基本不等式学案
基本不等式教案范文

基本不等式教案范文一、教学目标1.知识与技能目标a.掌握基本不等式的定义和基本性质;b.掌握不等式的加减乘除性质;c.能够解决基本不等式的证明和计算问题。
2.过程与方法目标a.通过例题引导学生发现不等式的性质;b.引导学生进行探究性学习,提高独立解决问题的能力;c.培养学生的逻辑思维和推理能力。
3.情感态度目标a.培养学生的数学思维和抽象思维能力;b.培养学生的合作意识和团队精神;c.培养学生的实际问题解决能力。
二、教学重点1.不等式的加减和乘除性质;2.不等式的证明和计算方法。
三、教学难点1.不等式的证明方法;2.复杂不等式的解决方法。
四、教学方法1.探究教学法:通过解决例题引导学生发现不等式的性质;2.讲授教学法:通过讲解和示范的方式,介绍不等式的性质和解决方法;3.案例分析法:通过分析实际问题的案例,引导学生解决不等式问题。
五、教学过程1.引入a.导入问题:小明计划购买一款手机,他想知道自己有多少钱可以花在手机上。
请问该怎样计算?b.引导学生讨论,并给予提示,引出不等式的概念。
2.探究不等式的性质a.通过解决一些简单的例题,让学生发现不等式的性质。
b.给出以下几个例题:(1)若a>b,b>0,则a+b>b;(2)若a > b,b > 0,则ab > b;(3)若a>b,b>0,则a/b>1c.让学生在小组内讨论,并找出规律。
d.分组展示结果,学生进行交流与讨论。
e.教师总结不等式的加减和乘除性质。
3.不等式证明a.讲解不等式证明的一般方法,包括逆否命题法、反证法等。
b.通过案例讲解不等式证明的具体步骤和技巧。
c.给出以下例题:(1)证明:若a>b,b>0,则a+b>0。
(2)证明:对于任意实数x,都有x>-1c.引导学生运用之前学到的证明方法进行解答,然后进行讨论。
4.解决不等式问题a.讲解不等式的解决方法,包括绝对值法、区间法等。
《基本不等式》教案

《基本不等式》教案教学三维目标:1、知识与能力目标:掌握基本不等式及会应用基本不等式求最值.2、过程与方法目标:体会基本不等式应用的条件:一正二定三相等;体会应用基本不等式求最值问题解题策略的构建过程;体会习题的改编过程.3、情感态度与价值观目标:通过解题后的反思,逐步培养学生养成解题反思的习惯;通过变式练习,逐步培养学生的探索研究精神.教学重点、难点:重点:基本不等式在解决最值问题中的应用.难点:利用基本不等式失效(等号取不到)的情况下采用函数的单调性求解最值. 学情分析与学法指导:基本不等式是求最值问题中的一种很重要的方法,但学生在运用过程中“一正、二定、三相等”的应用条件一方面容易被忽视,另一方面某些问题看似不符合前面的三个条件,但经过适当的变形又可以转化成运用基本不等式的类型学生解决起来有一定的困难。
在本节高三复习课中,结合学生的实际编制了教学案,力求在学生的“最近发展区”设计问题,逐步启发、引导学生课前自主预习、小组合作学习.教学过程:一、基础梳理基本不等式:如果a,b 是正数,那么2a b+(当且仅当a b 时取""=号 )代数背景:如果22a b + 2ab (,,a b R ∈当且仅当a b 时取""=号 )(用代换思想得到基本不等式)几何背景:半径不小于半弦。
常见变形:(1)ab222a b + (2)222a b + 22a b +⎛⎫ ⎪⎝⎭ (3)b a a b +2(a ,b 同号且不为0)3、算术平均数与几何平均数如果a 、b 是正数,我们称 为a 、b 的算术平均数,称 的a 、b 几何平均数.4、利用基本不等式求最值问题(建构策略)问题:(1)把4写成两个正数的积,当这两个正数取什么值时,它们的和最小?(2)把4写成两个正数的和,当这两个正数取什么值时,它们的积最大?请根据问题归纳出基本不等式求解最值问题的两种模式:已知x ,y 都大于0则(1)“积定和最小”:如果积xy 是定值P ,那么当 时,和x +y 有最小值 ;(2)“和定积最大”:如果和x +y 是定值S ,那么当 时,积xy 有最大值 .二、课前热身1、已知,(0,1)a b a b ∈≠且,下列各式最大的是( )A. 22a b +B.C. 2abD. a b +2、已知,,a b c 是实数,求证222a b c ab bc ac ++≥++3、.1,0)1(的最小值求若xx x +> .)1(,10)2(的最大值求若x x x -<< 4、大家来挑错 (1)2121=⋅≥+x x x x 21的最小值是x x +∴ (2)2121,2=⋅≥+≥x x x x x 则 21,2的最小值是时x x x +≥∴ 5、的最小值求若31,3-+>a a a三、课堂探究1、答疑解惑 方法:小组提交预习中存在的疑问,由其他组学生或教师有针对性地答疑。
学案2:2.2 第2课时 基本不等式的应用

2.2 第2课时 基本不等式的应用不等式与最大(小)值阅读教材,完成下列问题. x ,y 都为正数时,下面的命题成立(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最 值 ; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最 值 . 思考:(1) 函数y =x +1x 的最小值是2吗?(2)设a >0,2a +3a取得最小值时,a 的值是什么?初试身手1.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x +4e -xD .y =log 3x +log x 812.当x >0时,x +9x 的最小值为________.3.当x ∈(0,1)时,x (1-x )的最大值为________.4.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.【例1】 (1)已知x >2,则y =x +4x -2的最小值为________.(2)若0<x <12,则函数y =12x (1-2x )的最大值是________.规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.跟踪训练1.(1)已知t>0,则函数y=t2-4t+1t的最小值为________.(2)设0<x≤2,则函数ƒ(x)=x(8-2x)的最大值为________.类型2利用基本不等式解实际应用题【例2】如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(如图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌面积最小?规律方法在应用基本不等式解决实际问题时,要注意以下四点:(1)先理解题意,设变量时一般把要求最值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最值问题;(3)在定义域内,求出函数的最值;(4)写出正确答案.跟踪训练2.(1)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),则当每台机器运转________年时,年平均利润最大,最大值是________万元.(2)用一段长为36 m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?[1.(1)当x >0时,x 2+1x 有最大值,还是最小值?(2)当x >0时,xx 2+1有最大值,还是最小值?2.(1)设a >0,b >0,(a +b )⎝⎛⎭⎫1a +2b 的最小值是什么?(2)设a >0,b >0,且a +b =1,1a +2b 的最小值是什么?【例3】 (1)若对任意的x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.(2)设a >0,b >0,若3是3a 与3b 的等比中项,求1a +1b 的最小值.母体探究1.(变条件)(1)在例3(2)中,若3是3a 与3b 的等比中项,求1a +1b的最小值.(2)在例3(2)中,把条件换为“2a 和1b 的等差中项是12”,求2a +b 的最小值.2.(变条件)把例3(2)的条件换为“a >0,b >0,且a +b +ab =1”,求a +b 的最小值.规律方法最值法解答恒成立问题将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有: (1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .课堂小结1.利用基本不等式求最值必须满足“一正、二定、三相等”三个条件,并且和为定值,积有最大值;积为定值,和有最小值.2.使用基本不等式求最值时,若等号取不到,则考虑用函数单调性求解.3.解决实际应用问题,关键在于弄清问题的各种数量关系,抽象出数学模型,利用基本不等式解应用题,既要注意条件是否具备,还要注意有关量的实际含义. 当堂达标1.若x >0,y >0且2(x +y )=36,则xy 的最大值为( )A .9B .18C .36D .812.一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝⎛⎭⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.3.求函数f (x )=x x +1的最大值.参考答案新知初探不等式与最大(小)值 阅读教材,完成下列问题.(1)大 s 24;(2)小思考:(1) [提示] 不是,只有当x >0时,才有x +1x ≥2,当x <0时,没有最小值.(2) [提示] 2a +3a≥22a ×3a =26,当且仅当2a =3a ,即a =62时,取得最小值.初试身手1.【答案】C【解析】A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C . 2.【答案】6【解析】因为x >0,所以x +9x ≥2x ×9x =6,当且仅当x =9x,即x =3时等号成立. 3.【答案】14【解析】因为x ∈(0,1),所以1-x >0, 故x (1-x )≤⎝⎛⎭⎫x +1-x 22=14,当x =1-x , 即x =12时等号成立.4.【答案】8【解析】由已知点A 在直线mx +ny +1=0上所以2m +n =1,所以1m +2n =2m +n m +2(2m +n )n=4+⎝⎛⎭⎫n m +4m n ≥8. 【例1】【答案】(1)6 (2)116【解析】(1)因为x >2,所以x -2>0,所以y =x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.所以y =x +4x -2的最小值为6.(2)因为0<x <12,所以1-2x >0,所以y =12x ·(1-2x )=14×2x ×(1-2x )≤14⎝⎛⎭⎫2x +1-2x 22=14×14=116,当且仅当2x =1-2x ,即当x =14时,y max =116. 规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1.【答案】(1)-2 (2)22 【解析】(1)依题意得y =t +1t -4≥2t ·1t -4=-2,等号成立时t =1,即函数y =t 2-4t +1t(t >0)的最小值是-2.(2)因为0<x ≤2,所以0<2x ≤4,8-2x ≥4>0,故ƒ(x )=x (8-2x ) =12·2x ·(8-2x ) =12·2x ·(8-2x )≤12×82=22, 当且仅当2x =8-2x ,即x =2时取等号, 所以当x =2时,ƒ(x )=x (8-2x )的最大值为2 2.【例-20) cm ,⎝⎛⎭⎫y -252cm ,其中x >20,y >25,则两栏面积之和为2(x -20)×y -252=18 000,由此得y=18 000x -20+25, 所以广告牌的面积S =xy = x ⎝⎛⎭⎫18 000x -20+25=18 000x x -20+25x , 整理得S =360 000x -20+25(x -20)+18 500.因为x -20>0,所以S ≥2360 000x -20×25(x -20)+18 500=24 500. 当且仅当360 000x -20=25(x -20)时等号成立,此时有(x -20)2=14 400,解得x =140, 代入y =18 000x -20+25,得y =175.即当x =140,y =175时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小. 法二:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000,其中a >0,b >0. 易知广告牌的高为(a +20) cm ,宽为(2b +25)cm.广告牌的面积S =(a +20)(2b +25)=2ab +40b +25a +500=18 500+25a +40b ≥18 500+225a ·40b =24 500,当且仅当25a =40b 时等号成立,此时b =58a ,代入ab =9 000得a =120,b =75.即当a =120,b =75时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小.规律方法在应用基本不等式解决实际问题时,要注意以下四点: (1)先理解题意,设变量时一般把要求最值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最值问题; (3)在定义域内,求出函数的最值; (4)写出正确答案. 跟踪训练2.【答案】(1)5 8【解析】每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,且x >0,故yx ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.(2)[解] 设矩形菜园的长为x m 、宽为y m ,则2(x +y )=36,x +y =18,矩形菜园的面积为xy m 2.由xy ≤x +y 2=182=9,可得xy ≤81,当且仅当x =y ,即x =y =9时,等号成立.因此,这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为81 m 2.[1.[提示] (1)当x >0时,x 2+1x =x +1x ≥2x ×1x=2, 当x =1时等号成立,即x 2+1x有最小值2.(2)当x >0时,x x 2+1=1x +1x ,因为x +1x ≥2,所以x x 2+1≤12,故x x 2+1有最大值12.2.[提示] (1)(a +b )⎝⎛⎭⎫1a +2b =3+b a +2ab ≥3+22,当b =2a 时等号成立; (2)由于a +b =1,所以1a +2b=(a +b )⎝⎛⎭⎫1a +2b ≥22+3, 当b =2a ,即a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【例3】[解] (1)设f (x )=xx 2+3x +1=1x +1x+3,∵x >0,∴x +1x ≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.(2)由题意得,3a ·3b =(3)2,即a +b =1,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+b a +ab≥2+2b a ·ab=4, 当且仅当b a =a b ,即a =b =12时,等号成立.母体探究1.[解] (1)由3是3a 与3b 的等比中项,得3a +b =32,即a +b =2,故12(a +b )=1,所以1a +1b =12(a +b )⎝⎛⎭⎫1a +1b =12⎝⎛⎭⎫2+b a +a b ≥12⎝⎛⎭⎫2+2b a ×a b =2, 当a =b =1时等号成立.(2)由于2a 和1b 的等差中项是12,则2a +1b=1,故2a +b =(2a +b )⎝⎛⎭⎫2a +1b =5+2b a +2ab ≥5+22b a ×2ab=9. 当a =b =3时等号成立.2.[解] a +b +ab =1,得b =1-aa +1>0,故0<a <1,故a +b =a +1-a a +1=a +-1-a +2a +1=a +2a +1-1=a +1+2a +1-2≥2(a +1)×2a +1-2=22-2,当a +1=2a +1,即a =2-1时等号成立.当堂达标 1.【答案】A【解析】由2(x +y )=36得x +y =18.所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立. 2.【答案】8【解析】设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝⎛⎭⎫v 202v=400v +16v400≥2400v ×16v 400=8(小时),当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时. 3.[解] f (x )=xx +1=1x +1x ,因为x +1x≥2x ×1x =2,当x =1时等号成立,所以f (x )≤12.。
基本不等式答案

基本不等式学案(含答案)一 :基础演练1.若x>0,则x +2x 的最小值为________.答案:22解析:∵ x>0,∴ x +2x≥2x·2x=22,当且仅当x =2时等号成立. 2. 设x<0,则y =3-3x -4x 的最小值为________.答案:3+43解析:∵ x<0,∴ y =3-3x -4x =3+(-3x)+⎝⎛⎭⎫-4x ≥3+2(-3x )·⎝⎛⎭⎫-4x =3+43,当且仅当x =-233时等号成立,故所求最小值为3+4 3.3. 若x>-3,则x +2x +3的最小值为________.答案:22-3解析:∵ x +3>0,∴ x +2x +3=(x +3)+2x +3-3≥2(x +3)×2x +3-3=22-3.4. 设x ,y ∈R ,且x +y =5,则3x +3y 的最小值是________.答案:183解析:3x +3y ≥23x ·3y =23x +y =235=183,当且仅当x =y =52时等号成立.5. (必修5P 88例2改编)已知函数f(x)=x +ax -2(x>2)的图象过点A(3,7),则此函数的最小值是________.答案:6解析:∵ 函数f(x)=x +ax -2(x>2)的图象过点A(3,7),即7=3+a ,∴ a =4.∵ x -2>0,∴ f(x)=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x =4时等号成立,故此函数的最小值是6. 二:典型例题例1 (1) 已知x<54,求函数y =4x -2+14x -5的最大值;(2) 已知x>0,y>0且1x +9y=1,求x +y 的最小值.解:(1) x<54,∴ 4x -5<0.∴ y =4x -5+14x -5+3=-[(5-4x)+1(5-4x )]+3≤-2(5-4x )1(5-4x )+3=1,y max =1.(2) ∵ x>0,y>0且1x +9y =1,∴ x +y =(x +y)⎝⎛⎭⎫1x +9y =10+9x y +yx ≥10+29x y ·yx=16,即x +y 的最小值为16.例2已知函数f(x)=x 2+2x +ax,x ∈[1,+∞).(1) 当a =4时,求函数f(x)的最小值;(2) 若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.解:(1) 由a =4,∴f(x)=x 2+2x +4x =x +4x +2≥6,当x =2时,取得等号.即当x =2时,f(x)min =6.(2) x ∈[1,+∞),x 2+2x +ax >0恒成立,即x ∈[1,+∞),x 2+2x +a>0恒成立.等价于a>-x 2-2x ,当x ∈[1,+∞)时恒成立,令g(x)=-x 2-2x ,x ∈[1,+∞), ∴a>g(x)max =-1-2×1=-3,即a>-3.∴a 的取值范围是()-3,+∞. 例3 已知x>0,y>0,求证:1x +1y ≥4x +y.证明:原不等式等价于(x +y)2≥4xy ,即(x -y)2≥0,显然成立.故原不等式得证.变式训练(1) 若a>b>c ,求证:1a -b +1b -c ≥4a -c;(2) 若a>b>c ,求使得1a -b +1b -c ≥ka -c恒成立的k 的最大值.证明:(1) 令a -b =x ,b -c =y ,则a -c =x +y.原不等式等价于1x +1y ≥4x +y ,由作差法可证该不等式成立,故原不等式成立.(2) 由(1)可知,1a -b +1b -c ≥4a -c 恒成立,而1a -b +1b -c ≥ka -c ,k 的最大值为4.例4 如图,动物园要围成相同面积的长方形虎笼四间.一面可利用原有的墙,其他各面用钢筋网围成.(1) 现有可围成36m 长的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?(2) 若使每间虎笼的面积为24m 2,则每间虎笼的长、宽各设计为多少时,可使围成的四间虎笼的钢筋网总长最小?解:(1) 设每间虎笼长为xm ,宽为ym ,则⎩⎪⎨⎪⎧4x +6y =36,x>0,y>0,面积S =xy.由于2x +3y ≥22x·3y =26xy ,所以26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时取等号.则⎩⎪⎨⎪⎧2x =3y 2x +3y =18⎩⎪⎨⎪⎧x =4.5,y =3,所以每间虎笼长、宽分别为4.5m 、3m 时,可使面积最大.(2) 设围成四间虎笼的钢筋网总长为lm ,则l =4x +6y ,且xy =24,所以l =4x +6y =2(2x +3y)≥2×22x·3y =46xy =4×6×24=48(m),当且仅当2x =3y 时取等号.⎩⎪⎨⎪⎧xy =242x =3y⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长、宽分别为6m 、4m 时,可使钢筋网的总长最小为48m.例5某造纸厂拟建一座平面图形为矩形且面积为162 m 2的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/m 2,中间两道隔墙建造单价为248元/m 2,池底建造单价为80元/m 2,水池所有墙的厚度忽略不计.(1) 试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2) 若由于地形限制,该池的长和宽都不能超过16 m ,试设计污水池的长和宽,使总造价最低,并求出最低总造价.解:(1) 设污水处理池的宽为x m ,则长为162xm.总造价为f(x)=400×⎝⎛⎭⎫2x +2·162x +248×2x +80×162=1 296x +1 296×100x +12 960=1 296⎝⎛⎭⎫x +100x +1 2960≥1 296×2x·100x +12 960=38 880元.当且仅当x =100x(x>0),即x =10时取等号.∴ 当长为16.2 m ,宽为10 m 时总造价最低,最低总造价为38 880元.(2) 由限制条件知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,∴ 1018≤x ≤16.设g(x)+x +100x ⎝⎛⎭⎫∴ 1018≤x ≤16,由函数性质易知g(x)在⎣⎡⎦⎤1018,16上是增函数,∴ 当x =1018时(此时162x =16),g(x)有最小值,即f(x)有最小值1 296×⎝⎛⎭⎫1018+80081+12 960=38 882(元).∴ 当长为16 m ,宽为1018 m 时,总造价最低,为38 882元.三:能力提僧升1. (2013·上海)设常数a>0,若9x +a 2x ≥a +1对一切正实数x 成立,则a 的取值范围为________.答案:⎣⎡⎭⎫15,+∞解析:9x +a 2x≥29x·a 2x =6a ,所以6a ≥a +1,即a ≥15. 2. 已知正实数x 、y 、z 满足2x(x +1y +1z )=yz ,则⎝⎛⎭⎫x +1y ⎝⎛⎭⎫x +1z 的最小值为________. 答案:2解析:∵ 2x ⎝⎛⎭⎫x +1y +1z =yz ,∴ 1y +1z =yz2x -x , ∴ ⎝⎛⎭⎫x +1y ⎝⎛⎭⎫x +1z =x 2+x ⎝⎛⎭⎫1y +1z +1yz =yz 2+1yz≥ 2.3. 已知P 是△ABC 的边BC 上的任一点,且满足AP →=xAB →+yAC →,x 、y ∈R ,则1x +4y 的最小值是________.答案:9解析:因为B 、C 、P 三点共线且AP →=xAB →+yAC →,故x >0,y >0且x +y =1,所以1x +4y =⎝⎛⎭⎫1x +4y (x +y)=5+y x +4x y≥9. 4. 若不等式4x 2+9y 2≥2k xy 对一切正数x 、y 恒成立,则整数k 的最大值为________.答案:3解析:原不等式可化为4x y +9y x ≥2k 而4x y +9yx ≥12,∴ 2k ≤12,则整数k 的最大值为3.5. 设正项等差数列{a n }的前2 011项和等于2 011,则1a 2+1a 2 010的最小值为________.答案:2解析:由题意得S 2 011=2 011(a 1+a 2 011)2=2 011,∴ a 1+a 2 011=2.又a 2+a 2 010=a 1+a 2 011=2,∴ 1a 2+1a 2 010=12⎝⎛⎭⎫1a 2+1a 2 010(a 2+a 2 010)=12(a 2 010a 2+a 2a 2 010)+1≥2.。
《基本不等式》 导学案

《基本不等式》导学案一、学习目标1、理解基本不等式的内容及其证明过程。
2、掌握基本不等式的应用,能运用基本不等式求最值。
3、通过对基本不等式的学习,培养数学思维能力和应用意识。
二、学习重难点1、重点(1)基本不等式的内容和证明。
(2)运用基本不等式求最值的条件和方法。
2、难点(1)基本不等式的证明。
(2)基本不等式在实际问题中的应用。
三、知识回顾1、重要不等式:对于任意实数 a、b,有\(a^2 + b^2 \geq 2ab\),当且仅当\(a = b\)时,等号成立。
四、新课导入观察以下两个图形:图 1 是一个边长为 a、b 的矩形,其面积为\(ab\)。
图 2 是一个以 a、b 为直角边的直角三角形,其斜边长为\(\sqrt{a^2 + b^2} \)。
我们知道直角三角形的斜边大于直角边,所以\(\sqrt{a^2 +b^2} \geq \sqrt{2ab} \)。
当且仅当\(a = b\)时,等号成立。
将上式两边平方,得到\( a^2 + b^2 \geq 2ab\),这就是我们前面回顾的重要不等式。
如果我们令\( A =\frac{a + b}{2} \),\( G =\sqrt{ab} \),则有\( A \geq G \),其中\( A \)称为 a、b 的算术平均数,\( G \)称为 a、b 的几何平均数。
这就是我们今天要学习的基本不等式:\(\frac{a + b}{2} \geq \sqrt{ab} \)(\( a > 0\),\( b > 0\))五、基本不等式的证明方法一:作差法\\begin{align}\frac{a + b}{2} \sqrt{ab} &=\frac{a + b 2\sqrt{ab}}{2}\\&=\frac{(\sqrt{a} \sqrt{b})^2}{2}\end{align}\因为\((\sqrt{a} \sqrt{b})^2 \geq 0\),所以\(\frac{(\sqrt{a} \sqrt{b})^2}{2} \geq 0\),即\(\frac{a +b}{2} \geq \sqrt{ab}\),当且仅当\(\sqrt{a} =\sqrt{b}\),即\( a = b\)时,等号成立。
人教版(新教材)高中数学必修1(第一册)学案:2.2 第2课时 基本不等式的应用

第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.『答 案』 18『解 析』 y =x (1-2x )=12·2x ·(1-2x )≤12⎝ ⎛⎭⎪⎫2x +1-2x 22=18, 当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 『答 案』 20『解 析』 总运费与总存储费用之和 y =4x +400x ×4=4x +1600x ≥24x ·1600x=160,当且仅当4x =1600x ,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 『答 案』 8『解 析』 年平均利润y x =-x +18-25x =-⎝⎛⎭⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x =5时取“=”.4.已知x >2,则x +4x -2的最小值为________.『答 案』 6 『解 析』 x +4x -2=x -2+4x -2+2, ∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6.当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y =1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y =1,∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9xy +10 ≥6+10=16, 当且仅当y x =9xy,又1x +9y =1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y =1,得(x -1)(y -9)=9(定值).由1x +9y =1可知x >1,y >9, ∴x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1. ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =8y x +2xy+10≥28y x ·2xy+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y 的最小值是________.『答 案』 9『解 析』 ∵x +y =1, ∴1x +4y =(x +y )⎝⎛⎭⎫1x +4y =1+4+y x +4x y.∵x >0,y >0,∴y x >0,4xy >0,∴y x +4xy≥2y x ·4xy=4, ∴5+y x +4x y≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4x y,即x =13,y =23时等号成立.∴⎝⎛⎭⎫1x +4y min =9.二、基本不等式在实际问题中的应用例2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝⎛⎭⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费) 解 设该批产品的利润为y , 由题意知y =⎝⎛⎭⎫2+20Q ·Q -2⎝⎛⎭⎫Q +1Q -x =2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎢⎡⎦⎥⎤4x +1+(x +1),0≤x ≤3.∵21-⎣⎢⎡⎦⎥⎤4x +1+(x +1)≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1, 生产1000千克该产品需要的时间是1000x ,所以生产1000千克该产品消耗的A 材料为 y =1000x (x 2+9)=1000⎝⎛⎭⎫x +9x ≥1000×29=6000, 当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6000千克.基本不等式在实际问题中的应用典例 围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图.已知旧墙的维修费用为45元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360.由已知xa =360,得a =360x ,∴y =225x +3602x -360.∵x >0,∴225x +3602x ≥2225×3602=10800.∴y =225x +3602x -360≥10440.当且仅当225x =3602x时,等号成立.即当x =24m 时,修建围墙的总费用最小,最小总费用是10440元.『素养提升』 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +ax (a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x 的最大值是( )A .3B .3-2 2C .-1D .3-2 3『答 案』 D『解 析』 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4『答 案』 B『解 析』 x 2-x +1x -1=x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立.3.将一根铁丝切割成三段做一个面积为2m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5mB .6.8mC .7mD .7.2m 『答 案』 C『解 析』 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l=a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C.4.已知正数a ,b 满足a +2b =2,则2a +1b 的最小值为________.『答 案』 4『解 析』 2a +1b =⎝⎛⎭⎫2a +1b ×12(a +2b ) =12⎝⎛⎭⎫4+a b +4b a ≥12(4+24)=4. 当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4. 5.设计用32m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2m ,则车厢的最大容积是________m 3. 『答 案』 16『解 析』 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a 2a +1.设a +1=t ,则V =2⎝⎛⎭⎫20-2t -18t ≤2⎝⎛⎭⎫20-22t ·18t =16,当且仅当t=3,即a=2,b=4时等号成立.1.知识清单:(1)已知x,y是正数.①若x+y=S(和为定值),则当x=y时,积xy取得最大值.②若x·y=P(积为定值),则当x=y时,和x+y取得最小值.即:“和定积最大,积定和最小”.(2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值.3.常见误区:缺少等号成立的条件.。
基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)基本不等式教学设计1教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。
启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。
基本不等式(2)

《基本不等式》学案【学习目标】1.理解从两个正数的基本不等式到三个正数基本不等式的推广;2.初步掌握不等式证明和应用【问题导学】默写重要不等式与基本不等式在应用基本不等式时要注意什么?类比重要不等式, 假如,,a b c R +∈,那么 .当且仅当 时, 等号成立.思考:你能否举反例说明c b a ,,R ∈是不准确的?自己动手证明:类比基本不等式,假如,,a b c R +∈, 那么 .当且仅当 时, 等号成立.自己动手证明:结论 假如,,a b c R +∈, 那么3a b c ++≥当且仅当a b c ==时, 等号成立. 用语言表达: 。
上式为三个正数的算术-几何平均不等式。
这个不等式同样可推广到n 个正数的情形。
设n a a a ,...,,21为n 个正数,则我们可得到怎样的不等式?推论 对于n 个正数12,,,n a a a , 它们的 即 当且仅当a b c ==时, 等号成立.【问题探究】例1已知,,x y z R +∈, 求证:(1)3()27x y z xyz ++≥;(2)()()9x y z y z x y z x x y z++++≥;(3)222()()9x y z x y z xyz ++++≥.例2用一块边长为a 的正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子.要使制成的盒子的容积最大,理应剪去多大的小正方形?例 3 求函数)0(,322>+=x xx y 的最大值,指出下列解法的错误,并给出正确解法.解一:3322243212311232=⋅⋅≥++=+=xx x x x x x x y . ∴3min 43=y . 解二:x x x x x y 623223222=⋅≥+=当x x 322=即2123=x 时,633min 3242123221262==⋅=y . 正解:【课堂训练】1.(5分)若1,0,0=+>>b a b a ,则)11)(11(22--b a 的最小值是2.(5分)若14<<-x ,则22222-+-x x x 的最小值为3.(5分)函数)(,422+∈+=R x xx y 的最小值为4.(5分)已知1273,023++=-+y x y x 则的最小值是5、(5分)0>x 时, 求x x y 362+=的最小值.6、(5分)设]27,91[∈x ,求)3(log 27log 33x x y ⋅=的最大值.7、(5分)若10<<x , 求)1(24x x y -=的最大值.8、(5分)若0>>b a ,求)(1b a b a -+的最小值为.9(5分)制作一个容积为316m π的圆柱形容器(有底有盖),问圆柱底半径和高各取多少时,用料最省?(不计加工时的损耗及接缝用料)(选做题)若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为 【课时小结】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4 基本不等式学案
预习案(限时20分钟) 学习目标:1.探索、理解不等式的证明过程,会应用不等式求某些函数的最值;2.应用不等式解决一些简单的实际问题. 学习重点,难点: 利用基本不等式求最值.
预习指导:预习课本P87-91
1. 重要不等式:对于任意实数,a b ,有22____2a b a b +,当且仅当________时,等号成立.
2. 基本不等式:设0,0a b >>,则_____2a b
a b +,当且仅当____时,不等式取等号.
3. 小组合作学习:(1)两个结论的形成过程;(2)对于基本不等式,还可以变形为哪些形式? 预习检测
1.已知x >0,则y =x +16
x 的最小值为
( ) A .4 B .16 C .8 D .10
2.已知0x >,当81
x x +取值最小时x 为
( ) A . 81 B . 9 C . 3 D .16
3.若log 2x +log 2y =1,则2x +y 的最小值为
( ) A .1 B .2 C .2 D .4
4.已知x ≠0,当x =_____时,x 2+281
x 的值最小,最小值是 .
5.已知3x >,当x =_____时,1
()3f x x x =+-的最小值为 _______ .
6.已知x >0,y >0,且2x +3y =1,则1
1
x y +的最小值为 .
巩固练习
1.若mn =1,其中m >0,则m +3n 的最小值等于
(
) A .22 B .2 C .3 D .5
2
2.当x >4时,不等式x +4
4x -≥m 恒成立,则m 的取值范围是
( ) A .m ≤8 B .m <8 C .m ≥8 D .m >8
3.若a ,b 都是正数,且a +b =1,则(a +1)(b +1)的最大值为
( ) A .3
2 B .2 C .9
4 D .4
4..若0x <,则9
()4f x x x =+的最_____值为__________.
5.已知实数x >0,y >0,且x +2y =xy ,则x +y 的最小值是 .
6.已知直线mx+ny﹣3=0经过函数g(x)=log a x+1(a>0且a≠1)的定点,其中mn>0,则11
m n
+的最小值为.
7.已知x,y∈R*,且23
1 x y
+=.
(1)求xy的最小值;(2)求4x+6y的最小值.
8.如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两
栏的面积之和为45m2,四周空白的宽度为0.5m,两栏之间的中缝空白的宽度为0.25m,设广告牌的高为xm.
(1)求广告牌的面积关于x的函数S(x);
(2)求广告牌的面积的最小值.。