《金属键金属晶体》参考教案
第一单元金属键金属晶体

苏教版选修3专题3 微粒间作用力与物质性质第一单元《金属键金属晶体》第二课时金属晶体导学案鹤壁市高中——董泳江一、教学目标1.知识与技能目标:(1)了解金属晶体内原子的几种常见排列方式;(2)训练学生的动手能力、计算能力和空间想象能力。
2.过程与方法目标:(1)通过学生动手操作,主动探究,让学生总结出金属晶体的几种堆积方式;(2)通过学生分组讨论激发学生的学习兴趣;(3)在探究活动中培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:(1)通过本节课的学习,学生能从晶体结构的微观视角去认识物质,感受化学微观世界的奇妙与和谐;(2)体验科学探究的艰辛和乐趣,激发学生学习化学的积极性,培养同学间合作意识和能力。
二、教学重点、难点教学重点:认识金属的四种堆积模型。
教学难点:金属晶体内原子的空间排列方式,金属的四种堆积模型的探究过程。
三、学习思路通过小组合作学习,加强合作意识,培养学生的空间想象能力和动手能力。
从已有的基础知识出发探究未知的知识,便于建立学科体系。
渗透利用模型帮助思维,学习将复杂问题简单化的科学方法。
采用实验探究→讨论→引导→分析的方式,有助于学生理解金属晶体的三维空间堆积方式,顺利突破本节课的重点和难点。
四、学法指导为适应新高考需要,本节课主要以训练学生思维达到提高学生综合能力为目的。
根据已具备的相应的学习基础,通过有层次的问题,引导学生亲自动手排列,自主探究金属晶体的几种堆积模型,通过自己动手,体验堆积成功后的成就感,感受学习的乐趣,可以激发学生学习的积极性与主动性;增强学生的感性认识,将抽象的微观内容宏观化,降低学习难度。
五、课前预习六、教学过程1.温故知新1.1电子气理论:概念:金属晶体由金属原子脱落下来的自由价电子(遍布整个晶体,就像气体一样自由流动)和金属阳离子构成。
应用:电子气理论可以很好的解释金属具有良好的导电性、导热性、延展性。
例子:当金属受到外力作用时,晶体中各原子层就会发生相对滑动,但不会改变原来的排列方式,而且弥漫在金属原子之间的电子气可以起到类似轴承中滚珠的之间润滑剂的作用,所以金属都有良好的延展性。
《金属键 金属晶体》教案2 (2)

(a)非密置层(b)密置层中原子的计算方法:讨论后,请学生回答。
【板书】1.立方体晶胞中原子的计算方法(1)顶端原子一般只计算1/8 棱边原子一般只计算1/4[课后练习]1.拟晶(quasicrystal)是一种具有凸多面体规则外形但不同于晶体的固态物质。
Al65Cu23Fe12是2000年之前发现的几百种拟晶之一,具有合金的某些优良物理性能。
有关这种拟晶的说法错误的是A .Al65Cu23Fe12的硬度比金属Al 、Cu 、Fe 都大B .Al65Cu23Fe12中三种金属的化合价均可视作零C .Al65Cu23Fe12不可用作长期浸泡在海水中的材料D .1mol Al65Cu23Fe12溶于过量的硝酸时共失去265 mol 电子2.硼和镁形成的化合物刷新了金属化合物超导温度的最高记录,如图所示,○镁原子,位于定点和上下两个面心●硼原子,位于六棱柱的内部则该化合物的化学式可表示为( )A .MgB B .MgB 2C .Mg 2BD .Mg 3B 23.纳米材料的表面微粒数占微粒总数的比例极大,这是它有许多特殊性质的原因,假设某纳米颗粒中粒子分布类似于硼镁化合物,其结构如上图所示,则这种纳米颗粒的表面微粒数钠晶体的晶胞占总微粒数的百分数为( )A.22%B.70%C.66.7%D.33.3%4.金晶体的最小重复单元(也称晶胞)是面心立方体,即在立方体的8个顶点各有一个金原子,各个面的中心有一个金原子,每个金原子被相邻的晶胞所共用(如图)。
金原子的直径为d cm,用NA表示阿伏加德罗常数,M表示金的摩尔质量。
(1)金晶体每个晶胞中含有________个金原子。
(2)欲计算一个晶胞的体积,除假定金原子是刚性小球外,还应假定_______________。
(3)一个晶胞的体积是多少?(4)金晶体的密度是多少?。
苏教版学高中化学专题金属键金属晶体金属晶体教案选修

[核心素养发展目标] 1.能从微观角度分析金属晶体中的构成微粒及粒子之间的相互作用,培养宏观辨识与微观探析的学科核心素养。
2.能利用金属晶体的通性判断晶体类型,进一步理解金属晶体中各微粒之间的作用力,理解金属晶体的堆积模型,并能用均摊法分析晶胞组成,强化证据推理与模型认知的学科核心素养。
一、金属晶体1.概念(1)晶体:内部粒子(原子、离子或分子)在空间呈现有规则重复排列,外观具有规则几何外形的固体物质,通常条件下,金属单质及其合金属于晶体。
(2)晶胞:能够反映晶体结构特征的基本重复单位。
金属晶体是金属晶胞在空间连续重复延伸而形成的。
(3)金属晶体:通过金属阳离子与自由电子之间的强烈的作用而形成的晶体。
2.金属晶体的常见堆积方式(1)金属原子在二维平面中放置的两种方式金属晶体中的原子可看成直径相等的球体。
把它们放置在平面上(即二维空间里),可有两种方式——a:非密置层,b:密置层(如下图所示)。
知识拓展1晶体中一个原子周围距离相等且最近的原子的数目叫配位数。
分析上图非密置层的配位数是4,密置层的配位数是6。
2密置层放置时,平面的利用率比非密置层的要高。
(2)金属晶体的原子在三维空间里的4种堆积模型金属原子在三维空间按一定的规律堆积,有4种基本堆积方式。
堆积方式图式实例简单立方堆积钋体心立方堆积钠、钾、铬、钼、钨等面心立方堆积金、银、铜、铅等六方堆积镁、锌、钛等相关链接(1)堆积原理组成晶体的金属原子在没有其他因素影响时,在空间的排列大都服从紧密堆积原理。
这是因为在金属晶体中,金属键没有方向性和饱和性,因此都趋向于使金属原子吸引更多的其他原子分布于周围,并以紧密堆积方式降低体系的能量,使晶体变得比较稳定。
(2)常见的堆积模型堆积模型采纳这种堆积的典型代表晶胞配位数空间利用率每个晶胞所含原子数非密置层简单立方堆积Po(钋)652%1体心立方堆积Na、K、Fe868%2密置六方堆积Mg、Zn、Ti1274%6层面心立方堆积Cu、Ag、Au1274%4例1对图中某金属晶体结构的模型进行分析,有关说法正确的是()A.该种堆积方式称为六方堆积B.该种堆积方式称为体心立方堆积C.该种堆积方式称为面心立方堆积D.金属Mg就属于此种堆积方式答案C解析由图示知该堆积方式为面心立方堆积,A、B错误,C正确,Mg是六方堆积,D错误。
2019-2020年《金属键和金属晶体》WORD教案

2019-2020年《金属键和金属晶体》WORD教案【复习目标】1、理解金属键的涵义,能利用“电子化理论”解释金属的物理性质。
2、能举例说明金属晶体的四种基本堆积模型。
【知识要点】*5.金属键:失去价电子的金属阳离子与在晶体内自由移动的价电子之间强烈的相互作用。
影响金属键强弱的因素:金属的原子半径和价电子的多少。
一般情况下,金属的原子半径越小,价电子越多,则金属键,金属的熔沸点就,硬度就。
1、金属键(1)金属键实质:。
(2)成键微粒:。
(3)金属键的特征:。
(4)成键条件:。
2、金属晶体(1)构成:。
(2)存在:。
(3)物理性质:。
3、晶胞的排列方式金属晶体是由若干个能够反映晶体结构特征的单元—晶胞排列形成的。
不同的金属,晶胞在其内部不同的排列方式,大致可以分为三类。
(1)六方最密堆积类型(A3)常见金属如:、、等。
配位数为。
(2)立方最密堆积类型(A1)常见金属如:、、等。
配位数为。
(3)体心立方最密堆积类型(A2)常见金属如:、、等。
配位数为。
4、合金(1)定义:。
(2)性能:。
【典型例题】例1、金属晶体的形成原因是因为晶体中存在()①金属原子②金属阳离子③自由电子④阴离子A、只有①B、只有③C、②③D、②④[解析]金属晶体是金属阳离子和自由电子通过金属键形成的。
答案:C变形题:在单质的晶体中一定不存在的微粒是()A、原子B、分子C、阴离子D、阳离子答案:C例2、金属能导电的原因是()A、金属晶体中金属阳离子与自由电子间的相互作用较弱B、金属晶体中的自由电子在外加电场作用下发生定向移动C、金属晶体中的金属阳离子在外加电场作用下可发生定向移动D、金属晶体在外加电场作用下可失去电子[解析]金属原子失去电子后变为金属离子,失去的电子称为自由电子,自由电子可以在金属晶体中自由移动,在外加电场的作用下,自由电子就会定向移动而形成电流。
答案:B变形题:下列不属于金属晶体共性的是()A、易导电B、易导热C、有延展性D、高熔点答案:D例1. 金属钠能导电、导热、具有延展性,而氯化钠通常没有上述性质,为什么?[分析]物质的性质与其内部结构密切相关,解答本题时,应从金属钠和氯化钠所属晶体的结构不同去分析。
人教版高中化学选择性必修第2册 《金属晶体》教学设计

《金属晶体》教学设计一、课标解读“金属键及金属晶体”是《普通高中化学课程标准(版修订)》中模块2物质结构与性质的主题2微粒间的相互作用与物质的性质中的内容。
1.内容要求知道金属键的特点与金属某些性质的关系。
能借助金属晶体模型说明晶体中的微粒及其微粒间的相互作用。
2.学业要求能运用金属键模型,解释金属等物质的某些典型性质。
能借助金属晶体模型说明晶体中的微粒及其微粒间的相互作用。
二、教材分析本节内容的功能价值是提高学生的宏观辨识与微观探析能力,能从原子、分子水平分析常见物质及其反应的微观特征,能从宏观与微观结合的视角对物质及其变化进行分类和表征。
旧人教版教材详细的介绍了金属原子的4种堆积模型,分别是简单立方堆积、体心立方堆积、六方最密堆积和面心立方最密堆积。
在新人教版中,删掉了此部分内容,使得金属晶体的难度大大降低,因此在讲授该节内容时应该把重点放在运用金属键理论解释金属晶体的物理性质上。
新人教版增加能带理论,但是没有具体介绍,让学生能认识到可以用不同的理论解释同一种现象。
另外还增加合金的概念和例子,让学生知道金属晶体不仅包括金属单质还包括合金。
新人教版还增加“金属晶体有导电性,但是能导电的物质不一定是金属”并举例,让学生知道了导电性和金属的关系。
新鲁科版相对旧版同样删掉了对晶体堆积模型的描述,但是保留了3种常见金属的结构示意图,保留的目的是让学生借助辅助线的提示,描述其晶胞的结构特点,并计算晶胞中含有的原子数,旨在复习上节内容的基础上,了解常见金属晶体的结构特点。
三、学情分析金属是生活中常见的材料之一,学生可见可触,对此非常熟悉。
通过必修一几种常见金属的学习,学生已经了解金属的通性,通过第一节《物质的聚集状态与晶体》的学习,学生已经掌握了晶体的特点,并学会运用“切割法”计算晶胞中所含微粒数目。
通过第二节《分子晶体与共价晶体》的学习,学生已经初步形成了三维空间思维能力。
本节课的学习也会对下一个课时《离子晶体》的学习打下基础。
《金属键金属晶体》参考教案

专题3微粒间作用力与物理性质第一单元金属键金属晶体[教学目标]1.了解金属晶体模型和金属键的本质2.认识金属键与金属物理性质的辨证关系3.能正确分析金属键的强弱4.结合问题讨论并深化金属的物理性质的共性5.认识合金及其广泛应用[课时安排] 3课时第一课时[学习内容]金属键的概念及金属的物理性质【引入】同学们我们的世界是五彩缤纷的,是什么组成了我们的世界呢?学生回答:物质讲述:对!我们的自然世界是有物质组成的,翻开我们的化学课本的最后一页我们可以看到一张化学元素周期表,不论冬天美丽的雪花,公路上漂亮的汽车。
包括你自己的身体都是有这些元素的一种或几种构成的。
那么我们现在就来认识一下占周期表中大多数的金属。
【板书】§3-1-1 金属键与金属特性大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?【展示】几种金属的应用的图片,有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。
叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。
【讨论】请一位同学归纳,其他同学补充。
1、金属有哪些物理共性?2、金属原子的外层电子结构、原子半径和电离能?金属单质中金属原子之间怎样结合的?【板书】一、金属共同的物理性质容易导电、导热、有延展性、有金属光泽等。
二、金属键【动画演示并讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。
这种金属离子与自由电子之间的较强作用就叫做金属键。
金属晶体的组成粒子:金属阳离子和自由电子。
金属离子通过吸引自由电子联系在一起, 形成金属晶体.经典的金属键理论把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子,金属原子则“浸泡”在“自由电子”的“海洋”之中。
2024-2025年高中化学专题3第1单元金属键金属晶体教案苏教版选修3

6.金属键的形成和特点
题目:请描述金属键的形成过程和特点。
答案:金属键的形成过程是金属原子失去最外层电子,这些电子在金属原子间形成自由电子云。金属键的特点是金属原子之间的强相互作用力,这些相互作用力使得金属原子紧密排列,形成金属晶体。
7.金属晶体的结构
题目:请描述金属晶体中的面心立方晶格和体心立方晶格的结构特点。
核心素养目标分析
本节课的核心素养目标分析如下:
1.科学探究能力:通过实验观察和理论分析,使学生能够理解金属键的形成和金属晶体的结构,培养学生的观察能力、实验能力和科学思维。
2.证据推理能力:通过金属的物理性质和化学性质的实验现象,引导学生运用归纳总结和推理判断的方法,理解金属键的作用和金属的特性。
3.科学语言表达能力:培养学生运用化学语言准确描述金属键的特点和金属晶体的结构,提高学生的科学语言表达能力和交流能力。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的金属键和金属晶体的内容,强调重点和难点。
肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的金属键和金属晶体内容,布置适量的课后作业,巩固学习效果。
提醒学生注意作业要求和时间安排,确保作业质量。
教学资源拓展
1.拓展资源:
(1)金属键和金属晶体相关的学术文章:引导学生阅读有关金属键和金属晶体的学术文章,以加深对相关知识的理解。
答案:面心立方晶格的特点是每个金属原子位于立方体的面心位置,形成六角形的面心立方晶格。体心立方晶格的特点是每个金属原子位于立方体的体心位置,形成立方体的体心立方晶格。
金属键金属晶体教学课件

02
金属键的强度和稳定性 取决于金属原子的半径 和电负性。
03
金属键的形成不受方向 原子,形成复杂的金 属晶体结构。
02
金属晶体的介
金属晶体的定 义
01
02
03
金属晶体
由金属原子或金属离子通 过金属键结合形成的晶体。
金属键
金属原子之间通过电子共 享形成的化学键。
金属晶体中金属键的实例
面心立方结构的铜和铝
铜和铝的原子在空间中按照面心立方的规律排列,形成具有高对 称性的晶体结构,其金属键表现出明显的方向性。
体心立方结构的铁和铬
铁和铬的原子按照体心立方的规律排列,其金属键强度较高,晶体 的硬度也较大。
六方密排结构的镁和钛
镁和钛的原子按照六方密排的规律排列,其晶体结构相对较为紧密, 金属键的强度也较高。
05
金属金属晶体的未来
新材料的研 发
高性能金属材料
01
研发具有优异力学性能、耐腐蚀性和高温稳定性的金属材料,
以满足航空航天、能源、化工等领域的需求。
金属基复合材料
02
通过在金属基体中添加增强相,如陶瓷颗粒或纤维,制备具有
优异综合性能的金属基复合材料。
多功能金属材料
03
开发具有磁、电、热、光等功能的金属材料,用于传感器、电
金属金属晶体教 件
• 金属键的介绍
• 金属键与金属晶体的关系 • 金属键金属晶体的应用 • 金属键金属晶体的未来发展
01
金属的介
金属键的定义
金属键
金属原子之间通过共享价电子形 成的化学键。
金属键的形成
金属原子通过移除部分外层电子成 为正离子,而留下的空位则吸引其 他金属原子的外层电子成为负离子, 从而形成金属键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3微粒间作用力与物理性质第一单元金属键金属晶体[教学目标]1.了解金属晶体模型和金属键的本质2.认识金属键与金属物理性质的辨证关系3.能正确分析金属键的强弱4.结合问题讨论并深化金属的物理性质的共性5.认识合金及其广泛应用[课时安排] 3课时第一课时[学习内容]金属键的概念及金属的物理性质【引入】同学们我们的世界是五彩缤纷的,是什么组成了我们的世界呢?学生回答:物质讲述:对!我们的自然世界是有物质组成的,翻开我们的化学课本的最后一页我们可以看到一张化学元素周期表,不论冬天美丽的雪花,公路上漂亮的汽车。
包括你自己的身体都是有这些元素的一种或几种构成的。
那么我们现在就来认识一下占周期表中大多数的金属。
【板书】§3-1-1 金属键与金属特性大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?【展示】几种金属的应用的图片,有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。
叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。
【讨论】请一位同学归纳,其他同学补充。
1、金属有哪些物理共性?2、金属原子的外层电子结构、原子半径和电离能?金属单质中金属原子之间怎样结合的?【板书】一、金属共同的物理性质容易导电、导热、有延展性、有金属光泽等。
二、金属键【动画演示并讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。
这种金属离子与自由电子之间的较强作用就叫做金属键。
金属晶体的组成粒子:金属阳离子和自由电子。
金属离子通过吸引自由电子联系在一起, 形成金属晶体.经典的金属键理论把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子,金属原子则“浸泡”在“自由电子”的“海洋”之中。
金属键的形象说法: “失去电子的金属离子浸在自由电子的海洋中”.金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。
金属键是一种遍布整个晶体的离域化学键。
这种键既没有方向性也没有饱和性,【板书】1.构成微粒:金属阳离子和自由电子2.金属键:金属阳离子和自由电子之间的较强的相互作用3、成键特征:自由电子被许多金属离子所共有;无方向性、饱和性【板书】三、金属键对金属通性的解释【学生分组讨论】如何应用金属键理论来解释金属的特性?请一位同学归纳,其他同学补充。
【板书】1.金属导电性的解释在金属晶体中,充满着自由电子,而自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向移动,因而形成电流,所以金属容易导电。
【强调】:金属受热后,金属晶体中离子的振动加剧,阻碍着自由电子的运动。
所以温度升高导电性下降。
2. 金属导热性的解释金属容易导热,是由于自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
3.金属延展性的解释当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。
因此,金属都有良好的延展性。
4、金属晶体结构具有金属光泽和颜色由于自由电子可吸收所有频率的光,然后很快释放出各种频率的光,因此绝大多数金属具有银白色或钢灰色光泽。
而某些金属(如铜、金、铯、铅等)由于较易吸收某些频率的光而呈现较为特殊的颜色。
当金属成粉末状时,金属晶体的晶面取向杂乱、晶格排列不规则,吸收可见光后辐射不出去,所以成黑色。
【问题解决】1.金属晶体的形成是因为晶体中存在A.金属离子间的相互作用B.金属原子间的相互作用C.金属离子与自由电子间的相互作用D.金属原子与自由电子间的相互作用2.金属能导电的原因是A.金属晶体中金属阳离子与自由电子间的相互作用较弱B.金属晶体中的自由电子在外加电场作用下可发生定向移动C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动D.金属晶体在外加电场作用下可失去电子3、下列叙述正确的是()A.任何晶体中,若含有阳离子也一定含有阴离子B.原子晶体中只含有共价键C.离子晶体中只含有离子键,不含有共价键D.分子晶体中只存在分子间作用力,不含有其他化学键【设问】我们知道,不同的金属在某些性质方面,如密度、硬度、熔点等又表现出很大差别。
有的金属软如蜡,有的硬如钢;有的金属熔点低,有的熔点高,金属的这些性质与金属键有没有关系?【投影】课本P29表3-1【学生分组讨论】根据表中的数据,总结影响金属键的因素。
【板书】四。
金属的熔、沸点、硬度与金属键的关系1.原子化热:1mol金属固体完全气化成相互远离的气态原子时吸收的能量。
【讲解】金属键无方向性, 无固定的键能, 金属键的强弱和自由电子的多少有关, 也和离子半径、电子层结构等其它许多因素有关, 很复杂. 金属键的强弱可以用金属原子化热等来衡量. 金属原子化热是指1mol 金属变成气态原子所需要的热量. 金属原子化热数值小时, 其熔点低, 质地软; 反之, 则熔点高, 硬度大. 【板书】2、影响金属键强弱的因素:原子半径、单位体积的自由电子的数目等一般:金属元素的原子半径越小、单位体积内自由电子的数目越多,金属键越强,金属晶体的硬度越大,熔沸点越高。
【说明】:不同的金属在某些性质方面,如密度、硬度、熔点等又表现出很大差别。
这与金属原子本身、晶体中原子的排列方式等因素有关。
【问题解决】3、试比较下列金属熔点的高低和硬度大小。
(1)Na Mg Al (2)Li Na K Rb Cs (3)K Ca4、为什么碱金属单质的熔沸点从上到下逐渐降低?【课堂小结】结构性质金属键金属内部的特殊结构金属的物理共性金属阳离子自由电子原子化热导电性导热性延展性金属阳离子半径、自由电子数熔沸点高低、硬度大小【课后阅读材料】1.超导体——一类急待开发的材料一般说来,金属是电的良好导体(汞的很差)。
1911年荷兰物理学家H·昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即—269、)时汞的电阻“奇异”般地降为零,表现出超导电性。
后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。
2.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。
(1)状态:通常情况下,除Hg外都是固体。
(2)金属光泽:多数金属具有光泽。
但除Mg、Al、Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。
(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。
(4)延展性(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。
金属除有共同的物理性质外,还具有各自的特性。
①颜色:绝大多数金属都是银白色,有少数金属具有颜色。
如Au金黄色Cu紫红色Cs银白略带金色。
②密度:与原子半径、原子相对质量、晶体质点排列的紧密程度有关。
最重的为锇(Os)铂(Pt)最轻的为锂(Li)③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为28.4℃Ca为30℃④硬度:最硬的金属为铬(Cr),最软的金属为钾(K),钠(Na),铯(Cs)等,可用小刀切割。
⑤导电性:导电性能强的为银(Ag),金(Au),铜(Cu)等。
导电性能差的为汞(Hg)⑥延展性:延展性最好的为金(Au),Al【课后练习】1.下列叙述中,可以肯定是一种主族金属元素的是A.原子最外层有3个电子的一种金属B.熔点低于100℃的一种金属C.次外电子层上有8个电子的一种金属D.除最外层,原子的其他电子层电子数目均达饱和的一种金属2.金属晶体的形成是因为晶体中主要存在A.金属离子之间的相互作用B.金属原子之间的作用C.金属离子与自由电子间的相互作用D.金属原子与自由电子间的相互作用3. 金属的下列性质中与金属晶体结构无关的是A.导电性B.化学反应中易失去电子C.延展性D.硬度4.在金属晶体中,自由电子与金属离子的碰撞中有能量传递,可以用此来解释的金属的物理性质是A.延展性B.导电性C.导热性D.硬度5.金属的下列性质中,不能用金属晶体结构加以解释的是A.易导电B.易导热C.有延展性D.易锈蚀6. 试比较下列金属熔点的高低,并解释之。
(1)Na、Mg、Al (2)Li、Na、K、Rb、Cs第二课时[学习内容] 认识金属晶体基本结构【引入】展示:雪花、石英、食盐、铝的晶体结构图,大多数的金属及其合金也是晶体,具有规则的几何外形。
【阅读】课本P30 化学史话:人类对晶体结构的认识。
【板书】一、晶体与非晶体晶体:具有规则几何外形的固体非晶体:没有规则几何外形的固体二、晶体的特性1、有规则的几何外形2、有固定的熔沸点3、各向异性(强度、导热性、光学性质等)三、晶体的分类(依据:构成晶体的粒子种类及粒子之间的作用)分为:金属晶体、离子晶体、原子晶体、分子晶体、混合晶体。
【板书】§3-1-2 金属晶体一、金属晶体的密堆积结构【展示】钠晶体的堆积方式,讲解晶胞的概念。
【板书】1、晶胞:金属晶体中能够反映晶体结构特征的基本重复单位【讲解】晶体的结构是晶胞在空间连续重复延伸而形成的。
晶胞与晶体的关系如同砖块与墙的关系。
在金属晶体中,金属原子如同半径相等的小球一样,彼此相切、紧密堆积成晶体。
金属晶体中金属原子的紧密堆积是有一定规律的。
【展示】金属晶体的原子平面堆积模型(a)非密置层(b)密置层【设问】哪种排列方式圆球周围剩余空隙最小?【投影并讲解】金属晶体中离子是以紧密堆积的形式存在的. 下面的刚性球模型来讨论堆积方式.在一个层中,最紧密的堆积方式是,一个球与周围 6 个球相切,在中心的周围形成6 个凹位,将其算为第一层.第二层: 对第一层来讲最紧密的堆积方式是将球对准1, 3, 5 位(若对准2, 4, 6 位, 其情形是一样的).关键是第三层, 对第一、二层来说, 可以有两种最紧密的堆积方式: 第一种是将球对准第一层的球, 于是每两层形成一个周期,即ABAB 堆积方式,形成六方紧密堆积, 配位数12 (同层6, 上下各3). 此种六方紧密堆积的前视图:另一种是将球对准第一层的2, 4, 6 位, 不同于AB 两层的位置,这是 C 层. 第四层再排A, 于是形成ABCABC 三层一个周期. 得到面心立方堆积, 配位数12.这两种堆积都是最紧密堆积, 空间利用率为 74.05%.还有一种空间利用率稍低的堆积方式, 立方体心堆积: 立方体 8 个顶点上的球互不相切, 但均与体心位置上的球相切. 配位数 8, 空间利用率为 68.02%【板书】2.金属晶体的常见的三种堆积方式:(1)六方堆积. 如镁、锌、钛等(2) )面心立方堆积。