心的距离与半径之间的大小关系,判断点和圆的位置关系点到圆心的距离小于半径----------点在圆内点到圆心的距离等于半径----------点在圆上点到圆心的距离大于半径----------点在圆外知识点十:外接圆、外心知识点十一:外心的位置锐角三角形--三角形内部直角三角形--直角顶点钝角三角形--三角形外部知识点十二:反证法1、假设命题的结论不成立2、从假设出发,经过逻辑推理与定义、定理或已知条件相矛盾的结论3、由矛盾判定假设不成立,从而得原命题正确知识点十三:直线和圆的位置关系直观法:通过直线与圆的交点个数判定直线和圆的位置关系没有交点-------相离一个交点-----相切两个交点---相交数据分析法:通过圆心到直线的距离判定直线和圆的位置关系圆心对直线的距离大于半径--------相离圆心对直线的距离等于半径--------相切圆心对直线的距离小于半径--------相交知识点十四:切线的判定定理证明思想:连半径、证垂直作垂直、证半径知识点十五:切线的性质:圆的切线垂直与过切点的半径知识点十六:切线长定理、三角形的内切圆及内心、三角形内切圆的半径知识点十六:正多边形和圆1、有关概念2、圆内接(外切正多边形的有关计算3、圆内接正多边形的画法知识点十七:弧长的计算公式、弧长公式的运用、求旋转过程中点的轨迹的长知识点十八:扇形面积公式(两个公式之间的相互应用)、不规则图形面积的计算知识点十九:圆锥的有关概念、圆锥额侧面展开图、圆锥的侧面积和全面积计算公式。
九年级数学上人教版《圆》课堂笔记

《圆》课堂笔记一、基本概念1.圆:所有点到定点的距离等于定长的点的集合。
定点称为圆心,定长称为半径。
2.弦:连接圆上任意两点的线段。
最长的弦是直径。
3.弧:圆上两点之间的部分。
弧分为优弧和劣弧。
4.圆心角:顶点在圆心,两边与圆相交的角。
5.圆周角:顶点在圆上,两边与圆相交的角。
二、圆的性质1.圆的对称性:圆关于经过圆心的任意直线对称。
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。
3.圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
反之,如果两弦相等,那么它们所对的圆心角也相等,所对的弧也相等。
4.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
5.切线性质:切线垂直于过切点的半径。
切线与圆心的距离等于圆的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
6.圆内接四边形性质:圆内接四边形的对角互补。
三、重要公式和定理1.圆的周长公式:C = 2πr(r为半径)。
2.圆的面积公式:S = πr²(r为半径)。
3.扇形面积公式:S = (nπr²) / 360(n为圆心角度数,r为半径)。
4.圆锥侧面积公式:S = πrl(r为底面半径,l为母线长)。
5.圆的切线判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
6.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
7.垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
8.圆心角、弧、弦的关系推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
9.圆周角定理推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
10.切线性质推论:圆的切线垂直于过切点的半径。
新课标人教版《数学》九年级上册 圆的概念和性质的复习导学案

圆的概念和性质的复习导学案一、圆的有关概念和性质考点一圆的有关概念和性质1.圆的定义动态:在同一平面内,一条线段OA绕着它固定的一个端点O旋转____,另一个端点A所形成的封闭图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.静态:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点的集合.2.圆的有关的概念3.圆的性质(1)圆的对称性:圆既是轴对称图形,又是中心对称图形,任意一条____所在的直线都是它的对称轴,圆心是它的对称中心.(2)圆的确定:不在同一直线上的____个点确定一个圆.三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的______.(3)圆的旋转不变性:圆绕圆心任意旋转一个角度都和自身重合.考点二垂径定理及其推论(高频)考点三圆心角、弧、弦之间的关系1.圆心角:顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的____相等,所对的____相等. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中,有一组量相等,那么其余的各组量也都____ .考点四圆周角定理及其推论(高频)考点五圆与多边形1.圆的内接多边形(1)如果一个多边形的每一个顶点都在同一个圆上,这个多边形叫做这个圆的__________,这个圆叫做这个多边形的__________.(2)圆内接四边形的性质:圆的内接四边形的对角_____.2.正多边形与圆(见第24课时)二、例题教学命题点1圆周角定理及其推论例1.(2019·安徽,10,4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4.P是△ABC内部的一个动点,且满足∠P AB=∠PBC.则线段CP长的最小值为( ) A.32B.2C.81313D.121313例2.(2019·安徽,19,10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.例3.(2019·安徽,13,5分)如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_____°.命题点4圆的性质例4.(2019·安徽,20,10分)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.三、巩固练习考法1圆周角定理及其推论1.(2019·四川乐山)如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=40°,则∠CAB=()A.10°B.20°C.30°D.40°考法2垂径定理及其推论2.(1)(2019·湖南长沙)如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为____.(2)(2019·江苏宿迁)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为____.考法3圆心角、弧、弦之间的关系3.(2019·山东济宁)如图,在⊙O中, 弧AB=弧AC,∠AOB=40°,则∠ADC的度数是( )A.40°B.30°C.20°D.15°考法4圆内接四边形4.(2019·宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;课后作业:1.(2019·海南)如图,AB是⊙O的直径,AC,BC是⊙O的弦,直径DE⊥AC于点P,若点D在优弧ABC上,AB=8,BC=3,则DP=_____.2.(2019·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为( )A.140°B.70°C.60°D.40°3.(2019·浙江舟山改编)把一张圆形纸片按照如图所示的方式折叠两次后展开,图中的虚线表示折痕,则∠BOC的度数是( )A.120°B.135°C.150°D.165°4.(2019·甘肃兰州)如图,四边形ABCD内接于⊙O,四边形ABCO是平行四边形,则∠ADC=()A.45°B.50°C.60°D.75°∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°6.(2019·湖南岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=____°.。
人教版五四制初中数学九年级上《圆》知识点

圆一、圆的基本性质1、圆的对称性:圆是以圆心为对称中心的中心对称图形;不在同一直线上的三点确定一个圆。
⊙O2、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3、圆心角:顶点在圆心上的角叫做圆心角。
圆周角:顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
推论1、①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2、圆的两条平行弦所夹的弧相等;5、弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等;6、同弧上的圆周角与圆心角之间的关系:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
推论:同圆或等圆中,相等的圆周角所对的弧也相等;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
二、与圆有关的位置关系1、点与圆的位置关系:点到圆心的距离大于半径:点在圆外;点到圆心的距离等于半径:点在圆上;点到圆心的距离小于半径:点在圆内;2、直线与圆的位置关系:直线与圆无公共点为相离;直线与圆有两个公共点为相交,这条直线叫做圆的割线;直线与圆有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷
《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
第二十四章圆(完整知识点)人教版九年级数学上册
第二十四章 圆一、圆的有关概念及表示方法 (一)圆的定义1、描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
其固定的端点O 叫做圆心,线段OA 叫做半径。
2、集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合。
(二)圆的表示方法:以点O 为圆心的圆,记作⨀O ,读作“圆O ”。
(三)圆具有的特性1、圆上各点到定点(圆心O )的距离都等于定长(半径r )。
2、到定点的距离等于定长的点都在同一个圆上。
注:(1)确定一个圆需要两个因素:圆心确定圆的位置,半径确定圆的大小。
(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心[三点不共线(直径)]构成的三角形都是等腰三角形。
(四)圆的有关概念1、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
以AC 为端点的弦,记作:弦AC 。
注:圆中有无数条弦,其中直径是最长的弦,但弦不一定是直径。
2、弧2.1圆上任意两点间的部分叫做圆弧、简称弧。
以A 、B 为端点的弧记作⨀AB ,读作“圆弧AB ”或“弧AB ”。
2.2圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
大于半圆的弧叫做优弧,如图中的⨀ABC 。
小于半圆的弧叫做劣弧,如图中的⨀AC。
注:(1)在一个圆中,任意一条弦都对着两条弧,任意一条弧只对着一条弦。
(2)弧包括优弧、劣弧、半圆;半圆既不是劣弧,也不是优弧。
3、同圆或等圆:能够重合的两个圆叫做等圆。
同圆或等圆的半径相等。
4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
等弧是全等的,不仅仅是弧的长度相等。
5、同心圆:圆心相同,半径不相等的圆叫做同心圆。
二、圆的有关性质 (一)垂直于弦的直径1、圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。
名称 文字语言 符号语言 图示垂径 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧。
最新人教版初中九年级上册数学《圆》精品课件
7.已知:如图,在△ABC中,∠C=90°, 求证:A、B、C三点在同一个圆上.
证明:作AB的中点O,连接OC.
∵△ABC是直角三角形.
∴OA=OB=OC=
AB.
1 2
∴A、B、C三点在同一个圆上.
拓展延伸
8.求证:直径是圆中最长的弦. 证明:如图,在⊙O中,AB是⊙O的直径,半径是r. CD是不同于AB的任意一条弦. 连接OC、OD, 则OA+OB=OC+OD=2r,即AB=OC+OD. 在△OCD中,OC+OD>CD, ∴AB>CD.即直径是圆中最长的弦.
知识点2 与圆有关的概念
弦和直径的定义 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
半径是弦吗?
弧
圆上任意两点间的部分叫
B
做圆弧,简称弧.以 A、B 为
端点的弧记作AB,读作“圆
O
弧 AB”或“弧 AB”.
圆的任意一条直径的两个 A
C
端点把圆分成两条弧,每一条
∴OA=OC=1 AC,OB=OD=1 BD.
又∵AC=BD2,
2
∴OA=OC=OB=OD.
∴A、B、C、D四个点在以点O为
圆心,OA为半径的圆上.
随堂演练
基础巩固
1.下列说法正确的是( ) D A.直径是弦,弦是直径 B.半圆是弧,弧是半圆 C.弦是圆上两点之间的部分 D.半径不是弦,直径是最长的弦
形成性定义(动态):在一个平面内,线段 OA 绕它 固定的一个端点 O 旋转一周,另一个端点 A 所形成的图 形叫做圆.
集合性定义(静态):圆心为 O、 半径为 r 的圆可以看成是所有到定点 O 的距离等于定长 r 的点的集合.
人教版九年级数学上册优质课课件圆的概念(ppt)
的概念(ppt)
优选人教版九年级数学上册优 质课课件圆的概念
圆是生活中常见的图形,许多物体都给我 们以圆的形象.
观察车轮,你发现了什 么?
一石激起千层浪
乐在其中
一、 创设情境 引入新课
奥运五环
福建土楼
祥子
小憩片刻
二、圆的概念
如图,在一个平面内,线段OA绕它固定的一个
)
B
O·
A
C
练一练 1.如何在操场上画一个半径是5m 的圆?说出你的理由
首先确定圆心, 然后用5米长的绳子一端固 定为圆心端,另一端系在一端尖木棒,木棒 以5米长尖端划动一周,所形成的图形就是 所画的圆.
根据圆的形成定义
练一练
2 你见过树木的年轮吗?从树木的年轮,可以 很清楚的看出树木生长的年龄,如果一棵20年 树龄的红杉树的树干直径是23cm,这棵红杉 树的半径每年增加多少?.
AC,AE,AF,AD.
想一想 判断下列说法的正误:
(1)弦是直径;( )
(2)半圆是弧; (
)
(3)过圆心的线段是直径; ( )
(4)过圆心的直线是直径;( )
(5)半圆是最长Байду номын сангаас弧;( )
(6)直径是最长的弦;( ) (7)圆心相同,半径相等的两个圆是同心圆;( )
(8)半径相等的两个圆是等圆.( )
(2)到定点的距离等于定长的点都在同一个圆 上.
归纳:圆心为O、半径为r的圆可以
看成是所有到定点O的距离等于定长r 的点
组成的图形.
动态:如图,在一个平面内,线段OA
绕它固定的一个端点O旋转一周,另一 个端点A所形成的图形叫做圆.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学
道理.
h
6
h
7
与圆有关的概念
弦
连接圆上任意两点的线段(如图AC)
叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
B
O·
A
C
h
8
弧
圆上任意两点间的部分叫做圆弧,简称弧.以A、B 为端点的弧记作 A B ,读作“圆弧AB”或“弧 AB”.
圆的任意一条直径的两个端点把圆分成两条弧,
根据圆的形成定义
h
11
h
12
练一练
2 你见过树木的年轮吗?从树木的年轮,可以很清楚 的看出树木生长的年龄,如果一棵20年树龄的红杉 树的树干直径是23cm,这棵红杉树的半径每年增加 多少?.
解:
23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增加0.575cm
h
13
练一练
ห้องสมุดไป่ตู้
如图,一根
5m 长 的 绳 子 ,
每一条弧都叫做半圆.
B
O·
A
C
h
9
劣弧与优弧
小于半圆的弧(如图中的 A C )叫做劣弧;
大于半圆的弧(用三个字母表示,如图中的
)
叫做A优B C弧.
B
O·
A
C
h
10
练一练
1.如何在操场上画一个半径是5m的圆? 说出你的理由
首先确定圆心, 然后用5米长的绳子一端固定为 圆心端,另一端系在一端尖木棒,木棒以5米长尖 端划动一周,所形成的图形就是所画的圆.
h
4
动态:如图,在一个平面内,线段OA绕它固 定的一个端点O旋转一周,另一个端点A所形
成的图形叫做圆.
静态:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点组成的图形.
h
5
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距
离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与
平面的距离保持不变,因此,当车辆在平坦的路上行驶时,
圆是生活中常见的图形,许多物体都给我们以圆的形象.
h
1
如图,观察画圆的过程,你能由此说出圆的形成过程吗?
h
2
三、圆的概念
如图,在一个平面内,线段OA绕它固定的一个
端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心 线段OA叫做半径 以点O为圆心的圆,记作 “⊙O”,读作“圆O”.
(2)半圆是弧; (
)
(3)过圆心的线段是直径; ( )
(4)过圆心的直线是直径;( )
(5)半圆是最长的弧;( )
(6)直径是最长的弦;( ) (7)圆心相同,半径相等的两个圆是同心圆;( )
(8)半径相等的两个圆是等圆.( )
h
17
议一议
小明和小强为了探究 O中有没有最长的弦,经
过了大量的测量,最后得出一致结论,直径是圆 中最长的弦,你认为他们的结论对吗?试说说你 的理由.
O
A
B
A
O
B
C
D
C
D
h
18
h
19
一端栓在柱子
上,另一端栓着
一只羊,请画出
5
羊的活动区域.
h
14
5m 4m o
5m 4m o
h 正确答案
15
如图,请正确的方式表示出以点A为端点的优弧及劣弧.
D O
F
B
I
E
A
C
AC D ,AC F,AD E,AD C .
AC,AE,AF,AD.
h
16
想一想 判断下列说法的正误:
(1)弦是直径;( )
h
r
O·
我国古人很早对 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长也” 的记载.它的意 思是圆上各点到 圆心的距离都等 3 于半径.
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所 有到定点O的距离等于定长r 的点组成的图形.