山东省德州九中20182019学年八年级上期中数学试卷
2018-2019年第一学期初二年期中考试数学试题及答案

2018-2019年第一学期初二年期中考试数 学 试 题(满分:150分;考试时间:120分钟 )题号一 二三总分得分 1~7 8~17181920212223242526一、选择题(每小题3分,共21分) 1、 实数6的相反数是().A. 3-B. 6C. 6-D. 6-2、下列计算正确的是( )A .236a a a =÷B .229)3(x x =-C .632a a a =⋅D .923)(a a =3、 在实数0、3、6-、35、π、723、14.3中无理数的个数是( )个.A .1 B.2 C.3 D.4 4、下列变形是分解因式的是( )A .6x 2y 2=3xy ·2xy B .a 2-4ab+4b 2=(a -2b)2C .(x+2)(x+1)=x 2+3x+2 D .x 2-9-6x=(x+3)(x -3)-6x 5、如图,在下列条件中,不能证明ABD ∆≌ACD ∆的是( )A. AC AB CD BD ==,B. DC BD ADC ADB =∠=∠,C. CAD BAD C B ∠=∠∠=∠,D. CD BD C B =∠=∠, 6、若))(3(152n x x mx x ++=-+,则m 的值为( )A .-2 B. 2 C.5 D.-5 7、已知,则的值为( )A . B. 8 C. D.6二、填空题(每小题4分,共40分) 8、9的算术平方根是 . 9、比较大小: 310.10、因式分解:ax+ay= . 11.计算:x x x 2)48(2÷-= .12.已知ABC ∆≌DEF ∆,︒=∠50A ,︒=∠60B ,则F ∠= 。
13、计算:光速约为3×108米/秒,太阳光射到地球上的时间约为5×210秒,则地球与太阳的距离是 米.14、命题:全等三角形的对应边相等,它的条件是 结论是 ,它是 命题(填“真”或“假”)15、已知m 6x =,3n x =,则2m n x -的值为 . 16.当整数=k 多项式42++kx x 恰好是另一个多项式的平方.17、观察 给出一列式子:y x 2,2421y x -,3641y x ,4881y x -,……,根据其蕴含的规律可知这一列式子中的第8个式子是 ,第n 个式子是 三、解答题(共89分)18.计算:(每题5分,共10分) (1)41227163⋅-+ (2) ()232x x x ÷-⋅19、分解因式:(每题5分,共10分)(1)a a 1823- (2)xy y x 4)(2-+20如图,已知DBC ACB DCB ABC ∠=∠∠=∠,, 求证:DC AB = (8分)21(8分)先化简,再求值:y y x y x y y x y x ÷-++-+24)2()2)(2( ,其中21-=x ,2=y .22、(9分)先因式分解,再求值:2x(a-2)-y(2-a),其中a=0.5,x=1.5,y=-223、(9分)如图,在长方形ABCD 中,E 、F 分别在AD 、CD 上,BE ⊥EF,且BE=EF,若AE=5cm ,长方形ABCD 的周长为40cm ,(1)求证:△ABE ≌△DEF (2)求AB 的长AEF D CB24、(9分)将大小不同的两个正方形按如图所示那样拼接起来,连结BD 、BF 、DF ,已知正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,且a <b . (1)(4分)填空:BE ×DG = (用含a 、b 的代数式表示);(2)(5分)当正方形ABCD 的边长a 保持不变..,而正方形CEFG 的边长b 不断增大时,△BDF 的面积会发生改变吗?请说明理由.25.(13分)如图,一个开口的长方体盒子,是从一块边长为a 的正方形的钢板的每个角落剪掉一个边长为b 的正方形后,再把它的边折起来做成的.(1)请用代数式分别表示图中剩余部分的面积及s 1、s 5的面积.(2)利用剩余部分的图形能否来说明()()b a b a b a 22422-+=-的正确性,如果能,请选择适当的方法加以说明.A CB D GF E a b a b(3)设cm900cm,求盒子的表面积(不 ,底面s5的面积为2a60含盖)和体积.26、(13分)如图,已知△ABC中,∠B=∠C,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C 点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?数学试题参考答案一.选择题:本大题共7小题,每小题3分,共21分.1. C 2. B 3. C 4. B 5. D 6. A 7. C二.填空题:本大题共10小题,每小题4分,共40分.8. 3 9. < 10. a(x+y) 11. 24-x12. 70013. 11105.1⨯ 14、两个三角形全等;它们的对应边相等;真15. 12 16. 4± 17. —1281x 16y 8, (-21)n-1x 2n y n三、解答题(共89分) 18.(1)解:原式=21234⨯-+ …………………… (3分) =6 ……………………(5分)(2) 解:原式=()238xxx ÷-⋅ …………………… (3分)=248x x ÷- …………………… (4分) =28x - …(5分)19、解:(1)原式=)9(22-a a ……2分 (2)原式=xy y xy x 4222-++ … 2分 =)3)(3(2-+a a a …… 5分 =222y xy x +- ………… 3分 =2)(y x - ……………… 5分 20、中与在DCB ABC ∆∆∵⎪⎩⎪⎨⎧∠∠∠∠(已知)=(公共边)=(已知)=DCB ACB CB BC DCB ABC ……………∠……… 5分∴ABC ∆≌DCB ∆(A.S.A ) …………………… 7分 ∴AB=DC (全等三角形的对应边相等)……………… 8分21.解:原式=2222424x y xy y x -++- ……………………………………… 4分 =xy 2 ………………………………………………………………… 5分当21-=x ,2=y 时,原式=22212-=⨯⎪⎭⎫⎝⎛-⨯. …………………… 8分22、解:原式= 2x(a-2)+y(a-2)…………………… (3分) =(a-2)(2x+y) …………………… (2分)当 a=0.5,x=1.5,y=-2时,原式=(0.5-2)×(2×1.5+(-2)) …………………… 7分=-1.5 …………………… 9分23、解:(1) 证明:在长方形ABCD 中,∠A=900=∠D ……………………1分 ∵BE ⊥EF ∴∠BEF=900即∠AEB+∠DEF=900,又∠ABE+∠AEB=900∴∠ABE=∠DEF ……………………3分 ∴△ABE 和△DEF 中,∠A=∠D ,∠ABE=∠DEF ,BE=EF∴△ABE ≌△DEF(AAS) ……………………5分 (2) ∵△ABE ≌△DEF ∴AE=DF=5CM,AB=DE=acm, …………………6分 ∴AD=(5+a)cm …………………7分 又长方形ABCD 的周长为40cm ∴2(5+a+a)=40 解得a=7.5cm=AB …………………9分 24.解:(1)22a b -; …………………………………………… 3分 (2)答:△BDF 的面积不会发生改变. ………………… 4分由图形可得:BEF DFG ABD CEFG ABCD BDF S S S S S S ∆∆∆∆---+=)(21)(2121222b a b a b b a b a +----+= …… 6分222222121212121b ab ab b a b a --+--+=221a = …… 8分∵a 保持不变,∴当正方形ABCD 的边长a 保持不变,而正方形CEFG 的边长b 不断增大时,△BDF 的面积不会发生改变. ……………………………………… 9分25.(1)224b a S -=剩余 …………………… (1分)().2221b ab b a b S -=-⋅=…………………… (2分)()2225442b ab a b a S +-=-=…………………… (3分)(2)能. ………………………………………… (4分),422b a S -=剩余 ()()()()()b a b a b a b b a a S S S S S 2222221352+-=-+-⋅=+++=剩余……………………………………………………(7分)()()b a b a b a 22422-+=-∴.…………………… (8分).(画图再加说明亦可得分)(3),9005=S………………………… (10分)又,60=a .15=∴b ……………………(11分)().302,90022=-∴=-∴b a b a.1350015900,2700154604352222cm b S V cm b a S S =⨯=⋅==⨯-=-==∴剩余表 (12)………………………… (13分) 答:略。
山东省德州市八年级上学期数学期中考试试卷

山东省德州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九下·广东模拟) 如图所示的圆锥体的三视图中,是中心对称图形的是()A . 主视图B . 左视图C . 俯视图D . 以上答案都不对2. (2分) (2018八上·仁寿期中) 命题“垂直于同一条直线的两条直线互相平行”的条件是()A . 垂直B . 两条直线C . 同一条直线D . 两条直线垂直于同一条直线3. (2分)“a<b”的反面应是()A . a≠bB . a>bC . a=bD . a=b或a>b4. (2分) (2019八上·长兴月考) 下列说法不正确的是()A . 三角形的中线角平分线高线都是线段B . 一个三角形的三条中线相交于一点C . 一个三角形的三条角平分线相交于一点D . 一个三角形的三条高线相交于一点5. (2分)(2016·杭州) 已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A . m2+2mn+n2=0B . m2﹣2mn+n2=0C . m2+2mn﹣n2=0D . m2﹣2mn﹣n2=06. (2分)(2017·商河模拟) 二次函数y=﹣x2+1的图像与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A . 点C的坐标是(0,1)B . 线段AB的长为2C . △ABC是等腰直角三角形D . 当x>0时,y随x增大而增大7. (2分)(2020·文成模拟) 如图所示,为A,E在反比例函数y= (x>0)的图象上,点B,D在反比例函数y= (k>0) 的图象上,AB∥DE∥y轴,连结DA并延长交y轴于点C,CD∥x轴,△ABC与△ADE的面积之差为,则k的值为()A . 4B . 5C . 6D . 88. (2分) (2020七下·玄武期末) 如图,△ABC的中线AD、BE相交于点F.若△ABF的面积是4,则四边形FDCE的面积是()A . 4B . 4.5C . 3.5D . 59. (2分)下列数字中既是轴对称图形又是中心对称图形的有几个()A . 1个B . 2个C . 3个D . 4个10. (2分)下列各组的两个图形属于全等图形的是()A .B .C .D .二、填空题 (共10题;共12分)11. (1分) (2020七下·江都期末) △ABC的两条边的长度分别为3和5,若第三条边为偶数,则△ABC的周长为________.12. (2分)命题“如果两个实数相等,那么它们的平方相等”的逆命题是________ ,成立吗________ .13. (1分)(2018·遵义) 如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为________.14. (1分) (2016八上·滨州期中) 如图,正三角形ABC的周长为12cm,DC∥AB,AD⊥CD于D.则CD=________cm.15. (1分) (2016八下·桂阳期末) 在Rt△ABC中,∠C=90°,∠B=30°,AB=16,则AC=________.16. (1分)如图,a∥b,则∠A=________17. (1分) (2020八上·苏州期末) 如图,已知∠ACD=∠BCE,AC=DC,如果要得到△ACB≌△DCE,那么还需要添加的条件是________.(填写一个即可,不得添加辅助线和字母)18. (1分)点O是△ABC内一点,且点O到三边的距离相等,∠A=70°,则∠BOC的度数为________.19. (2分) (2015八下·伊宁期中) 已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是________ cm,面积是________ cm2 .20. (1分) (2019七下·新吴期中) 如图,△ABC 的面积为 12,BD=2DC,AE=2EC,那么阴影部分的面积是________.三、解答题 (共6题;共42分)21. (5分) (2019九上·萧山开学考) 已知在四边形ABCD中,AB=CD,∠BAE=∠DCF,∠AEF=∠EFC,求证:四边形AECF是平行四边形,22. (5分) (2018八上·南昌月考) 如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.23. (5分) (2019八上·重庆月考) 如图所示,在人教版八年级上册数学教材P53的数学活动中有这样一段描述:在四边形ABCD中,若AD=CD,AB=CB,则我们把这种两组邻边分别相等的四边形叫做“筝形”,试猜想筝形的角.对角线有什么性质?然后选择其中一条性质用全等三角形的知识证明你的猜想.24. (6分) (2018七下·苏州期中) 已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连结AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是________°;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)25. (6分) (2020八下·铁东期中) 如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,若C在格点上,且满足 .(1)在图中画出符合条件的;(2)若于点D,则BD的长为________.26. (15分) (2019八上·泰州月考) 如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共12分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共42分) 21-1、22-1、23-1、24-1、24-2、25-1、25-2、26-1、26-2、。
2018-2019学年上学期八年级数 学期中考试卷含答案

2018-2019学年八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.83.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.134.(3分)在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是()A.(﹣3,4)B.(4,3)C.(﹣3,﹣4)D.(3,﹣4)5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得AB=5cm,AC=4cm,BC=7cm,则EF长为()A.4cm B.5cm C.6cm D.7cm6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长是()A.3 B.4 C.5 D.67.(3分)已知△ABC中,AB=5,AC=7,BC=a,则a的取值范围是()A.1<a<6 B.5<a<7 C.2<a<12 D.10<a<148.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对9.(3分)如图,AC=DB,CE=BF,则添加一个条件能使△ACF≌△DBE,则这个条件不能是()A.AF=DE B.∠A=∠D C.∠C=∠B D.AC∥BD10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°二、填空题(每题4分,共24分)11.(4分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带去.12.(4分)在△ABC中,∠A=∠B=∠C,则△ABC是三角形.13.(4分)如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=.14.(4分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.15.(4分)轴对称图形对应点所连线段被对称轴.16.(4分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为°.三、解答题(每题6分,共18分)17.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC ≌△DEF.18.(6分)如图,A、B两村庄在公路m的同侧,现需要在公路旁建立公交站,方便村民出行,使公交站到两村的距离相同,试在图中找出公交站的位置(尺规作图,不写作法,但要保留作图痕迹).19.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东80°方向,求∠ACB的度数.四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.22.(7分)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm两部分,求边AC和AB的长.(提示:设CD=x cm)五、解答题(每题9分,共27分)23.(9分)如图,△ABC中,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD、BE相交于点F,DF=DC.(1)求证:△BDF≌△ADC;(2)求∠C的度数.24.(9分)如图,AB⊥BD于B,ED⊥BD于D,AC=CE,AB=CD=6,DE=4.(1)求证:AC⊥CE;(2)求△ACE的面积.25.(9分)如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,(1.求证:(1)EC=BF(2)EC⊥BF(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1),结论(2)(只回答不写过程).参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 【解答】解:A、4+3>5,能组成三角形;B、6+4=10,不能组成三角形;C、1+1=2<3,不能组成三角形;D、3+4=7<9,不能组成三角形;故选:A.2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.8【解答】解:设这个多边形的边数为n,则(n﹣2)180°=540°,解得n=5,故选:A.3.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.13【解答】解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选:B.4.(3分)在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是()A.(﹣3,4)B.(4,3)C.(﹣3,﹣4)D.(3,﹣4)【解答】解:点P(3,4)关于x轴对称的点的坐标是(3,﹣4),故选:D.5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得AB=5cm,AC=4cm,BC=7cm,则EF长为()A.4cm B.5cm C.6cm D.7cm【解答】解:∵△ABC≌△DEF,∴EF=BC=7cm,故选:D.6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长是()A.3 B.4 C.5 D.6【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9﹣5=4,∴DE=4,故选:B.7.(3分)已知△ABC中,AB=5,AC=7,BC=a,则a的取值范围是()A.1<a<6 B.5<a<7 C.2<a<12 D.10<a<14【解答】解:∵△ABC中,AB=5,AC=7,BC=a,∴7﹣5<a<7+5,即2<a<12.故选:C.8.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对【解答】解:如图,全等的三角形有:△ABE≌△ACD,△BDO≌△CEO,△BCD≌△CBE,共三对.故选:B.9.(3分)如图,AC=DB,CE=BF,则添加一个条件能使△ACF≌△DBE,则这个条件不能是()A.AF=DE B.∠A=∠D C.∠C=∠B D.AC∥BD【解答】解:这个条件不能是B;理由如下:在△ACF与△DBE中,已经有条件:AC=DB,CE=BF,进而得出CF=BE,∵有两边且其中一边的对角对应相等的两个三角形不一定全等,∴这个条件不能是B,故选:B.10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°【解答】解:∵AB=DC,AD=BC,∴四边形ABCD为平行四边形,∴∠ADE=∠CBF,∵BF=DE,∴△ADE≌△CBF,∴∠BCF=∠DAE,∵∠DAE=180°﹣∠ADB﹣∠AED,∵∠AED=180°﹣∠AEB=60°,∠ADB=30°,∴∠BCF=90°.故选:D.二、填空题(每题4分,共24分)11.(4分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带③去.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合全等三角形的判定方法;第二块,仅保留了原三角形的一部分边,所以此块玻璃也不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故答案为:③.12.(4分)在△ABC中,∠A=∠B=∠C,则△ABC是直角三角形.【解答】解:在△ABC中,∠A+∠B+∠C=180°,∵∠A=∠B=∠C,∴∠C+∠C+∠C=180°,解得∠C=90°,所以,△ABC是直角三角形.故答案为:直角.13.(4分)如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如图,∠A+∠D=∠1,∠B+∠E=∠2,∵∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180°.14.(4分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性.15.(4分)轴对称图形对应点所连线段被对称轴垂直平分.【解答】解:轴对称图形对应点所连线段被对称轴垂直平分.故答案为:垂直平分.16.(4分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为45°.【解答】解:在四边形AODE中,其内角和为360°,∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,又∠DOE=∠BOC=135°,∴∠A=45°.故应填45°.三、解答题(每题6分,共18分)17.(6分)已知:如图,A、C、F、D在同一直线上,A F=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).18.(6分)如图,A、B两村庄在公路m的同侧,现需要在公路旁建立公交站,方便村民出行,使公交站到两村的距离相同,试在图中找出公交站的位置(尺规作图,不写作法,但要保留作图痕迹).【解答】解:如图所示,点C即为公交车的位置.19.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东80°方向,求∠ACB的度数.【解答】解:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠BAD=45°,∴∠ABE=∠BAD=45°,∵∠EBC=80°,∴∠ABC=80°﹣45°=35°,∵∠BAC=∠BAD+∠DAC=45°+30°=75°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣75°﹣35°=70°.四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【解答】解:(1)如图所示:△ABC的面积:×3×5=7.5;(2)如图所示:(3)A1(1,5),B1(1,0),C1(4,3).21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.【解答】解:∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,∴∠DAE=∠CAB=(90°﹣∠B),∵DE垂直平分AB,∴AD=BD,∴∠DAE=∠B,∴∠DAE=∠CAB=(90°﹣∠B )=∠B ,∴3∠B=90°,∴∠B=30°.答:若DE 垂直平分AB ,∠B 的度数为30°.22.(7分)如图,在△ABC 中(AC >AB ),AC=2BC ,BC 边上的中线AD 把△ABC 的周长分成60cm 和40cm 两部分,求边AC 和AB 的长.(提示:设CD=x cm )【解答】解:∵AD 是BC 边上的中线,AC=2BC ,∴BD=CD ,设BD=CD=x ,AB=y ,则AC=4x ,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8, y=52,即AC=4x=32,AB=52,BC=2x=16, 此时不符合三角形三边关系定理;综合上述:AC=48cm ,AB=28cm .五、解答题(每题9分,共27分)23.(9分)如图,△ABC 中,∠BAC=75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 、BE 相交于点F ,DF=DC .(1)求证:△BDF ≌△ADC ;(2)求∠C 的度数.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠AEF=90°,∵∠AFE+∠CAD+∠AEF=180°,∠FBD+∠BFD+∠BDA=180°,∠AFE=∠BFD,∴∠FBD=∠CAD,在△BDF和△ADC中,∴△BDF≌△ADC(AAS),∴BF=AC.(2)∵△BDF≌△ADC,∴DA=DB,∵∠ADB=∠ADC=90°,∴∠BAD=45°,∵∠BAC=75°,∴∠DAC=75°﹣45°=30°,∴∠C=90°﹣30°=60°.24.(9分)如图,AB⊥BD于B,ED⊥BD于D,AC=CE,AB=CD=6,DE=4.(1)求证:AC⊥CE;(2)求△ACE的面积.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°.在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌Rt△CDE(HL).∴∠A=∠DCE.∵∠A+∠ACB=90°,∴∠DCE+∠ACB=90°.∵∠ACB+∠ACE+∠DCE=180°∴∠ACE=90°,∴AC⊥CE,(2)在Rt△CDE中,CE===2,∴S△ACE=××2=26.25.(9分)如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,(1.求证:(1)EC=BF(2)EC⊥BF(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1)成立,结论(2)不成立(只回答不写过程).【解答】证明:(1)∵AE⊥AB,AC⊥AF,∴∠BAE=∠CAF=90°,∴∠CAE=∠BAF,在△CAE与△BAF中,,∴△CAE≌△BAF,∴CE=BF;(2)如图,设AC交BF于O.∵△CAE≌△BAF,∴∠AFO=∠OCM,∵∠AOF=∠COM,∴∠OMC=∠OAF=90°,∴CE⊥BF.(3)条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则结论(1)成立,结论(2)不成立.理由:同法可证△CAE≌△BAF,可得CE=BF,∠CMO=∠FAO=m°,∴结论(1)成立,结论(2)不成立.故答案为成立,不成立.。
山东省德州市八年级上学期数学期中考试试卷

山东省德州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2018九上·翁牛特旗期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (1分)如图所示,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A . 60°B . 70°C . 80°D . 90°3. (1分) (2018八上·桥东期中) 如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,连接CF,则下列结论:①BF=AC;②∠FCD=45°;③若BF=2EC,则△FDC周长等于AB的长;其中正确的有()A . 0个B . 1个C . 2个D . 3个4. (1分)在直角坐标系中,点M(1,2)关于y轴对称的点的坐标为()A . (1,-2)B . (2,-1)C . (1,2)D . (-1,2)5. (1分)如果三角形的两边长分别是3和4,那么连接这个三角形三边中点所得到的三角形周长可能是()A . 4.5B . 4C . 3.5D . 86. (1分)如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为()A . 45°B . 50°C . 60°D . 65°7. (1分)如图,△ABC中,点D为BC上一点,且AB=AC=CD ,则图中∠1和∠2的关系是()A . ∠2=2∠1B . ∠1+2∠2=90°C . 2∠1+3∠2=180°D . 3∠1+2∠2=180°8. (1分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A . 两点之间线段最短B . 长方形的对称性C . 长方形的四个角都是直角D . 三角形的稳定性9. (1分)如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为()A . πB . πC . πD . π10. (1分) (2018九上·港南期中) 如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC 到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH= BF;②∠CHF=45°;③GH= BC;④DH2=HE•HB.A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共10分)11. (1分) (2018八上·长兴月考) ①圆,②正方形,③平行四边形,④等腰三角形,⑤直角三角形;在这五个图形中。
2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc

2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。
山东省德州市八年级上学期数学期中考试试卷

山东省德州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019八下·潍城期末) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .2. (1分) (2018八上·重庆期中) 下列各数是无理数的为()A .B . 0.5C . ﹣3D .3. (1分) (2016七下·青山期中) 下列各式正确的是()A . =±3B . =±4C . + =0D . ﹣ =14. (1分) (2019八下·闽侯期中) 下列各组数中不能作为直角三角形的三边长的是()A . ,,B . 6,8,10C . 7,24,25D . ,3,55. (1分) (2020八上·宜兴期中) 如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为()A .B .C . 1D .6. (1分) (2016七上·嘉兴期中) 如图,数轴上的A,B,C,D四点所表示的数分别为a、b、c、d,且O 为原点.根据图中各点位置,判断|a﹣c|之值与下列何者不同?()A . |a|+|b|+|c|B . |a﹣b|+|c﹣b|C . |a﹣d|﹣|d﹣c|D . |a|+|d|﹣|c﹣d|7. (1分)如图.在▱ABCD中,AB=6、AD=9,∠BAD的平分线交BC于点E,DC的延长线于点F, BG⊥AE,垂足为G,若BG=4,则△CEF的面积是()A . 2B .C . 3D . 48. (1分)|a-|+(b+1)2=0,则ab的值是()A . -B .C .D .9. (1分) (2018九上·运城月考) 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=2018,则AD=()A . 1009B . 2018C . 1009D . 201810. (1分) (2019八下·余杭期末) 如图,在正方形ABCD中,点E是边BC上的一个动点(不与点B,C重合),AE的垂直平分线分别交AB,CD于点G,F.若CF=6DF,则BE:EC的值为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2018七下·中山期末) 如果x2=a,那么x叫做a的平方根.由此可知,4的平方根是________.12. (1分) (2022七上·滨江期末) 由四舍五入法,将数0.6942精确到十分位,所得的近似值是________.13. (1分) (2019八下·灯塔期中) 如图,在△ABC中,∠ABC=110°,若DE、FG分别垂直平分AB、BC,那么∠EBF的度数为 ________14. (1分)若x2=20162 ,则x=________.15. (1分) (2017八上·濮阳期中) 如图所示,在△ABC中,D、E分别为BC、AD的中点,且S△ABC=4,则S阴影=________.16. (1分) (2016八上·顺义期末) 在数学实践课上,老师给同学们布置了如下任务:为美化校园环境,计划在学校内某处空地,用30平方米的草皮铺设一块等腰三角形绿地,使等腰三角形绿地的一边长为10米,请你给出设计方案.同学们开始思考,交流,一致认为应先通过画图、计算,求出等腰三角形绿地的另两边的长.请你也通过画图、计算,求出这个等腰三角形绿地的另两边的长分别为________.17. (1分) (2018八上·深圳期中) 如图,长方体的长为,宽为,高为,点离点的距离为,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是________。
2018-2019学年第一学期期中考试八年级数学试卷参考答案

∴∠CBE= (180°-150°)=30°-
∴=30°.…………………………………………………………………………………………12分
20.由题知:点P在第四象限.
∴ 解得a<- ……………………………………………………………………………7分
21.(1)证明:∵∠ADE=∠2+∠BDE=∠1Βιβλιοθήκη ∠ACE∴∠BDE=∠ACE
又∵∠A=∠B,AE=BE
∴△ACE≌△BDE,∴AC=BD.………………………………………………………………………5分
2018--2019学年第一学期期中考试
八年级数学试题参考答案
一、选择题:1.D;2.C;3.A;4.B;5.D;6.A;7.C;8.D;9.B;10.B.
二、填空题:11.10;12.0;13.64º;14.3;15.(4,-4);16.7.
三、解答题:
17.略.…………………………………………………………………………………………………6分
18.由题知:∠ABD=2∠DBE=56º
∴∠BAC=180º-56º-70º=54º………………………………………………………………………6分
19.(1)略;………………………………………………………………………………………………4分
(2)A1(8,0),B1(6,-2),C1(5,2)…………………………………………………………………7分
(2)由(1)知:△ACE≌△BDE,∴CE=DE
∴∠C=∠CDE= (180º-40º)=70º
∴∠BDE=70º……………………………………………………………………………………………8分
22.(1)易得∠ADE=∠CDF=30º,
2018-2019学年八年级数学上学期期中卷2(山东)(考试版)

C.1 D.–1第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若正多边形的一个外角是40°,则这个正多边形的边数是__________.14.如图,已知△ABC≌△BAD,若∠DAC=20°,∠C=88°,则∠DBA=__________度.15.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为__________.16.在△ABC中,∠A=45°,∠B=30°,AD为△ABC的中线,则∠ADC=__________.17.如图,在△ABC中,AE是∠BAC的外角的平分线,D是AE上任意一点,则AB+AC__________DB+DC.(用“>”、“<”、“=”号连接)18.如图,在△ABC中,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,依此类推….已知∠A=α,则∠A n的度数为__________(用含n、α的代数式表示).三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.20.(本小题满分6分)如图,在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的平分线,DF∥AB交AE的延长线于点F,求DF的长.21.(本小题满分6分)如图所示,已知△ABC为等边三角形,点D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE是等边三角形.22.(本小题满分8分)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在如图给出的图中画出4个这样的△DEF.(每个3×3正方形格点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)23.(本小题满分8分)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)如果AB=8,AC=6,求AE、BE的长.数学试题第3页(共6页)数学试题第4页(共6页)AE⊥AB,AF⊥AC,AE=AB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018—2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,共36分)1。
下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A.3cm,4cm,8cm B。
8cm,7cm,15cmC。
5cm,5cm,11cmD.13cm,12cm,20cm2.下列图形中,不是轴对称图形的是( )A. B.ﻩC.D.3。
将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠α的度数为()A.75°ﻩ B.105°ﻩC.135°ﻩD.165°4。
用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A。
SSSﻩB.SASﻩC。
ASAﻩD.AAS5.如图,已知EB=FC,∠EBA=∠FCD,下列哪个条件不能判定△ABE≌△DCF( )A.∠E=∠FﻩB.∠A=∠DﻩC.AE=DF D.AC=DB6.如图OP平分∠AOB,PC⊥OA于C,D在OB上,PC=3,则PD的大小关系是()A。
PD≥3ﻩ B.PD=3 C.PD≤3 D.不能确定7.如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD 的周长是()A.6ﻩ B.8ﻩC.10 D。
无法确定8.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A.30°B.45°ﻩC。
60° D.75°9。
如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A。
90°ﻩB.135°C。
150°ﻩD.180°10.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A。
140米 B.150米C.160米ﻩD。
240米11.下列说法:①关于某条直线对称的两个三角形是全等三角形②两个全等的三角形关于某条直线对称③到某条直线距离相等的两个点关于这条直线对称④如果图形甲和图形乙关于某条直线对称,则图形甲是轴对称图形其中,正确说法个数是( )A.1ﻩB.2 C。
3 D。
412。
如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A.5个ﻩ B.4个ﻩC。
3个D。
2个二、填空题(本大题共6小题,共18.0分)13.已知等腰三角形的两个内角之和为100°,顶角度数为.14.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,则∠BFE=.15.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC= .16.如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.17。
如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A3= 。
18.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.三、解答题(本大题共7小题,共68.0分)19.作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.20.如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是几边形.21。
已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1(),C1( );(2)直接写出△ABC的面积为;(3)在x轴上画点P,使PA+PC最小.22。
如图,小明在A处看见前面山上有个气象站,仰角为15°,当笔直向山行4千米时,小明看气象站的仰角为30°.你能算处这个气象站离地面的高度CD吗?是多少?23.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.24.如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:(1)△CBE≌△CDF;(2)AB+DF=AF.25。
如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD。
(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变。
①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.ﻬ参考答案与试题解析一.选择题(共12小题)1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A.3cm,4cm,8cmﻩB。
8cm,7cm,15cmC.5cm,5cm,11cmﻩD。
13cm,12cm,20cm【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4〈8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5〈11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选:D.2。
下列图形中,不是轴对称图形的是()A。
ﻩB。
C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可。
【解答】解:A、不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:A。
3.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠α的度数为( )A.75°B。
105°ﻩC.135°D.165°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可。
【解答】解:由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选:D.4.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A.SSSﻩB.SASﻩC。
ASA D.AAS【分析】由作法可知,两三角形的三条边对应相等,所以利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:由作法易得OD=O′D',OC=0′C',CD=C′D’,那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选:A.5.如图,已知EB=FC,∠EBA=∠FCD,下列哪个条件不能判定△ABE≌△DCF()A.∠E=∠Fﻩ B.∠A=∠DﻩC.AE=DFﻩD。
AC=DB【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、可利用ASA判定△ABE≌△DCF,故此选项不合题意;B、可利用AAS判定△ABE≌△DCF,故此选项不合题意;C、不能判定△ABE≌△DCF,故此选项符合题意;D、可利用SAS判定△ABE≌△DCF,故此选项不合题意;故选:C.6.如图OP平分∠AOB,PC⊥OA于C,D在OB上,PC=3,则PD的大小关系是()A.PD≥3ﻩB.PD=3ﻩC。
PD≤3ﻩ D.不能确定【分析】过点P作PE⊥OB于E,根据角平分线上的点到角的两边距离相等可得PE=PC,再根据垂线段最短解答.【解答】解:如图,过点P作PE⊥OB于E,∵OP平分∠AOB,PC⊥OA,∴PE=PC=3,∵D在OB上,∴PD≥PE,∴PD≥3.故选:A.7.如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是()A.6 B。
8ﻩC.10 D.无法确定【分析】垂直平分线可确定两条边相等,然后再利用线段之间的转化进行求解。
【解答】解:∵DE是AC的垂直平分线,∴AD=DC,△BCD的周长=BC+BD+DC=BC+BD+AD=10故选:C.8。
如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A.30°ﻩB。
45°C.60° D.75°【分析】根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠BCD,然后根据∠ACD=∠ABC﹣∠BCD计算即可得解.【解答】解:∵AB=AC,∠A=30°,∴∠ACB=∠ABC=(180°﹣∠A)=(180°﹣30°)=75°,∵以C为圆心,BC的长为半径圆弧,交AC于点D,∴BC=CD,∴∠BCD=180°﹣2∠ACB=180°﹣2×75°=30°,∴∠ACD=∠ABC﹣∠BCD=75°﹣30°=45°.故选:B。
9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A.90° B.135°C。
150° D.180°【分析】标注字母,利用“边角边”判断出△ABC和△DEA全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.10.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )A。