炉渣的主要成分

炉渣的主要成分
炉渣的主要成分

炉渣的主要成分 Prepared on 22 November 2020

炉渣(s l a g)矿中的脉石、炉料中的熔剂和其他造渣组分在火法冶金过程中形成的金属硅酸盐、亚铁酸盐和铝酸盐等混合物。此外,炉渣还含有少量的金属硫化物、金属和气体。从广义说,有色金属的吹炼渣、黄渣、蒸馏罐渣、精炼渣等都属有色金属冶金炉渣。

炉渣富集了炉料中的脉石成分和不希望进入主金属的杂质,是一个成分复杂的多元体系。炉渣的主要成分为氧化物。可将构成炉渣的氧化物分为酸性氧化物(如SiO2、Fe2O。等)、碱性氧化物(如FeO、CaO、MgO等)和两性氧化物(如Al2O3、ZnO等)。它们之间的区别在于各氧化物对氧离子的亲疏关系,容易放出氧离子的为碱性氧化物,反之为酸性氧化物。这些氧化物相互结合成各种化合物、固溶体及共晶混合物。

炉渣组成的来源有色金属冶金炉渣中的组分主要来源于五个方面:(1)矿石或精矿中的脉石,如SiO2、CaO、Al2O3、MgO等;(2)炉料在熔炼过程中生成的氧化物,如FeO、Fe3O4等;(3)为满足熔炼需要而加入的熔剂,如SiO2、CaO、FeO、Fe3O4等;(4)熔蚀或冲刷下来的炉衬材料,如MgO、SiO2、Al2O3等;(5)燃料燃烧的灰分,如Al2O3、SiO2等。

有色金属冶金炉渣属FeO–CaO–SiO2系,主要是由FeO、CaO、SiO2组成的硅酸盐,三者之和约占渣量75%~85%,有时甚至达90%。因此,渣的性质在很大程度上由这三个组分所决定。

在冶炼过程中的作用炉渣是火法冶金的必然产物,其量又相当大。例如反射炉炼铜产出的炉渣约为熔锍质量的200%~500%。炉渣在冶炼过程中主要起八方面的作用。(1)熔融炉渣富集了炉料中几乎全部的脉石和大部分的杂质,并在造渣过程中完成了金属的某些熔炼和精炼过程。例如铜、镍硫化矿造锍熔炼时,铜、镍等硫化物与硫化亚铁富集为熔锍,而铁的氧化物与脉石、熔剂和燃料灰分等形成熔渣。(2)熔炼生成的金属或锍熔体液滴分散在熔渣中,它们的汇合长大和澄清分离都是在熔渣介质中进行的。因此,熔渣对熔炼生成的金属或熔锍与造渣成分分离的程度起着重要的作用。(3)覆盖在金属或熔锍表面的熔渣层起保护金属和熔锍的作用。(4)熔渣在冶炼过程中除富集炉料中的脉石等成分外,有时还起富集有价组分的作用,如钛精矿还原熔炼所得的高钛渣,以及吹炼含钒和含铌的生铁所得的钒渣和铌渣等都是提取钛、钒和铌等的原料。(5)熔渣在一些冶炼过程中还起着特殊作用,在烧结焙烧过程中造渣成分起到粘合结块的作用;在鼓风炉熔炼过程中,炉渣的组成基本上决定了炉内的温度,低熔点渣型的强化熔炼只能提高炉子生产能力而不能提高炉内温度,要提高炉内温度必须选择熔点高的渣型;在电炉熔炼时,炉渣起电阻发热体作用。(6)炉渣的性质决定着熔炼过程的燃料消耗量,热焓量大的和熔点高的炉渣,熔炼的燃料消耗量也增加。(7)炉渣的性质和熔炼产

出的渣量是影响金属回收率的一个重要因素,因为渣含金属的损失是冶金过程中金属损失的主要途径。(8)炉渣对炉衬的化学侵蚀和机械冲刷,会影响炉子的使用寿命。由此可见,炉渣是直接影响冶炼产品质量、生产率、金属回收率、冶炼过程能否顺行等的重要因素。

性质炉渣的主要性质有熔点、粘度、密度、热焓、界(表)面张力、电导率、密度等。炉渣的粘度影响到冶炼能否顺利进行,也影响到金属或锍能否充分地通过渣层沉降分离。向炉渣添加定量的CaO或FeO 等碱性氧化物会降低其粘度,但却增加渣量。炉渣粘度一般以小而适当的为好。炉渣的导电率对电炉操作影响极大。钠离子对炉渣导电率的增加非常有效,而SiO2却会引起炉渣导电率的下降。当炉渣中氧化铁含量增加时,除离子导电外,还出现电子导电。炉渣的表面张力以及与金属或锍之间的界面张力等,与金属或锍颗粒在渣中的悬浮有关。因而,它与密度、粘度等一起是评价主金属在渣中损失的重要性质。炉渣的熔点随其高熔点物质的含量增加而升高,它和热焓一起影响着冶炼过程的能耗。

对造渣的要求由于炉渣是构成熔炼产物的基体,它的性质在很大程度上决定着熔炼的效果。而炉渣性质主要受它的组成和熔炼温度的影响。所谓造渣,就是通过加适量的熔剂,如石英石、石灰石和铁矿石(或黄铁矿烧渣)来获得最佳组成炉渣的过程。

对造渣的要求(1) 要满足冶金过程的需要,使炉料中的无价和有害组分最大限度地集中溶解在熔渣中,而尽可能少地溶解或夹带炉料中

的有价金属;(2)造渣费用最低,即选用的渣型消耗的熔剂最少,产出的渣量最少,燃料消耗最少;(3)炉渣的形成温度和流动温度要与熔炼工艺相适应;(4)所造的渣型具有小而适当的粘度和小的密度,这是为使炉内冶金反应充分完成和熔融金属与炉渣的良好分离所必须的;(5)所造渣型对炉体的腐蚀性最小。

炉渣的结构理论已提出过几种熔融炉渣结构学说,主要有分子学说和离子学说两种。

分子学说这是以固体炉渣的相分析和化学分析结果为依据于1934年最早提出的熔渣结构学说。分子学说把熔渣看成是各种氧化物分子(如SiO2、FeO、CaO等)和它们之间的化合物分子(如2FeOSiO2、2CaOSiO2等)组成的理想溶液,渣中酸碱氧化物相互作用形成的复杂氧化物之间处于化学动平衡,只有自由氧化物(如FeO、CaO等)才能参予金属相的相互反应,此时自由氧化物以实际浓度出现,所以金属与炉渣间的反应可以应用理想溶液的有关定律。分子学说缺乏更广泛的实验基础,设想的某些化合物又无实验验证,认为组成如此复杂的熔体是理想溶液,更是缺乏事实依据。但这种学说也能简单地、定量或半定量地解释一些实验现象,如渣的氧化能力、脱硫能力和酸碱性等,因而直到目前仍有一定的实用价值。

离子学说 1912年苏联学者瓦纽柯夫()提出的熔渣离子化理论,认为熔渣是由简单的离子和复杂的配位离子构成,质点间相互作用为离子的相互作用,所以渣金属相间的相互作用是电化学性质

的作用。熔渣中金属氧化物的金属呈正离子,如Ca2+、Fe2+、Mg2+等。而氧在碱性渣中以O2–存在,有可能形成配位离子的元素(如Si4+、Al3+、Fe3+等)存在时,则形成配位离子,其主要的如,式中x、y、z值由O/Si比值即炉渣的酸碱度确定。当O/si=2时为SiO2结构,在熔融状态下无离子性质,硅和氧的化合价都达饱和。渣中碱性氧化物增加,离子断裂为更简单的离子。至O/Si=4时成为最简单的,此时四个氧的价数都不饱和。

1945年苏联学者焦姆金(M.N.)提出熔渣完全离子溶液学说,称模型。其要点为:(1)溶液完全电离成电荷总数相等的正负离子,故溶液总体不带电;(2)每个离子仅为带有相反电荷的离子所包围,即正负离子均匀相间排列;(3)电荷符号相同的离子,不论其电荷数多少,它与邻近离子的相互作用完全等同。所以,溶液中正负离子不能互换位置,同符号离子的位置可互换而不会改变体系的能量。该模型揭露了离子熔体质点载有正负电荷的本质,但忽略了电荷符号相同而种类不同离子(如Fe2+和Ca2+、O2–和S2–)之间的差异,故与真实离子熔体(如熔渣)存有偏差。但它提供了一种对实际炉渣比较的标准。

马松(C.R.Masson)在1965年提出并在1970年改进的马松模型,又称全链结构型。该模型假定熔体中离子活度等于其离子分数,硅氧配位离子之间发生一系列的聚合反应并达到平衡,每个聚合反应的平衡常数都相等。并由此得出各种复杂离子浓度的理论分布曲线和

导出熔体中金属氧化物的活度ɑMeO与二氧化硅的摩尔分数之间的关系式。中国冶金学家邹元曦等根据他们对CaO–SiO2熔体实验测得更可靠的CaO活度数据检验了马松模型,发现平衡常数K11并不守常,1nK11与成直线关系。此外,马松模型还能完全解释三元系的各种现象,把正离子和负离子视为理想溶液也与实际不尽相符。

高炉炉渣处理方法

编号:SM-ZD-70391 高炉炉渣处理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

高炉炉渣处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1. 概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干渣处理环境污染较为严重,且资源利用率低,现在已很少使用,一般只在事故处理时,设置干渣坑或渣罐出渣;目前,高炉熔渣处理主要采用水淬渣工艺,水渣可以作为水泥原料,或用于制造渣砖、轻质混凝土砌块,使资源得到合理的利用。 1.1水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法主要有渣池法或底滤法、因巴法、拉萨法及笼法等。其主要工艺过程是高炉熔渣渣流被高压水水淬,然后进行渣水输送和渣水分离。 B :高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为:

电炉渣处理新工艺

电炉渣处理新工艺——雾化处理技术 电炉渣作为电炉炼钢副产品,其产量相当大,约占炼钢生产总量的15%~20%。用传统方法处理电炉渣的成本十分昂贵,加之因电炉渣的老化时间很长,需要大面积堆放场地,所以,传统的电炉渣处理方法受到很大限制。然而,液态渣雾化处理技术却克服了上述缺点。与传统方法相比,它具有工艺简单、成本低廉、环境友好等优点。自1997年第一座雾化处理工厂建成投产今,包括韩国、南非、马来西亚、泰国、台湾、印度、伊朗、越南和美国,电炉渣雾化处理能力已达340万t。 1.液态渣雾化处理技术 SAT技术(Slag Atomizing Technology)是一种将温度在1500~1550℃的液态电炉渣直接雾化成直径0.1~4.5mm的特殊小球的新技术。该工艺由带催化剂的高速空气喷吹系统组成,高速空气流在水的作用下形成一强有力的热交换空间,迅速而有效地将液态渣雾化成为表面透明的玻璃质小颗粒,经特制中间包进入渣坑。 液渣的75%~80%可经雾化处理,剩下部分由重材料和存在于运输罐底的可循环使用的金属组成。根据韩国经验,可回收3%的金属用于炼钢。20%~25%的液态渣倒入渣坑,冷却后用机械压碎,经磁性分离机分离出金属作为循环铁,剩余的最大尺寸为4.5mm的无铁炉渣可用作水泥混合料。 2.SAT工艺与传统炉渣处理工艺的比较 传统方法通常是液态渣经水冷后机械破碎。炉渣产品含0.1%~20%游离CaO。其含量超过1%,遇水或遭土气侵蚀都会生成Ca(OH)2,从而破坏炉渣产品的使用性能。用传统工艺加工炉渣,通常在露天渣场经6~12个月失效或用蒸汽进行老化处理,所以导致成本增加。 SAT用高速空气流和水直接冷却液态渣成为球粒,使多种不稳定元素生成CaO-Fe2O3、SiO2-Fe2O3和Mg-Fe2O3,因而炉渣产品中不存在游离CaO。炉渣球表面则成为CaO-Fe2O3、CaO-SiO2形式的尖晶石结构。 除此之外,SAT技术生产的球形颗粒渣产品(PS球)具有很大的比重(3.56)、极低的游离CaO含量(0.15%)和极低的吸水率(0.42%),而传统法炉渣产品含CaO>1%,天然砂吸水>1%,所以,PS球还可作为混凝土配料。SAT工艺优势可归纳为: ◇消除因贮存与处理对环境的污染; ◇PS球团用途广泛; ◇减少噪音、灰尘和废水排放,改善工厂环境质量; ◇生产率高、产品成本低; ◇炉渣中的金属回收率高。 3.PS球特征 因为PS球是内部不含游离CaO的尖晶石结构,表面呈玻璃质,所以,它具有使用无害,环境友好,强度高,硬度高,抗腐蚀性能优良,物理和化学性能稳定等特点,故用途十分广泛,可用作锻压屋顶、探井、研磨料、路面材料、承重材料、噪音屏蔽、辐射隔离、水泥混合料、地板、薄弱路面改良、PC梁、自来水和废水处理、过滤材料、抗滑地板、砖、预制混凝土构件、抗磨瓷砖和柏油混合料等。 以上论述可知,SAT工艺是一种处理方法简单,生产成本低廉,产品用途十分广泛,环境好、高效的炉渣处理工艺。(张化义)

高炉渣处理、回收利用技术的现状

高炉渣处理、回收利用技术的现状与进展 学院:矿业工程学院 班级:矿加10 姓名:范明阳 学号:120103707026

高炉渣处理、回收利用技术的现状与进展 范明阳 (辽宁科技大学矿业工程学院) 摘要:介绍了目前国内外高炉渣处理、回收利用的现状,对比分析了高炉渣各种处理工艺的优点和不足,指出目前的高炉渣处理存在新水消耗大、炉渣物理热无法回收和二氧化硫、硫化氢等污染物排放的问题,提出了解决高炉渣处理和回收利用过程中渣粒化及热量回收问题的新方法,并展望了高炉渣综合利用的发展趋势. 关键词:高炉渣;处理;回收利用;发展趋势 Abstract:The current status of the recovery and utilization of blast furnace slag both at home and abroad a.re described,andthe advantages and the disadvantages of various treatment processes compared in the present discussion.It is indieated thatthe treatment method of blast furnace slag now in use has the shortcomings of large fresh water consumption,impossibility torecover the physical heat of the slag,and emission of contaminants SO2 and H2 S. Key words:blast furnace slag;treatment;recovery and utilization;developing trend 0 .前言 钢铁工业是我国国民经济的重要基础产业.高炉渣是一种性能良好的硅酸盐材料,可作为生产水泥的原料.高炉渣的主要成分是氧化钙、氧化镁、三氧化二铝、二氧化硅,属于硅酸盐质材料,其化学组成与天然矿石、硅酸盐水泥相似.在急冷处理的过程中,熔态炉渣中的绝大部分物质没能形成稳定的化合物晶体,以无定形体或玻璃体的状态将没能释放的热能转化为化学能储存起来,从而具有潜在的化学活性,是优良的水泥原料.据统计,我国冶金企业每年用于处理废弃炉渣资金高达上亿元,尤其是对于高炉渣的显热,国内还没有一家钢铁联合企业将

高炉炉渣处理方法参考文本

高炉炉渣处理方法参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

高炉炉渣处理方法参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1. 概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干 渣处理环境污染较为严重,且资源利用率低,现在已很少 使用,一般只在事故处理时,设置干渣坑或渣罐出渣;目 前,高炉熔渣处理主要采用水淬渣工艺,水渣可以作为水 泥原料,或用于制造渣砖、轻质混凝土砌块,使资源得到 合理的利用。 1.1水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法主要有渣池法或 底滤法、因巴法、拉萨法及笼法等。其主要工艺过程是高 炉熔渣渣流被高压水水淬,然后进行渣水输送和渣水分 离。

B :高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为: A:转鼓脱水法。经水淬或机械粒化后的水渣流到转鼓脱水器进行脱水,前者为“INBA”法(因巴法),后者为“TYNA”法(图拉法);图拉法在我国已获得国家发明专利,专利名称为“冶金熔渣粒化装置”,专利权人为“中冶集团包头钢铁设计研究总院”,为俄罗斯人与中国人共同发明。 B:渣池过滤法:渣水混合物流人沉渣池,采用抓斗吊车抓渣,渣池内的水则通过渣池底部或侧部的过滤层进行排水。底滤式加反冲洗装置,一般称为“OCP”法,即“底滤法”;

高炉炉渣的有效利用途径探讨

第33卷第2期2011年4月 甘肃冶金 GANSU METALLURGY Vol.33No.2 Apr.,2011 文章编号:1672-4461(2011)02-0033-02 高炉炉渣的有效利用途径探讨 曹季林 (河南省工业学校,河南郑州450002) 摘要:本文介绍了目前国内外高炉炉渣先进处理工艺和资源化利用情况,指出高炉炉渣资源化利用发展方向和途径,对高炉炉渣的综合利用技术及经济效益进行了阐述,并提出了如何提高高炉炉渣利用效率的建议。 关键词:高炉炉渣;有效利用;水泥;热量;粒化 中图分类号:X757文献标识码:A Exploration of Effective Utilization of Blast Furnace Slag CAO Ji-lin (Henan Province Industrial School,Zhengzhou450002,China) Abstract:This paper introduces the advanced processing technology and the utilization of resources of Blast Furnace Slag at home and abroad at present,points out the prospect and ways of the utilization of resources of Blast Furnace Slag.Compre-hensive utilization technology and economic benefits are described,and how to improve the efficiency of Blast Furnace Slag is proposed. Key Words:blast furnace slag;effective utilization;cement;quantity of heat;granulation 1引言 高炉炉渣是在高炉冶炼过程中由矿石中的脉石、燃料中的灰分、熔剂和其他不能进入生铁中的物质形成的一种易熔混合物,是高炉的主要副产品之一。随着我国钢铁生产的迅速发展,所产生的固体废弃物总量也越来越多,其中高炉渣占到约50%。我国高炉渣量由于原燃料条件较差普遍偏大。根据各厂原燃料的不同,吨铁渣量大多在300 700kg 之间,2009年我国生铁产量超过5亿吨,因此我国高炉渣的年产量相当可观,如果不进行有效地利用,则会占用大量的土地资源,并且对环境造成污染。炉渣的主要成分是CaO、SiO2、Al2O3、MgO,另含少量FeO、MnO、CaS等,其中CaO和SiO 2 的总和在70%左右,Al2O3在15%左右。高炉渣是一种性能良好的硅酸盐材料,通过处理后可作为生产水泥的原料,可节约生产水泥的石灰石原料45%,节约能源50%,并减少二氧化碳排放量44%。由此可见,合理地利用好高炉渣具有很大的节能效果。 2高炉渣热能的回收利用 高炉炉渣出炉温度约为1500?左右,而目前常见的高炉水淬处理后的只能回收炉渣10%的热量,其余90%的热量只能白白浪费,这极大地增加了钢铁生产能耗。目前,在国内外对高炉渣进行干式粒化处理的研究已进入中试阶段,效果较好,其方式分为普通式和流化床式两类[1]。 ⑴普通式余热回收。该法是先将液态高炉渣倒入一倾斜的渣沟里,液渣在渣沟末端流出时与下部出来的高速空气流接触,渣温从1500?降到1000?并被粒化后进入热交换器,然后在热交换器内渣冷却到300?,热量得到回收。该法可以回收热量40% 45%。但相对流化床式还是偏低,且处理后渣粒度不均匀。 ⑵流化床式热回收。流化床是利用空气作为流化气体,在处理过程中,炉渣颗粒与流化气体接触充分,接触面积增大,所以热交换比较充分,渣热回收率大大提高。流化床式回收法有常规干式粒化法和熔融高炉渣粒化法两类,其中后者较为成熟,热量回收率可达70%。其核心设备是熔融高炉渣粒化设备,回收热过程是:①液态高炉渣粒从罩杯中甩出,通过与下部流化床上来的空气和水冷壁间的换热,完成回收约14%热量;②高炉渣进而打在容器内壁,与水冷壁进行热交换,完成回收约23%热量;③

(完整word版)生活垃圾焚烧炉渣性质及处置技术

1、生活垃圾焚烧炉渣性质 (1)炉渣的物理性能 生活垃圾焚烧炉渣是生活垃圾焚烧的副产物,包括炉排上残留的焚烧残渣和从炉排间掉落的颗粒物,呈黑褐色,原炉渣有刺激性气味,经过处理后气味减弱。未经处理的焚烧炉渣主要由灰渣、碎玻璃和砖块、陶瓷碎片、木屑,以及少量碎布条、塑料、金属制品等物质组成。碎玻璃、陶瓷碎片等主要来自于工程中的建筑垃圾,但只要其粒径大小不超过5mm,就不会影响炉渣多孔砖的整体性能。金属制品主要来自于人们的生活用品,如易拉罐、钉子、铁罐等,并且其中的单质铁会氧化,产生锈蚀,影响砖的性能。布条、塑料等物质是由于生活垃圾在焚烧过程中燃烧不够充分而未能去除。 炉渣中还含有极少量的有色金属,在公路基层应用过程中可能会由于和碱反应产生H2而破坏路面,大颗粒金属可能会损坏施工设备,对施工的危害较大,应尽可能地除去;炉渣中的可燃物含量较低,5mm以上颗粒中的可燃物含量在0.06~1.34%。可燃物的存在不利于资源化利用,如影响应用时路面的长期稳定性,影响无机结合料与炉渣的结合,而降低材料强度。因此,该将这些物质尽量去除。经过预处理的炉渣只含有少量的碎玻璃、砖块和陶瓷碎片,布条、塑料等有机物几乎全部去除。由于炉渣主要物理组分质地坚硬,因而作为集料使用时能保证一定的强度。 (2)炉渣的含水率、热灼减率、堆积密度、吸水率 由于水淬降温排渣作用,炉渣的含水率约为12.0%~18.9%,随着堆积时间、天气等因素上下波动;炉渣热灼减率反映垃圾的焚烧效果,一般较低,为1.57%~3.16%;炉渣堆积密度在1150kg/m3~1350kg/m3之间,吸水率为37%左右。说明炉渣是一种多孔的轻质材料,强度不高。 (3)炉渣的粒径分布 炉渣粒径分布较均匀,主要集中在2~50mm的范围内(占60.8%~7.68%),小于0.074mm的颗粒含量在0.06%~1.36%。基本符合道路建材中集料的级配要求。

高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用 摘要:转炉炼钢过程中的主要副产品是转炉渣,目前我国转炉渣的利用率仅为10%。为提高转炉渣的利用率,应按照分析成分、制定利用方案、综合处理、分级利用 4 个主要步骤,根据当地的实际情况,建立不同适应性的阶梯利用方式,以实现最好的社会效益、环境效益和经济效益。介绍了当前国内外高炉渣综合回收与利用现状,对比分析了高炉渣各种处理工艺的优点和不足,展望了高炉渣回收与利用的发展趋势。 关键词:普通高炉渣;含钛高炉渣;综合利用转炉渣;综合处理;利用;分析 1高炉渣处理工艺与综合利用 高炉渣是冶炼生铁过程中从高炉中排出的副产品,是我国现阶段最主要的冶炼废渣。在20世纪70年代以前,一直作为工业废弃物堆放。随着钢铁工业的发展,各种高炉渣的堆积量日益增大,高炉渣的堆积不仅对环境造成了严重污染,也是一种资源的严重浪费,随着世界范围资源的日益贫乏,对高炉渣进行综合利用,变废为宝已刻不容缓。 1.1高炉渣的化学成分 高炉渣有普通高炉渣和含钛高炉渣。普通高炉渣的化学成分与普通硅酸盐水泥类似,主要为CaO、MgO、SiO2、Al2O3和MnO。含钛高炉渣中除含有上述物质外,还含有大量的TiO2。见表1 表 1 高炉渣的化学成分 高炉渣的处理工艺可分为水淬粒化工艺、干式粒化工艺和化学粒化工艺。在我国工业生产中,主要以水淬粒化工艺作为高炉渣的处理工艺,但水渣处理工艺存在以下问题 : 新水消耗量大、熔渣余热没有回收、系统维护工作量大、冲渣产生的二氧化硫和硫化氢等气态硫化物带来空气污染。粉磨时,水渣必须烘干,要消耗大量能源。因此,利用干法将高炉渣粒化作为水泥原料,同时高效利用炉渣显热,减少对环境的污染,是高炉渣处理的发展趋势。 1.2国内外高炉渣处理工艺概况 1.2.1 水淬粒化工艺 水淬粒化工艺就是将熔融状态的高炉渣置于水中急速冷却,限制其结晶,并使其在热应力作用下发生粒化。水淬后得到沙粒状的粒化渣,绝大部分为非晶态。其主要方法有:底滤法、因巴法、图拉法、拉萨法等。水淬粒化工艺处理的高炉渣,玻璃质(非晶体)含量超过95%,可以用作硅酸盐水泥的部分替代品,生产普通酸盐水泥。但此法不可避免地释放出大

高炉炉渣处理方法.docx

高炉炉渣处理方法 1.概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干渣处理环境 污染较为严重,且资源利用率低,现在已很少使用,一般只在事 故处理时,设置干渣坑或渣罐出渣;目前,高炉熔渣处理主要采 用水淬渣工艺,水渣可以作为水泥原料,或用于制造渣砖、轻质 混凝土砌块,使资源得到合理的利用。 1.1 水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法主要有渣池法或底滤法、 因巴法、拉萨法及笼法等。其主要工艺过程是高炉熔渣渣流被高 压水水淬,然后进行渣水输送和渣水分离。 B:高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空 中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为: A:转鼓脱水法。经水淬或机械粒化后的水渣流到转鼓脱水器进 行脱水,前者为INBA 法(因巴法),后者为 TYNA法(图拉法); 图拉法在我国已获得国家发明专利,专利名称为冶金熔渣粒化装 置,专利权人为中冶集团包头钢铁设计研究总院,为俄罗斯人与 中国人共同发明。 B:渣池过滤法:渣水混合物流人沉渣池,采用抓斗吊车抓渣, 渣池内的水则通过渣池底部或侧部的过滤层进行排水。底滤式加

反冲洗装置,一般称为OCP法,即底滤法; C:脱水槽式:水淬后的渣浆经渣浆泵输送到脱水槽内进行脱水。这种方法就是通常所说的RASA法,即拉萨法; D:提升脱水式:高炉熔渣渣流首先被机械破碎,进行水淬后, 在池内用提升脱水实现渣水分离,提升脱水器可采用螺旋输送机和斗式提升机。前者即通常所说的笼法,后者称为HK法。 下面分别介绍各种高炉熔渣处理方法的工艺流程和技术特点,TYNA法(图拉法)将作为重点介绍。 2.各种水渣处理方法的工艺流程及特点: 2.1OCP法(底滤法) 高炉熔渣在冲制箱内由多孔喷头喷出的高压水进行水淬,水淬渣流经粒化槽,然后进入沉渣池,沉渣池中的水渣由抓斗吊抓出堆 放于渣场继续脱水。沉渣池内的水及悬浮物通过分配渠流入过滤池,过滤池内设有砾石过滤层,过滤后的水经由集水管由泵加压 后送入冷却塔冷却,循环使用,水量损失由新水补充。 底滤法冲渣水压力一般为0.3~0.4MPa,渣水比为 1:10~1: 15,水渣含水率为10%~15%,作业率 100%,出铁场附近可不设干渣坑。 2.2RASA法(拉萨法) 拉萨法水冲渣系统是由日本钢管公司与英国RASA贸易公司共同研制成功的。 1967 年在日本福山钢铁厂1#2004M3高炉上首次使用。我国上海宝钢1#高炉( 4063m3)首次从日本拉萨商社引进

高炉渣的综合利用。

高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。

研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第四产业”。根据西方发达国家的实践经经验,应用先进技术进行工业固体废弃物资源二次利用,不仅能够创造大量社会财富,而且可以间接促进资源综合利用技术的发展,因此又被称为“黄金产业”[2]。目前,我国固体废弃物综合利用产业蓬勃发展,已成为新世纪以来的“朝阳产业”[3],然而由于起步较晚,我国在此领域中的发展程度仍较发达国家仍有一定距离。 1. 高炉渣的生产现状 高炉渣是钢铁冶金工业生产中排放量最大的一种固体废弃物,其排放量与入炉矿石的品味及冶炼制度有直接关系。以目前我国钢铁冶金工艺水平,每冶炼1吨生铁,高炉渣产生量在300-350kg之间[4]。以我国年产生铁9亿吨计算,每年的高炉渣产生量高达3亿吨左右,在所有工业废渣排放量份额中所占比例接近1/3。我国高炉渣总体利用率较低,与发达国家相比仍有较大的差距。高炉渣化学成分由于所炼生铁种类及入炉炉料品位波动而存在一定变动。高炉渣所包含的不同氧化物的含量及种类直接影响着高炉渣的质量,并在一定程度上决定着高炉渣潜在活性的发挥[5]。我国主要类型高炉渣的化学组成如表1.1所示[6]。

炉渣利用技术炉渣利用工艺

炉渣利用技术炉渣利用工艺 1 用于流化床锅炉的链带式排渣控制冷却器 2 高炉水碎炉渣或其粒度调整物的防凝结剂及防凝结方法 3 高炉铁水渣铁分离装置 4 烟道灰、炉渣活化剂 5 高效利用工业炉熔渣显热的新一步法矿棉技术 6 一种电炉炼钢吹氧喷粉氧燃助熔及造泡沫渣工艺 7 钢包炉用脱氧造渣剂 8 用气、水反冲高炉水渣滤层的方法 9 旋风炉炉渣生产岩棉热衔接工艺及所采用的补热炉 10 用于液体炉渣脱铬和/或脱镍的方法 11 一种电渣炉控制系统 12 用锅炉废渣灰制水硬性凝固剂方法 13 粉煤灰炉渣砼小型空心砌块 14 炼钢电弧炉泡沫渣控制方法 15 危险废弃物及医疗垃圾处理用的溶渣焚烧炉及工艺方法 16 用于氧化处理炼钢厂炉渣的方法及所得到的LD渣 17 一种控制转炉炉底上涨溅渣的方法 18 一种用镍熔炼炉渣和钢渣的混合渣炼铁的方法 19 型煤炉正块缓漏卸双向分离排渣器 20 转炉出钢用挡渣锥 21 一种冶金炉风口、渣口表面强化的方法 22 用含钛高炉渣制备光催化材料的方法 23 一种以炉渣为基料的合成材料及其生产工艺 24 轻质隔声炉渣混凝土建筑板材 25 炉渣冷却机 26 利用沸腾炉渣制造泡沫型隔热防水保温材料 27 利用电厂炉渣生产水泥的方法 28 粒化高炉矿渣水泥砂浆 29 防御液态排渣炉析铁熔蚀的金属陶瓷涂层 30 转炉溅渣护炉方法 31 造气炉渣运用煅烧石灰的方法 32 一种石灰质碳化煤球(棒)造气炉渣的新用途 33 直流电弧电渣加热钢包炉及其控制方法 34 一种利用石灰质碳化煤球造气炉渣生产的路面砖及其方法 35 用于沸腾炉的层燃式灰渣燃烬冷却床 36 用浓盐酸高温高压处理锅炉灰渣浸取其中三氧化二铝的综合利用方法 37 稀土精矿渣电弧炉冶炼稀土中间合金 38 稀土精矿球团(或块)矿热炉制备稀土精矿渣和含铌磷铁 39 低温干馏、炉渣再燃、刮板传动式锅炉 40 用喷粉方法处理熔渣生产高价值炉渣制品 41 促进粒状炉渣脱水用的混合剂和使用方法

高炉渣处理技术的现状及发展趋势

高炉渣处理技术的现状及发展趋势 冯会玲,孙 宸,贾利军 (山东省冶金设计院股份有限公司,山东济南250101) 摘 要:阐述了当前国内外高炉渣处理技术使用现状,认为水淬法渣处理技术存在新水消耗大、炉渣显热利用率低 和二氧化硫、硫化氢等污染物排放的问题,提出开发高炉渣干式粒化技术有望同时解决其渣粒化及热量回收的问题,是高炉渣处理工艺的发展趋势。 关键词:高炉渣;干法粒化;水淬法中图分类号:X757 文献标识码:B 文章编号:1001-6988(2012)04-0016-03 Present Situation and Development Tendency of Blast Furnace Slag Treatment FENG Hui -ling,SUN Chen,JIA Li -jun (Shandong Province Metallurgical Engineering Co.,Ltd,Jinan 250101,China) Abstract :The current domestic and overseas situation of the blast furnace slag treatment technology is elaborated.The water quenching slag treatment technology is known as having problems such as the large consumption of the fresh water,the low utilization of sensible heat,and the pollutant emission of sulfur dioxide,hydrogen sulfide,et al.It is proposed that the blast furnace slag dry granulation technology is expected to solve the problems such as the slag granulation and the heat recovery at the same time.It is the development tendency of the blast furnace slag treatment graft. Key words :blast furnace slag;dry granulation;water quenching 收稿日期:2012-03-05 作者简介:冯会玲(1984—),女,助理工程师,主要从事冶金工程 设计工作. 高炉渣是高炉炼铁产生的主要废物,对它的处理和再利用是实现钢铁工业循环经济的重要途径之一。 国内外处理高炉渣基本采用水淬法和干渣法,后者因环境污染较严重、资源利用率低已很少使用,一般只是在事故处理时设置干渣坑或渣罐出渣[1]。随着科学技术的进步,近年来,高炉渣处理技术有了较大的发展,不少新技术的应用,使得高炉渣的利用进一步扩大。 1高炉渣处理工艺 按水渣的脱水方式,可以分为: (1)转鼓脱水法。经水淬和机械粒化后的水渣 流到转鼓脱水器进行脱水,前者为因巴法(INBA),后者为图拉法(TYNA ); (2)渣池过滤法。渣水混合物流入沉渣池,采用抓斗吊车抓渣,渣池内的水则通过渣池底部或侧部的过滤层进行排水。底滤式加反冲洗装置,一般称为底滤法(OCP); (3)脱水槽法。水淬后的渣浆经渣浆泵输送到脱水槽内进行脱水,也是通常所说的拉萨法(RASA); (4)提升脱水法。高炉熔渣渣流首先被机械破碎,进行水淬后,在池内用提升脱水实现渣水分离。提升脱水器可采用螺旋输送机和斗式提升机,前者通常称为搅笼法即明特法,后者称为“HK ”法。 1.1底滤法(OCP) 底滤法(OCP)工艺流程:高炉熔渣在冲制箱内由 多孔喷头喷出的高压水进行水淬,水淬渣流经粒化槽,然后进入沉渣池,沉渣池中的水渣由抓斗吊抓出堆放于渣场继续脱水。该法冲渣水的压力一般为 0.3~0.4MPa,渣水比为1∶10~1∶15,水渣含水率为 10%~15%,作业率100%,出铁场附近可不设干渣坑。 工业炉 Industrial Furnace 第34卷第4期2012年7月 Vol.34No.4Jul.2012 16

转炉钢渣处理的工艺方法

转炉钢渣处理的工艺方法 冶金13-A1 高善超 3 摘要:介绍了钢渣的组成成分,简述了目前国钢渣的主要处理工艺,对其中最为主流的热泼法、滚筒法、热闷法等钢渣处理工艺的工作原理及其优缺点进行简要评述。转炉渣中的f-CaO是影响转炉渣安定性的主要因素,钢渣中的f-CaO遇水会进行如下化学反应:f-CaO+H2O→Ca(OH)2,会使转炉渣体积膨胀98%左右,导致道路、建材制品或建筑物的开裂而破坏。如果能够降低转炉渣中f-CaO的含量,那么对钢渣的利用具有很大的指导意义。 游离氧化钙与二氧化碳酸化反应生成CaCO3,以消解游离氧化钙,使钢渣中氧化钙降低至3%以下,达到国家规定,从而可以在各个工程中得到良好的应用。 高炉渣中含SiO2一般是32%~42%,可见高炉渣可以视为一种含SiO2物料,具有潜在消解转炉钢渣中f-CaO 的能力,如果实现高炉渣与转炉渣熔融态下同步处理,这无疑拓宽了冶金渣资源化处理的有效途径。本文对以上两种钢渣中游离氧化钙的处理方法进行了论述。 关键词:高炉渣;转炉钢渣;游离氧化钙;二氧化碳;石英砂;高温反应;消解率 0引言 钢渣是生产钢铁的过程中,由于造渣材料、冶炼材料、冶炼过程中掉落的炉体材料、修补炉体的补炉料和各种金属杂质所混合成的高温固溶体,是炼钢过程中所产生的附属产品,需要再次加工方可应用【1】。 钢渣在欧美等发达国家可以广泛的利用,说明了钢渣具有非常好的应用前景,对钢渣的处理、利用、开发已经成为我们国家钢铁企业的重要发展方向。由于钢渣中存在游离氧化钙这种物质,其含量在钢渣中约占0~10%,游离氧化钙遇水后发生反应生成Ca(OH)2,这种反应会使钢渣体积发生膨胀,膨胀后钢渣的体积约会增长一倍,这种情况制约了钢渣的使用方向,使其很难在建材与道路工程中加以使用。由于我国正处于高速发展中,各项基础设施建设需要建设,其中高速公路的发展快速,如果可以将处理后的钢渣应用其中,代替其他岩土材料,可以降低建设成本,降低其他材料的消耗,有效的处理了堆积巨大的废弃钢渣,达到实际的经济效益【1-2】。因此对钢渣进行合理的处理并应用已经成为我国钢铁企业重要的发展方向之一。

高炉炉渣处理方法实用版

YF-ED-J9611 可按资料类型定义编号 高炉炉渣处理方法实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

高炉炉渣处理方法实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1. 概述: 高炉熔渣处理方法主要分为出干渣和水淬 渣,由于干渣处理环境污染较为严重,且资源 利用率低,现在已很少使用,一般只在事故处 理时,设置干渣坑或渣罐出渣;目前,高炉熔 渣处理主要采用水淬渣工艺,水渣可以作为水 泥原料,或用于制造渣砖、轻质混凝土砌块, 使资源得到合理的利用。 1.1水淬渣的按其形成过程,可以分为两大 类: A:高炉熔渣直接水淬工艺。脱水方法主要

有渣池法或底滤法、因巴法、拉萨法及笼法等。其主要工艺过程是高炉熔渣渣流被高压水水淬,然后进行渣水输送和渣水分离。 B :高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为: A:转鼓脱水法。经水淬或机械粒化后的水渣流到转鼓脱水器进行脱水,前者为“INBA”法(因巴法),后者为“TYNA”法(图拉法);图拉法在我国已获得国家发明专利,专利名称为“冶金熔渣粒化装置”,专利权人为“中冶集团包头钢铁设计研究总院”,为俄罗斯人与中国人共同发明。

高炉渣的处理方法及未来发展方向

高炉渣的处理方法及未来发展方向 王云波 (辽宁科技大学研究生学院) 摘要:高炉渣作为冶金的副产品过去一直被人们所忽视,但随着国家资源综合利用的提出以及技术和环保意识的提高,现如今,高炉渣的处理已成了研究热点之一。已应用于工业化的渣处理方法有:转鼓脱水法、渣池过滤法、脱水槽法、提升脱水法等。本文主要阐述各渣处理方法的工艺流程、特点以及未来的发展方向。 关键字:渣处理转鼓脱水法渣池过滤法脱水槽法提升脱水法未来发展Present Situation and Development Tendency of Blast Furnace Slag Treatment Wang Yunbo Abstract:In past,Blast furnace slag as a by-product of metallurgy has long been neglected.With the comprehensive utilization of resources was Put forward and environmental mentality raised,The technique of blast furnace slag treatment become one of the most important technique.There were three blast furnace slag treatments which have been applied to industrial,they were:INBA,OCP,RASA,TYNA.In this paper status.classification,process and characteristics of blast furnace slag treatments was introduced,meanwhile the development foreground was forecast. Key words:Blast furnace slag treatments INBA OCP RASA TYNA 高炉渣是高炉炼铁的副产品。对其的处理和再利用是钢铁工业实现循环经济的重要途径。目前,国内外对高炉渣的处理普遍采用干渣法和水淬法,前者因对环境污染严重、资源利用率低已很少被使用,一般只是在事故处理时设置干渣坑或渣罐出渣。随着科学技术的进步,近年来,高炉渣处理技术有了较大的发展,不少新技术的应用,使得高炉渣的利用得到了进一步扩大。 1 高炉渣处理工艺和特点 高炉渣根据脱水方式,可分为一下几种: (1)渣池过滤法。渣水混合物流入沉渣池,利用抓斗吊车抓渣,渣池内的水则通过渣池底部或侧部的过滤层进行排水。底滤式加反冲

炉渣处置与应用

垃圾焚烧发电炉渣处置与应用 ●垃圾焚烧灰渣的现状 目前,随着政府对生活垃圾处理减量化、无害化和资源化的加强管理,生活垃圾处理已经成为城市管理和公共服务的重要组成部分,根据中国国情和相关技术,生活垃圾焚烧处理无疑成为目前最好的垃圾处理方式。焚烧灰渣是城市垃圾焚烧过程中一种必然的副产物,如何处理好灰渣,是当前生活垃圾焚烧处理的一大问题。 垃圾焚烧产生的灰渣包括从焚烧炉的底灰(Bottom Ash,BA),由烟气净化产生的空气污染控制残渣(Air Pollution Control Residues,APCR)两种。主要是不可燃的无机物以及部分未燃尽的可燃有机物。根据垃圾组成的不同,灰渣的数量一般为垃圾焚烧前总重量的5%-20%。灰渣特别是飞灰中含有一定量的有害物质,若重金属未经处理直接排放,将会污染土壤和地下水,对环境造成危害。另一方面,由于灰渣中含有一定数量的铁、铜、锌、铬等重金属物质,有回收利用价值,故又可作为一种资源开发利用。因此,焚烧灰渣既有它的污染性,又有其资源特性。焚烧灰渣的处理是城市垃圾焚烧工艺的一个必不可少的组成部分。 ●炉渣 1.炉渣的组成 底灰(即炉渣)是灰渣的主要部分,呈黑褐色,大约占灰渣总质量的80%-90%。炉渣含水率10.5%~19.0%,热灼减率1.4%~3.5%,低热灼减率反映出其良好的焚烧效果。底灰是由熔渣、玻璃、陶瓷类物

质碎片、铁和其他金属、及其他一些不可燃物质,以及没有燃烧完全的有机物所组成的不均匀混合物。大颗粒炉渣(>20mm)以陶瓷/砖块和铁为主,两种物质的质量百分比随着粒径的减小而减小;小颗粒炉渣(<20mm)则主要为熔渣和玻璃其含量随着粒径的减小而增多,这主要是由于这些物质的物理性质和在炉排中移动时所受的撞击力不同而造成的。 因焚烧 1t生活垃圾约产生 200~250kg 炉渣,以日处理量为1200t的重庆同兴垃圾焚烧发电2厂为例,1年约产生8~11万t 左右的炉渣。 2.炉渣的分拣工艺 炉渣中铁的总含量在5%~8%,目前国内的炉渣分拣主要是分拣炉渣中的铁。 炉排中燃尽的炉渣掉落到除渣机中,通过水的降温,液压式除渣机将冷却后的炉渣沥干后送入皮带输送机,在皮带输送机的转换端头加装多级除铁器,利用磁铁将金属铁分拣出来,为进一步提高分拣效果,工厂中一般在炉渣输送过程中配置振动装置和破碎装置,加大分拣力度。 3.炉渣的资源化利用 3.1炉渣的性质 炉渣粒径分布主要集中在 2~ 50mm的范围内(占61.1%~77.2%),基本符合道路建材(骨料、级配碎石或级配砾石等)的级配要求。炉渣溶解盐量较低,仅为 0.8%~1.0%,因此炉渣处理处置时因溶解盐污染地下水的可能性较小。炉渣pH 缓冲能力较强,初始 pH 值(蒸馏水浸出,液固比为5:1)在11.5以上,能有效抑制重金属的浸出[2]。

高炉炉渣处理方法正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 高炉炉渣处理方法正式版

高炉炉渣处理方法正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过 程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1. 概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干渣处理环境污染较为严重,且资源利用率低,现在已很少使用,一般只在事故处理时,设置干渣坑或渣罐出渣;目前,高炉熔渣处理主要采用水淬渣工艺,水渣可以作为水泥原料,或用于制造渣砖、轻质混凝土砌块,使资源得到合理的利用。 1.1水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法

主要有渣池法或底滤法、因巴法、拉萨法及笼法等。其主要工艺过程是高炉熔渣渣流被高压水水淬,然后进行渣水输送和渣水分离。 B :高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为: A:转鼓脱水法。经水淬或机械粒化后的水渣流到转鼓脱水器进行脱水,前者为“INBA”法(因巴法),后者为“TYNA”法(图拉法);图拉法在我国已获得国家发明专利,专利名称为“冶金熔渣粒化装

高炉炉渣处理方法(最新版)

高炉炉渣处理方法(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0112

高炉炉渣处理方法(最新版) 1.概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干渣处理环境污染较为严重,且资源利用率低,现在已很少使用,一般只在事故处理时,设置干渣坑或渣罐出渣;目前,高炉熔渣处理主要采用水淬渣工艺,水渣可以作为水泥原料,或用于制造渣砖、轻质混凝土砌块,使资源得到合理的利用。 1.1水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法主要有渣池法或底滤法、因巴法、拉萨法及笼法等。其主要工艺过程是高炉熔渣渣流被高压水水淬,然后进行渣水输送和渣水分离。 B:高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK 法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空

中时进行水淬粒化,然后进行渣水分离和输送。 1.2按水渣的脱水方式可分为: A:转鼓脱水法。经水淬或机械粒化后的水渣流到转鼓脱水器进行脱水,前者为“INBA”法(因巴法),后者为“TYNA”法(图拉法);图拉法在我国已获得国家发明专利,专利名称为“冶金熔渣粒化装置”,专利权人为“中冶集团包头钢铁设计研究总院”,为俄罗斯人与中国人共同发明。 B:渣池过滤法:渣水混合物流人沉渣池,采用抓斗吊车抓渣,渣池内的水则通过渣池底部或侧部的过滤层进行排水。底滤式加反冲洗装置,一般称为“OCP”法,即“底滤法”; C:脱水槽式:水淬后的渣浆经渣浆泵输送到脱水槽内进行脱水。这种方法就是通常所说的“RASA”法,即“拉萨法”; D:提升脱水式:高炉熔渣渣流首先被机械破碎,进行水淬后,在池内用提升脱水实现渣水分离,提升脱水器可采用螺旋输送机和斗式提升机。前者即通常所说的“笼法”,后者称为“HK”法。 下面分别介绍各种高炉熔渣处理方法的工艺流程和技术特点,

相关文档
最新文档