初一数学讲义(学生版整理)

合集下载

七年级数学代数式学生讲义

七年级数学代数式学生讲义

第二章 代数式2.1 字母表示数和列代数式【本讲主要内容】一. 教学内容:用字母表示数、列代数式 二. 重点、难点:1. 重点:用字母表示数,代数式的意义,列代数式。

2. 难点:熟练地用字母表示数,列代数式。

三. 教学知识要点:1. 用字母表示数,不要使字母表示的数的范围缩小,一个字母可表示任何有理数。

2. 在同一个问题中,不同的量必须用不同的字母表示。

3. 字母与字母相乘,“乘号”可省略,数字与字母相乘,要把数字写在字母前面(如a ×3必须写成3a ,不能写成a3);带分数与字母相乘,一定要把带分数化成假分数。

5. 代数式的意义用运算符号——加、减、乘、除、乘方、开方,把数字与字母联结而成的式子叫代数式。

说明:(1)单独的一个数或字母,虽没涉及运算,但可以看作是该数或字母乘以(或除以)1,规定它们也是代数式(如15,l ,t ,0……)。

(2)正确列出代数式的关键为:抓住关键词语的意义,理清它们之间的数量关系,弄清运算顺序和括号的使用方法。

(3)代数式中不含“=”号或“>、<、≠”号等表示相等关系或不等关系的符号。

四. 考点分析 ㈠用字母表示数用字母表示数可以简明地表达现实中浩繁的数量间的关系,表达数的各种运算定律、性质和法则。

如用字母a 、b 、c 表示三个数,则加法结合律可表示为:a+b+c=a+(b+c )=(a+b )+c.在用字母表示数时,应注意:(1)同一个问题中的相同量要用同一个字母表示,不同量必须用不同字母表示.同一个字母在不同问题中的意义也是不同的.如在表示长方形的面积公式时,用S 表示面积,a 表示长方形的长,b 表示长方形的宽,则有S=ab 。

在这里,S 、a 、b 分别表示不同的量,同样是字母a ,在不同的问题中可表示不同的数。

(2)应该遵循规定了的、约定俗成的、沿袭的表示习惯.如:用C 表示周长,用㎝表示厘米…… ㈡代数式1. 代数式的定义 像n-2,3b ,yx,m+3等由运算符号连接的式子都是代数式.单独一个数或一个字母也是代数式. 2. 写代数式(1)数与数相乘用“×”;数与字母,字母与字母相乘用“·”或省略不写;(2)字母与数字相乘,数字因式应放在字母因式之前,带分数与字母相乘,带分数要化为假分数.如34-a 不能写成311- a.(3)代数式中的除号一般用分数线表示.如2a ÷b 应写成ba2.(4)几个字母因数排列时,一般按字母顺序排列.如5a 2c 3b 通常写成5a 2bc3.(5)代数式若是和或差的形式,且结果中又有单位的,应用括号将代数式括起来,后面再带单位.如(2a+3)㎝不能写成2a+3㎝.3. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.【典型例题】例1. 用代数式表示:(1)x 的平方与y 的一半的和 (2)x 与y 的平方的和的2倍 (3)a 与b 的倒数的差的平方(4)两个数的和为100,其中一个数为a ,求两数积 (5)m 与n 的和减去2的相反数 (6)二个连续偶数的积例2. 有若干张边长都是2的三角形纸片,从中取出一些纸片按如图所示的顺序拼接起来,可以组成一个大的平行四边形与一个大的梯形,如果取的纸片数为n ,试用含n 的代数式表示组成的平行四边形或梯形的周长。

七年级数学有理数(学生讲义)

七年级数学有理数(学生讲义)

第一章有理数知识网络结构图知识点1:有理数的基本概念中考要求:有理数 理解有理数的意义会比较有理数的大小数轴 能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系会借助数轴比较有理数的大小相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题知识点总结:正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号. 正数前面的“+”可以省略,注意3与3+表示是同一个正数. 用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -. “相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数. ()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.板块一、基本概念 例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.2、下面关于有理数的说法正确的是( ). A .有理数可分为正有理数和负有理数两大类.B. 正整数集合与负整数集合合在一起就构成整数集合C. 整数和分数统称为有理数D. 正数、负数和零的统称为有理数 板块二、数轴、相反数、倒数、绝对值3、a 和b 是满足ab ≠0的有理数,现有四个命题: ①224a b -+的相反数是224a b -+;②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有( )A. 1个B. 2个C. 3个D. 4个4、一个数的绝对值大于它本身,那么这个数是( )A 、正有理数B 、负有理数C 、零D 、不可能 5、数轴上离开原点2个单位长度的点表示的数是____________; 6、有理数-3,0,20,,,-∣-12∣,-(-5)中,正整数有________个, 非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。

初一数学讲义

初一数学讲义

第一章有理数1.1正数与负数一、预习目标知识与技能:知道正数和负数是怎样产生的;知道什么是正数和负数;描述数0表示的量的意义。

二、重点、难点、疑点及解决办法1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。

2.难点:负数的引入。

3.疑点:负数概念的建立。

三、预习过程设计(一)创设情境,复习导入提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?(二)探索新知,讲授新课为了研究这个问题,我们看两个实例1.在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温,如下:10,3,-10,-2.你能读出它们所表示的温度各是多少吗?(单位℃)2.再看一个例子,中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么意义吗?正数的概念:___________________;负数的概念:_______________________。

注意:0既不是正数也不是负数。

(三)尝试反馈,巩固练习1.所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“-11,4.8,+7.3,0,-2.7,-1 6,16,712,-8.12,-342.自己任意写出6个正数与6个负数分别把它填在相应的大括号里。

正数集合()负数集合()3.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________。

(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?4.(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。

人教版七年级数学上册知识点归纳上课讲义

人教版七年级数学上册知识点归纳上课讲义

1.1正数和负数(1)正数: 大于0的数;负数: 小于0的数;(2)0既不是正数, 也不是负数;(3)在同一个问题中, 分别用正数和负数表示的量具有相反的意义;(4) — a不一定是负数, +a也不一定是正数;(5)自然数: 0和正整数统称为自然数;(6) a>0 a是正数;a>0 a是正数或0 a是非负数;a< 0 a是负数;a< 0 a是负数或0 a是非正数.1.2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式, 这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:第一章有理数正有理数正整数正整数整数有理数零有理数负有理数负整数分数负整数正分数(4)数轴: 规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5) 一般地, 当a是正数时, 则数轴上表示数 a的点在原点的右边, 距离原点点在原点的左边, 距离原点 a个单位长度;(6)两点关于原点对称: 一般地, 设 a是正数, 则在数轴上与原点的距离为a的点有两个, 它们分别在原点的左右, 表示-a和a,我们称这两个点关于原点对称;(7)相反数: 只有符号不同的两个数称为互为相反数;(8) 一般地, a的相反数是一a;特别地, 0的相反数是0;(9)相反数的几何意义: 数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0 ;(即相反数之和为0)a ,b ,(11)a、b互为相反数一1或一1;(即相反数之商为—1)b a(12)a、b互为相反数|a|=|b| ;(即相反数的绝对值相等)(13)绝对值: 一般地, 在数轴上表示数a的点到原点的距离叫做 a的绝对值;([a|R)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;a (a 0)(15)绝对值可表示为: a 0 (a 0)a (a 0)(16) —1 a 0 ;— 1 a 0;a a(17)有理数的比较: 在数轴上表示有理数, 它们从左到右的顺序, 就是从小到大的顺序。

初一数学(秋季)讲义第十三讲:整式的概念

初一数学(秋季)讲义第十三讲:整式的概念

初一数学(秋季)讲义第十三讲:整式的概念一、单项式1、概念:如22xy -,13mn ,-1,它们都是 与 的积,这样的式子叫单项式。

要点诠释:①单独的一个数或一个字母也是单项式,如-2、-a ,b 等;②单项式中不能含有 运算,但可以含有 运算,如22xy -+2,1+a ,a+b 都不是单项式; ③分母不能有字母,如5m ,2m 3+就不是单项式.2st 可以写成12st ,仍是单项式2、单项式的系数:单项式中的 叫做这个单项式的系数.要点诠释:①单独一个字母也有系数,如a 的系数为1,-b 的系数为-1;②系数要写在字母前面,单项式的系数是带分数时,通常写成 ,如:2114x y 写成254x y .3、单项式的次数:一个单项式中,所有字母的 叫做这个单项式的次数. 要点诠释:①没有写指数的字母,实际上其指数是 ,如a ,4abc ,-3a ²b ,计算时不能将其遗漏, ②不能将数字的指数一同计算,如2³bc二、多项式1、概念:几个 的和叫做多项式.2、多项式的项:每个单项式叫做多项式的 ,不含字母的项叫做 ,如2a-3中的-3要点诠释:多项式的每一项包括它前面的 ,如-3ab-5b ²-3的各项为3、 多项式的次数:多项式里次数 的次数,叫做这个多项式的次数, 如-3ab+6b ²-4ac² 的次数为要点诠释:①多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的 . ②一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.4、整式: 与 统称为整式.要点诠释:分母中含有字母的式子一定不是整式.1.指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?22x y +,x -,3a b +,10,61xy +,1x ,217m n ,225x x --,22x x +,7a2. 下列代数式:322332111;;;;2;-232a x y ab x x y x y y x +--++π①②③④⑤⑥,其中是单项式的是______________,是多项式的是_______________.类型二、单项式1.指出下列代数式中的单项式,并写出各单项式的系数和次数.234a b -, a -, 442x , a mn , 223a y π, a-3, 5-3, 82-310tm ⨯, 2x y2. 下列结论正确的是( ).A .没有加减运算的代数式叫做单项式.B .单项式237xy 的系数是3,次数是2.C .单项式m 既没有系数,也没有次数.D .单项式2xy z -的系数是-1,次数是4.类型三、多项式1.多项式24242153x y x y x-+-+,这个多项式的最高次项是什么?一次项的系数是什么?常数项是什么?这是几次几项式?2. 已知多项式32312246753mxxy x y y x y---+--.(1)求多项式各项的系数和次数.(2)如果多项式是七次五项式,求m的值.3. 多项式()34ba x x x b--+-是关于x的二次三项式,求a与b的差的相反数.类型四、整式的应用1 . 用整式填空:(1)某商场将一种商品A按标价的9折出售(即优惠10%)仍可获利10%,若商场商品A的标价为a元,那么该商品的进价为________元(列出式子即可,不用化简).(2)甲商品的进价为1400元,若标价为a元,按标价的9折出售;乙商品的进价是400元,若标价为b元,按标价的8折出售,列式表示两种商品的利润率分别为甲:________ 乙:________2. 如图所示,用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子()A .4 n 枚B .(4n-4)枚C .(4n+4)枚D .n ²枚一.选择题1.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x - 2.对单项式-ab 3c ,下列说法中正确的是( ).A .系数是0,次数是3B .系数是-1,次数是5C .系数是-1,次数是4D .系数是-1,次数是-53.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式4.下列代数式中,不是整式的是( ) A 、23x - B 、745b a - C 、x a 523+ D 、-2005 5.在代数式y y y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .46.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D.5个7.多项式-3x 2+6x 3+1-x 按字母x 的降幂排列的是( ).A .1-x -3x 2+6x 3B .6x 3-x -3x 2+1 C .6x 3-3x 2-x +1 D .6x 3+3x 2+x -1 8.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x 9.对于多项式x 2-2x +18,下列说法正确的是( ).A .它是三次三项式B .它的常数项是18C .它的一次项系数是2D .它的二次项系数是2 10.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式三、填空题11.当a =-1时,34a = ;当x =-3时,多项式-x 3+x 2-1的值等于____________12.b 的311倍的相反数是 ;5除以a 的商加上323的和为 m 与n 的平方和为 ;x 与y 的和的倒数为13.设某数为x ,10减去某数的2倍的差是14.当x =2,y =-1时,代数式||||x xy -的值是15.单项式7532c ab 的系数是_____,次数是____ ;3234y x -的系数是 ,次数是 16.单项式21xy 2z 是_____次单项式;220053xy 是 次单项式17.x+2xy +y 是 次多项式18.多项式:y y x xy x +-+3223534是 次 项式19.y x 342-的一次项系数是 ,常数项是 20.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 , 二次项是 ,常数项是 .22.多项式-6x 2+8y +2的次数是__________,是__________次__________项式.23.多项式x 2y +xy -xy 2-53中的三次项是____________. 24.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中, 单项式有 ,多项式有1.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

七年级上册 数学讲义《第3讲 数轴动点(二)》人教版 初一数学

七年级上册 数学讲义《第3讲  数轴动点(二)》人教版 初一数学

人教版·七年级上册数学讲义第3讲 数轴动点(二)疯狗问题知识导航疯狗问题的难度并不大,特征也很明显,即一个较高的速度动点(疯狗)不断在两低速动点间往返运动,两低速动点相遇时,高速度动点随之停止.在这个运动过程中,我们并不能清晰的分析出这里的运动状态,但可以通过两低速动点相遇所花费的时间来得到高速动点的运动时间,结合其速度求出它的路程.例题1点A 、B 、C 在数轴上表示的数a 、b 、c 满足:()()222240b c ++-=,且多项式32321a x y ax y xy +-+-是五次四项式.若数轴上有三个动点M 、N 、P ,分别从点A 、B 、C 开始同时出发,在数轴上运动,速度分别为每秒1个单位长度、7个单位长度、3个单位长度,其中点P 向左运动,点M 向右运动,点N 先向左运动,遇到点M 后回头再向右运动,遇到点P 后回头向左运动,……,这样直到点P 遇到点M 时三点都停止运动,求点N 所走的路程.练习1已知数轴上的点A 、B 对应的数分别为x 、y ,且()21002000x y ++-=.点P 为数轴上从原点出发的一个动点,速度为30单位长度/秒,若点A 沿数轴向右运动,速度为10单位长度/秒,点B 沿数轴向左运动,速度为20单位长度秒,点A 、B 、P 三点同时开始运动.点P 先向右运动,遇到点B 后立即掉头向左运动,遇到点A 后再立即掉头向右运动……如此往返.当A 、B 两点相距30个单位长度时,点P 立即停止运动,求此时点P 移动的路程为多少个单位长度? 挡板问题到达挡板后停止例题2已知点A 、B 在数轴上表示的数分别为a 、b ,且满足2a -与()290b -互为相反数.(1)a 值为_____,b 值为_____.(2)已知电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B出发,向左匀速运动,速度为每秒3个单位长度,且Q比P先运动2秒,已知在原点O处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动.问电子狗P经过多长时间,有P、Q 两只电子狗相距70个单位长度?练习2数轴上A、B两点对应的数分别为-80、20,一电子蚂蚁P从点A出发,以每秒1个单位长度的速度向右匀速运动,目的地为B点;另一电子蚂蚁Q从点B出发,以每秒4个单位长度的速度向左匀速运动,目的地为A点.(1)运动多长时间后,P、Q两只电子蚂蚁相距20个单位长度?(2)运动多长时间后,P、Q两只电子蚂蚁相距80个单位长度?到达挡板后返回例题3如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足++=.+a b a430(1)求A、B两点之间的距离.(2)若在原点O处放一挡板,一小球甲从点A处以2个单位/秒的速度向左运动;两秒后另一个小球乙从点处以3个单位秒的速度也向左运动,左碰到挡板后(忽略球的大小,可以看作一点)乙球以4个单位/秒的速度向相反的方向运动,设甲球的运动的时间为t(秒).①分别表示甲、乙两小球到原点的距离(用含的式子表示).②求甲、乙两小球到原点的距离相等时,甲球所在位置对应的数.数轴上有A、B、C三点,分别表示有理数-26、-10、20,动点P从A出发,以每秒1个单位的速度向右移动,当P点运动到C点时运动停止设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________.(2)当P点运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回A点.①用含t的代数式表示Q在由A到C过程中对应的数:__________.②当t=__________时,动点P、Q到达同一位置(即相遇).③当PQ=3时,求的值.练习32019~2020学年10月湖北武汉江岸区武汉市七一华源中学初一上学期月考第24题12分已知数轴上的A、B两点分别对应数字a、b,且a、b满足()2-+-=.440a b a(1)直接写出a、b的值.(2)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位长度的速度向点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向正方向运动,点P运动到点C立即返回再沿数轴向左运动.当10PQ=时,求P点对应的数.例题4已知多项式26233---中,多项式的项数为a,多项式的次数为b,常数项为c,且a、25320m n m n nb、c分别是点A、B、C在数轴上对应的数.(1)写出a=_____;b=_____;c=_____.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是1、2、3,(单位/秒),当乙追上甲时,甲、乙继续前行,丙此时以原速向相反方向运动,问甲、乙、丙三个动点分别从A、B、C三点同时出发到乙、丙相距2个单位长度时所经历的时间是多少秒?总结归纳无论是遇到挡板后停止的动点问题,还是遇到挡板后返回的动点问题,其本质都是,在遇到挡板的前后,该动点的运动状态发生了改变.因此,必须以到达终点或碰到挡板的时间为界,分别表示出在不同时间段内动点的位置表达式(含t的代数式),即分段讨论,在此基础上再来研究相关点的距离关系,这样才不会漏解.同学们可以体会挡板问题和一般的动点问题的不同之处,自己归纳易错点和相应解法,这样印象更深刻,能真正理解动点问题的本质以及各题型之间的异同.练习42018~2019学年10月湖北武汉洪山区武汉市卓刀泉中学初一上学期月考第24题12分已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足()2++++-=.动点a b c2410100P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,(1)求a、b、c的值.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.例题52018~2019学年湖北武汉东湖高新区初一上学期期中第24题12分数轴上m,n,q所对应的点分别为点M,点N,点Q.若点Q到点M的距离表示为QM,点N到点Q的距离表示为NQ.我们有QM q m=-.=-,NQ n q(1)点A,点B,点C在数轴上分别对应的数为-4,6,c.且BC CA=,直接写出c的值_____.(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从A,C两点出发向右运动,甲的速度为4个单位每秒,乙的速度为1个单位每秒.求经过几秒,点B与两只蚂蚁的距离和等于7.(3)在(1)(2)的条件下,电子蚂蚁乙运动到点B后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至B点后也以原速返回,到达自己的出发点后又折返向B点运动,当电子蚂蚁乙停止运动时,电子蚂蚁甲随之停止运动,运动时间为多少时,两只蚂蚁相遇.练习52019~2020学年10月湖北武汉武昌区武昌首义中学初一上学期月考第24题12分如图,数轴上点A、C对应的数分别是a、c,且a、c满足()2a c++-=,点B对应的数是-3.410(1)求数a、c.(2)点A、B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间为t秒,在运动过程中,点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,求在此运动过程中,A、B两点同时到达的点在数轴上表示的数是_____(直接写出答案)挑战压轴题2017~2018学年湖北武汉江岸区武汉二中广雅中学初一上学期期中第24题如图,A、B两点在数轴上对应的数分别为-20、40,C点在A、B之间.在A,B、C三点处各放一个档板,M、N两个小球都同时从C处出发,M向数轴负方向运动,N向数轴正方向运动,碰到档板后则向反方向运动,一直如此下去(当N小球第二次碰到B档板时,两球均停止运动)(1)若两个小球的运动速度相同,当M小球第一次碰到A档板时,N小球刚好第二次碰到B档板求C点所对应的数.(2)在(1)的结论下,若M,N小球的运动速度分别为2个单位/秒,3个单位/秒,则N小球前三次碰到档板的时间依次为a,b,c秒钟,设两个球的运动时间为t秒钟.①请直接写出下列时段内小球所对应的数(用含t的代数式表示)当0t a≤≤时,N小球对应的数为_____,当a t b<≤时,N小球对应的数为_____,当b t c<≤时,N小球对应的数为_____.②当M、N两个小球的距离等于30时,求t的值.(3)移走A、B、C三处的挡板,点P从A点出发,以6个单位/秒的速度沿数轴向右运动,同时点Q从B点出发,以4个单位/秒的速度沿数轴向左运动.已知E为AP中点,点F在线段BQ上,且14QF BQ=,问出发多少秒后,点E到点F的距离是点E到原点O的距离的4倍?巩固加油站巩固12019~2020学年12月湖北武汉蔡甸区经济技术开发区第一中学初一上学期月考第24题12分如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴的正方向运动,3秒后,两点相距15个单位长度.已知动点A,B的速度之比为1:4(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A,B两点从原点出发运动3秒时的位置.(2)若A,B两点从(1)中的位置同时按原速度向数轴负方向运动,几秒后,两动点到原点的距离相等?(3)在(2)中若B在A的右侧,A、B两点继续同时开始向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后立即返回向B点运动,遇到B点后又立即返回向点A运动……如此往返,直到点B追上点A时,点C立即停止运动.若点C一直以20单位长度秒的速度匀速运动,那么点C从开始到停止运动,行驶的路程是多少个单位?巩固2数轴上A、B两点表示的有理数为a、b,且()2350a b-++=.小蜗牛甲以1个单位长度秒的速度从点B出发向其左边6个单位长度处的食物爬去,3秒后位于点A的小蜗牛乙收到它的信号,以2个单位长度秒的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D 点相遇,则点D表示的有理数是什么?从出发到此时,小蜗牛甲共用去多少时间?巩固3数轴上A点对应的数是-1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再以同样速度立即返回到A点,共用了4秒钟.(1)求点C对应的数.(2)若小虫甲返回到A点后再做如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位,第3次向右爬行7个单位,第4次向左爬行9个单位……依此规律爬下去,求它第10次爬行后停在点所对应的数.(3)回答下列各问:①若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t秒后,甲、乙两只小虫的距离为_____(用含t的整式表示).②若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B和点C出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位.假设运动t秒后,甲、乙、丙三只小虫对应的点分别是D、E、F,则32DE EF-是定值吗?如果是,请求出这个定值.巩固4如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对于的数分别是a、b、c、d,且214d a-=.(1)那么a=_____,b=_____.(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持23AB AC=.当点C运动到-12时,点A对应的数是多少?。

著名机构七年级数学秋季班讲义乘法公式(学生)

著名机构七年级数学秋季班讲义乘法公式(学生)

第4课时 乘法公式课时目标1. 学会用文字和字母表示平方差公式,知道平方差公式的结构特征.2. 在数的简捷运算、代数式的化简求值及解方程中正确、熟悉地运用平方差公式.3. 学会用文字和字母表示完全平方公式,知道完全平方公式的结构特征.4. 理解平方差公式和完全平方公式中的字母,既可以表示数,又可以表示单项式或多项式等.5. 在运用乘法公式时,逐步树立代换的思想,利用字母的意义,灵活进行乘法运算,如公式的逆用和配方.知识精要一、平方差公式()()__________a b a b +-=注:公式中的 ,a b 既可表示一个数,也可以表示单项式,多项式等代数式. 二、完全平方公式2()__________a b +=2()_______________a b -=推广:2222()222a b c a b c ab ac bc ++=+++++22222()2222a b c d a b c d ab bc cd da +++=+++++++ 三、乘法公式的变形应用 (1)平方差公式的常见变形 ● 位置变化如()()__________a b b a +-= ● 符号变化如()()()()a b a b b a b a ---=--⋅-+⎡⎤⎡⎤⎣⎦⎣⎦22()b a =--22a b -=2222()()()()()a b a b a b a b a b a b ---=-+-=--=-+● 系数变化如()()()()ma mb a b m a b a b +-=+-22()m a b =- (2)完全平方公式的常见变形 ● 符号变化如2222()()2a b a b a ab b --=+=++或 2222()()2a b a b a ab b -+=-=-+ ● 移项变化222()2a b a ab b +=++(1)22___________a b →+=222()2a b a ab b -=-+(2)22____________a b →+=22(1)(2)()()4a b a b ab -=+--=(3)立方和(差)公式:22()()__________a b a ab b +-+=热身练习一.填空题1. 计算:)121)(121(+---a a =_________________2. 计算:11()()33n n x x -+=______________________3. 计算:2211()(________)24x y x y -+=-4. 将多项式21x +加上一个单项式后,使它能成为另一个整式的完全平方,你 添加的这个单项式可以是____________.(只要填一个符合题意的即可)5. 22222()()()_________x y x y x y -+-+=6. 2222(9)(9)(9)x x x -+--_____________= 二.选择题7.下列运算不能用平方差公式的是( ) A.()()a b b a --- B.2222()()m n n m -+ C.(13)(31)a a -+ D.()()a b a b +--8.下列各式的计算中正确的是( )A.22(3)(3)3m n m n m n +-=-B.2(23)(23)29x x x +-=-C.222(2)24x y x xy y +=++D.22(1)21x x x --=++ 9.已知2244(34)169x y A y x --⋅=-,则A 等于( ) A.2234x y - B.2243y x - C. 2234x y -- D. 2234x y +10.在一块直径为a +b 的圆形场上,分别划出一个直径为a ,另一个直径为b 的小的圆形场地上植满花卉,剩余的部分铺设草皮,试求需铺设草的场地面积. (用,,a b π的代数式表示)精解名题1.分组讨论探索:你们能理解下列图形所表达的恒等式? 试写出来,并说出图形的意义(1)a + a = a a + a恒等式__________________________(2)b=a= + + +恒等式__________________________2.计算:(1) 2(1)(1)(1)x x x+-+;(2) (1)(1)x y x y+---(3)21495033⨯3.已知,x y a xy b +==.求:(1)22x y + (2)33y x +4.求证:四个连续整数的积加上1的和,一定是整数的平方.5.用完全平方公式推导“个位数字为5的两位数的平方数”的计算规律.6.某高级中学得到政府投资,进行了校园改造建设,他们的操场原来是长方形,改建后变为正方形,正方形的边长比原来的长方形的长少6米,比原来长方形的宽多了6米,问操场的面积比原来大了还是小了?相差多少平方米?7.将多项式29x x +加上一个整式后,使它能成为另一个整式的完全平方,你有哪些方法,请尽量写出不同的解法.备选例题一.用平方差公式解题1.计算:2432(12)(12)(12)(12)1+++++L2.计算:1)13()13)(13)(13(23242+++++Λ3.计算:)1611)(411)(211(+++4.计算:)120032003)(120032003(2003200320042-+-5.计算:)5423)(5423(++-+-+c b a c b a二.用对称式求值: 1. 已知:0132=++x x ,求37431413++-+x x x x 的值.2. 已知:31142=+x x 求:1484++x x x 的值3.已知:0132=++a a ,求(1)a a 1+; (2)221a a +; (3)331a a +; (4)441aa +方法提炼1. 利用平方差公式分解因式,首先要掌握好公式的特点.即项数--2项,符号--相反,次数--偶数.要熟记1~20的平方数.2. 有些多项式需要先提取公因式,然后再用公式法分解,注意一定要分解到使每个多项式因式都不能再分解为止.3. 分解中易出现的错误是:(1)系数不分解为平方数 (2)分解后的因式不整理巩固练习一、选择题1.下列计算中,运算正确的有几个( ) (1) a 5+a 5=a 10 (2) (a +b )3=a 3+b 3 (3) (-a +b )(-a -b )=a 2-b 2 (4) (a -b )3= -(b -a )3A 、0个B 、1个C 、2个D 、3个 2.下列各式的计算中,正确的是( ) A 、53162() a a a =g B 、(-2a 2)3= -6a 6 C 、-(-a 2)4=a 8 D 、(a 2)3=a 53.计算的结果是( )A 、162aB 、4C 、304aD 、304a - 4.下列各式中,计算错误的是( )A 、(x +1)(x +2)=x 2+3x +2B 、(x -2)(x +3)=x 2+x -6C 、(x +4)(x -2)=x 2+2x -8D 、(x +y -1)(x +y -2)=(x +y )2-3(x +y )-2 5.若))(3(152n x x mx x ++=-+,则m 的值为 ( ) A 、5-B 、5C 、-2D 、26.已知(a +b )2=m ,(a —b )2=n ,则ab 等于( )A 、()n m -21B 、()n m --21C 、()n m -41D 、()n m --417.)12)(12(+-+x x 的计算结果是 ( )A 、142+xB 、 241x -C 、 241x +D 、 142--x8.已知:有理数满足0|4|)4(22=-++n nm ,则22n m 的值为( )A 、±1B 、1C 、 ±2D 、2 9.若N b a b a ++=-22)32()32(,则N 的代数式是( ) A 、 -24ab B 、2ab C 、24ab D 、-12ab 10.下列运算中,正确的是( )A 、()222a b a b +=+ B 、()2222x y x xy y --=++ C 、()()2326x x x +-=- D 、()()22a b a b a b --+=-11.如果一个单项式与3ab -的积为234a bc -,则这个单项式为( )A 、214a cB 、14acC 、294a cD 、94ac12.为了应用平方差公式计算()()c b a c b a -++-,必须先适当变形,下列各变形中,正确的是( )A 、()[]()[]b c a b c a +--+B 、()[]()[]c b a c b a -++-C 、()[]()[]a c b a c b +--+D 、()[]()[]c b a c b a -+--13.在① x 2-(-2)2=(x +2)(x -2);② (2a +b )2=4a 2+b 2;③ (81×10)0=1;④ (m +2)(m -4)=m 2-8中正确的算式有 ( )A 、 1个B 、2个C 、3个D 、 4个 14.已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别 ( ) A 、 4,1 B 、2,23 C 、5,1 D 、 10,2315.(-x -y )2 展开后的结果是( )A 、-x 2-2xy -y 2B 、x 2+2xy +y 2C 、-x 2-2xy +y 2D 、x 2-2xy +y 2二、填空题1.若1,2=-=-c a b a ,则=-+--22)()2(a c c b a . 2.若3,2a b ab +=-=,则22a b += ,()2a b -= .3.已知a a 1-=3,则221aa +的值等于 . 4.如果x 2-kx +9y 2是一个完全平方公式的结果,则常数k = .自我测试一、填空题1.2)(c b a +-= . 2.18a a +=,则221__________________a a+=. 3.22(23)(32)______________a b a b ---=.4.2242(7)49A p q q p ⨯-=-,则代数式A 为_____________________. 5.2222(2)()mn m n +-=_______________________. 6.712×688+144 = . 7... 二.运用乘法公式计算 8.(1)(1)x y x y ++--9.22()()a b c d a b c d ++--+-+10.2111()(2)(2)428x x x -++11.22+-+-+-2()5()()3()x y x y x y x y12.不论a取任何整数值,代数式281a a k-+-的值总是整数的平方,求k的值.补充练习:(根据需要自己选用)测试一:平方差公式1.下列各式中能使用平方差公式的是()A. B.C. D.2.下面计算正确的是()A. 原式=B. 原式=C. 原式=D. 原式=3.的计算结果是()A. B. C. D.4.巧算:5.x, y为正整数,且,你能求出x, y 的值吗?试一试。

【初一数学下册(春季班)讲义】第12讲_利用轴对称进行设计(学生版)A4

【初一数学下册(春季班)讲义】第12讲_利用轴对称进行设计(学生版)A4

高斯七年级下册(春季班)(学生版)最新讲义高斯七年级下册(春季班)辅导讲义学员姓名:刘小米年级:辅导科目:小学思维学科教师:五块石1 上课时间2017-06-25 14:00-16:00授课主题第03讲_利用轴对称进行设计轴对称作图几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.反射问题是轴对称中常出现的一种题型,此类问题实质就是图形的对称变换,部分题目还会涉及光线反射等一些实际的应用折叠问题是轴对称中常出现的一种题型,此类问题的折痕其实就是对称轴,解决方案常运用轴对称图形的“对应边相等、对应角相等”,“对应点的连线被对称轴垂直平分”等性质,辅以动手操作,有针对性地添加辅助线来解决问题。

重难点:轴对称作图问题反射问题,折叠问题知识图谱错题回顾知识精讲三点剖析考点:轴对称作图问题,反射问题,折叠问题易错点:①对称轴是一条直线,②作图需虚线,③折叠前后的对应关系题模一:轴对称的作图问题例1.1.1已知线段AB 和''A B 轴对称,求画出对称轴l .例 1.1.2如图,由四个小正方形组成的田字格中,ABC ∆的顶点都是小正方形的顶点.在田字格上画与ABC ∆成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC ∆本身)共有( )个.A .1B .2C .3D .4题模二:反射问题 例 1.2.1如图,是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出,该球最后落入1号袋,经过反射的次数是( )A .4次B .5次C .6次D .7次例1.2.2在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2次碰到矩形的边时,点P 的坐标为 ;当点P 第6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.B'A'B A CBA题模精讲例 1.2.3如图,正方形ABCD 和正方形DEFG 的边长都是3cm ,点P 从点D 出发,先到点A ,然后沿箭头所指方向运动(经过点D 时不拐弯),那么从出发开始连续运动2012cm 时,它离点_________最近,此时它距该点_________cm .题模三:折叠问题 例1.3.1点D 、E 分别在等边△ABC 的边AB 、BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于点F 、G .若∠ADF=80°,则∠CGE= .例1.3.2如图,已知长方形纸片ABCD,点E,F 分别在边AB,CD 上,连接EF 将∠BEF 对折,点B 落在直线EF 上的点B '处,得折痕EM ,∠AEF 对折,点A 落在直线EF 上的点A '处,得折痕EN ,则图中与∠B 'ME 互余的角是________________________(只需填写三个角)例 1.3.3现有一张正方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四部分(称为一个操作),如图甲(虚线表示折痕).除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中.xy O ABC ABC D E F G。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 和绝对值有关的问题一、 知识结构框图:二、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。

(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。

也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数三、 典型例题例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号 例3.(分类讨论思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.(整体思想)方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个 例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++L例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________.(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___. (4) 满足341>+++x x 的x 的取值范围为 ______ .说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。

第二讲:代数式的化简求值问题一、知识链接1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。

它包括整式、分式、二次根式等内容. 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。

注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。

二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.例2.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。

例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.例4. 已知012=-+a a ,求2007223++a a 的值.例5.(实际应用)A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司,年薪一万元,每年加工龄工资200元;B 公司,半年薪五千元,每半年加工龄工资50元。

从收入的角度考虑,选择哪家公司有利?例6.三个数a 、b 、c 的积为负数,和为正数,且bcbcac ac ab ab c c b b a a x +++++=, 则 123+++cx bx ax 的值是_______ 。

例7.如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…. (1)“17”在射线 ____上, “2008”在射线___________上.(2)若n 为正整数,则射线OA 上数字的排列规律可以用含n 的 代数式表示为__________________________.例8. 将正奇数按下表排成5列:第一列 第二列 第三列 第四列 第五列 第一行 1 3 5 7 第二行 15 13 11 9第三行 17 19 21 23 第四行 31 29 27 25L L L 根据上面规律,2007应在A .125行,3列 B. 125行,2列 C. 251行,2列 D . 251行,5列例9.(2006年嘉兴市)定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为k n 2(其中k 是使kn2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是__________.第三讲:与一元一次方程有关的问题一、典型例题例1.若关于x 的一元一次方程2332x k x k--+=1的解是x=-1,则k 的值是( )26134411 第一次F ② 第二次F ① 第三次F ② …A .27 B .1 C .-1311D .0 例2.若方程3x-5=4和方程0331=--xa 的解相同,则a 的值为多少?例3.(方程与代数式联系)a 、b 、c 、d 为实数,现规定一种新的运算 bc ad d c b a -=.(1)则2121-的值为 ;(2)当185)1(42=-x 时,x = .例4.(方程的思想)如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的( )A .b a a + B .b a b + C .h a b + D .h a h+例5. 小杰到食堂买饭,看到A 、B 两窗口前面排队的人一样多,就站在A 窗口队伍的里面,过了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人。

此时,若小李迅速从A 窗口队伍转移到B 窗口后面重新排队,将比继续在A 窗口排队提前30秒买到饭,求开始时,有多少人排队。

(提示)题中的等量关系为:小李在A 窗口排队所需时间=转移到B 窗口排队所需时间+21课外知识拓展:一、含字母系数方程的解法:思考:b ax =是什么方程?在一元一次方程的标准形式、最简形式中都要求a ≠0,所以b ax =不是一元一次方程 我们把它称为含字母系数的方程。

例6.解方程b ax =不考虑瓶子的厚度.例7.问当a、b满足什么条件时,方程2x+5-a=1-bx:(1)有唯一解;(2)有无数解;(3)无解。

例8.解方程11x x a b ab ab--+-=二、含绝对值的方程解法例9.解下列方程523x-=例10.解方程21513x--=例11.解方程121x x-=-+第四讲:图形的初步认识基本要求:1.如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A.①②③B.②③④C.①③④D.①②④较高要求:2.下图可以沿线折叠成一个带数字的正方体,每三个带数字的面交于正方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是( )A.7 B.8 C.9 D.103.一个正方体的展开图如右图所示,每一个面上都写有一个自然数并且相对两个面所写的两个数之和相等,那么a+b-2c= ()A.40 B.38 C.36 D. 344.下图是某一立方体的侧面展开图,则该立方体是()9.下面是四个立体图形的展开图,则相应的立体图形依次是( )A.正方体、圆柱、三棱柱、圆锥 B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥 D.正方体、圆柱、四棱柱、圆锥13.对右面物体的视图描绘错误的是()1236 4 5c8425baA.B.C.D.(四)新颖题型16. 正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为 .第五讲:线段和角一、知识结构图直线线段直线性质射线线段的比较和画法线段的中点线段性质两点间的距离角角的分类角的比较、度量和画法相关角角平分线平角直角锐角周角钝角余角和补角定义性质同角(或等角)的补角相等同角(或等角)的余角相等二、典型问题:(一)数线段——数角——数三角形问题1、直线上有n个点,可以得到多少条线段?问题2.如图,在∠AOB内部从O点引出两条射线OC、OD,则图中小于平角的角共有()个(A) 3 (B) 4 (C) 5 (D) 6拓展:在∠AOB内部从O点引出n条射线图中小于平角的角共有多少个?(二)与线段中点有关的问题线段的中点定义:文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点图形语言:M几何语言: ∵ M 是线段AB 的中点 ∴ 12AM BM AB ==,22AM BM AB == 典型例题:1.由下列条件一定能得到“P 是线段AB 的中点”的是( )(A )AP=21AB (B )AB =2PB (C )AP =PB (D )AP =PB=21AB2.若点B 在直线AC 上,下列表达式:①AC AB 21=;②AB=BC ;③AC=2AB ;④AB+BC=AC .其中能表示B 是线段AC 的中点的有( ) A .1个 B .2个 C .3个 D .4个3.已知线段MN ,P 是MN 的中点,Q 是PN 的中点,R 是MQ 的中点,那么MR = ______ MN .4.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( )A 2(a-b )B 2a-bC a+bD a-b (三)与角有关的问题1. 已知:一条射线OA ,若从点O 再引两条射线OB 、OC ,使∠AOB=600,∠B OC =200,则∠A OC =____________度(分类讨论)2. A 、O 、B 共线,OM 、ON 分别为∠ AOC 、∠ BOC 的平分线,猜想∠ MON 的度数,试证明你的结论.3.如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF =o∠,求BOD ∠的度数.4.如图,BO 、CO 分别平分∠ABC 和∠ACB , (1)若∠A = 60°,求∠O ;(2)若∠A =100°,∠O 是多少?若∠A =120°,∠O 又是多少? (3)由(1)、(2)你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗? (提示:三角形的内角和等于180°)5.如图,O 是直线AB 上一点,OC 、OD 、OE 是三条射线,则图中互补的角共有( B )对 (A) 2 (B) 3 (C) 4 (D) 5ADBMCNCNMDCBA6.互为余角的两个角 ( )(A )只和位置有关 (B )只和数量有关(C )和位置、数量都有关 (D )和位置、数量都无关7.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( ) A.12(∠1+∠2) B.12∠1 C.12(∠1-∠2) D.12∠2 第六讲:相交线与平行线一、知识框架二、典型例题1.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角; ④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个 2.如图所示,下列说法不正确的是( )A.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段 3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线.DCBAA B1 EF 2 CPDFEDCBAl 3l 2l 1 O34l 3l 2l 112A.1个B.2个C.3个D.4个4.一学员驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同, 这两次拐弯的角度可能是( )A. 第一次向左拐30°第二次向右拐30°B. 第一次向右拐50°第二次向左拐130°C. 第一次向右拐50°第二次向右拐130°D. 第一次向左拐50°第二次向左拐130°5.如图,若AC ⊥BC 于C ,CD ⊥AB 于D ,则下列结论必定成立....的是( ) A. CD>AD B.AC<BC C. BC>BD D. CD<BD6.如图,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠BEF,若∠1=72°,则∠2=______.7.如图,AB ∥EF ∥CD,EG ∥BD,则图中与∠1相等的角(∠1除外)共有( ) •A.6个 B.5个 C.4个 D.3个8.如图,直线l 1、l 2、l 3交于O 点,图中出现了几对对顶角,若n 条直线相交呢? 9. 如图,在44⨯的正方形网格中,321∠∠∠,,的大小关系是_________.10. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.( 方程思想)12.如图,若AB//EF ,∠C= 90°,求x+y-z 度数。

相关文档
最新文档