最新电化学修饰电极(1)
07电化学分析法导论-2015

RT aOx EE ln nF aRe d
0
30
例如一金属棒插入其盐溶液中,在金属与溶液界面 建立起“双电层”,引起位差,即为电极电位。 电极电位的测定:单个电极电位无法测定! 规定氢电极,在任何温度下的电位为零。
电极电位是反映电解质溶液性质的重要参数。
电极电位是个相对值。
31
电极电位的测量
第二种是采用盐桥的装置。 第三种是没有液体接界的情况。
21
化学电池中的电子及电荷流动
化学电池是化学能与电能互相转换的装置:
A) 在Zn、Cu电极及外接导线中,电子作为电荷载体在Zn 片与Cu片间传递. B) 在溶液中,导电由阴、阳离子的迁移来完成. 在左半电池中:Zn2+ → ←SO42在右半电池中:Cu2+ → ←SO42盐桥中:K+→右 左←Cl-
常在无活性物质的溶液中发生
第四 AgCl(s) + e ⇋ Ag(s)+Cl-
AgCl(s) ⇋ Ag+(aq)+Cl-(aq) Ksp
Ag+(aq)+ e ⇋ Ag(s)
第五 IO4-+ 2H++ 2e ⇋ IO3-+ H2O
25
阳极反应:
1. Cu(s) ⇋ Cu2++ 2e 铜电极上Cu→Cu2+
22
C) 电极表面/溶液界面,通过氧化还原反应(半反应)将电子 与离子两个通道结合起来: 阳极:Zn(s) ⇋ Zn2+ + 2e 氧化反应 阴极:Cu2+ + 2e⇋ Cu(s) 还原反应
基于氧化铜修饰电极的葡萄糖电化学检测

基于氧化铜修饰电极的葡萄糖电化学检测随着人们对健康的越来越重视,血糖的检测也越来越受到关注。
而一种常见的血糖检测方法就是电化学检测。
葡萄糖电化学检测是目前常用的一种血糖检测方法,其中,基于氧化铜修饰电极的葡萄糖电化学检测技术因其较高的灵敏度以及抗干扰性,得到了广泛应用。
一、基于氧化铜修饰电极的葡萄糖电化学检测原理在这种技术中,氧化铜被修饰在电极表面上。
当葡萄糖被加入到测试液体中时,它会直接氧化成葡萄糖酸。
在这个氧化过程中,同时生成了电子和离子,这些电子和离子通过氧化铜电极流入电解质中,产生电流信号。
通过检测电流信号大小和变化,就可以计算出葡萄糖浓度。
二、氧化铜修饰电极制备1. 电极制备制备电极的第一步是选择电极材料,最常用的电极材料是玻璃碳电极。
然后,将玻璃碳电极表面涂上一层热塑性聚合物,例如羟乙基甲基丙烯酸甲酯(HEMA)或聚苯乙烯(PS)。
这样做的目的是使电极表面能够更好地粘附上后续加入的氧化铜。
2. 氧化铜修饰将氧化铜添加到适当的溶液中,然后将电极浸泡在该溶液中。
在电极表面形成薄膜后,通过恒定电位或循环伏安法进行电化学处理,使氧化铜与电极表面更好的结合。
通常,使用的电化学电位在0.4V与0.6V之间,电极处理时间约为20分钟至2小时不等。
三、基于氧化铜修饰电极的葡萄糖电化学检测优点1.高灵敏度:基于氧化铜修饰电极的葡萄糖电化学检测技术灵敏度高,能够检测非常低的葡萄糖浓度。
2. 抗干扰性强:在短时间内,可以减少干扰数据,从而提高血糖检测的精确度。
3.操作简便:基于氧化铜修饰电极的葡萄糖电化学检测技术操作简单,非常适合快速检测和家庭自测。
四、结论综合来看,基于氧化铜修饰电极的葡萄糖电化学检测技术在葡萄糖检测领域具有广泛应用前景。
该技术不仅简单易操作,而且功率消耗低,检测结果精确可靠。
随着人们对健康的更高要求以及对快速、精密、便捷的检测方法的需求增加,基于氧化铜修饰电极的葡萄糖电化学检测技术的研究和开发也将继续前进。
化学修饰电极 ppt课件

电子转移速度,化学修饰电PPT极课件 应运而生。
3
一、 Introduction of CMEs
化学修饰电极是在传统电化学电极基础上发展起来的 新研究方向,它是电化学和电分析化学的前沿研究领 域。因此,近四十年来化学修饰电极成为国际上电化 学和分析化学家研究的热点。
化学修饰的问世突破了传统电化学中只局限于研究裸电 极/电解液界面的范围,开创了从化学状态上人为控制电 极表面结构的新领域。
对任何电极反应来说,如果在裸电极上能够合理、有选 择性地、容易地进行,那么修饰是毫无意义和没有必要 的。电极表面的修饰必须改变电极/溶液界面的双电层结 构,使电极的性能(灵敏度、选择性等)有所改善。
PPT课件
5
2、CMEs的创始
化学修饰电极起源于电化学家早期在电极上的化学吸附研 究。
1973年,Lane和Hubbard开辟了改变电极表面结构以控制电 化学反应过程的新概念。
把具有不同尾端基团的多类烯烃化合物化学吸附在电极表 面上,观察到许多有趣现象。并有力说明了吸附在电极表 面上的基团能够发生表面配合反应,并且借改变电极电位 可调制其配合能力,指示了化学修饰电极的萌芽。
J. Phys. Chem. 1973, 77(11): 1401-1410
PPT课件
6
1975年,Miller和 Murray分别报道了化学修饰电极的研 制方法,标志着化学修饰电极的正式问世。
通过研究电极表面修饰剂 发生相关的电化学反应的 电流、电量、电位和电解 时间等参数的关系来定性、 定量的表征修饰剂的电极 过程和性能。
• 循环伏安法 • 计时电流法 • 计时电位法 • 计时库仑法 • 脉冲伏安法 • 交流阻抗法
PPT课件
15
Cyclic voltammograms of SWNT-DHP composite film at different scan rates in blank supporting electrolyte. Scan rates from the innermost to the outermost waves: 50, 100, 200, 300, 500,1000 mV/s.
化学修饰电极应用研究进展

化学修饰电极应用研究进展姚长斌,景丽洁,宫柏艳,张丽梅(吉林化工学院环境化工系,吉林吉林01 )摘要:化学修饰电极(C e)是当前电化学、电分析化学中十分活跃的研究领域,其应用范围十分广泛。
本文着重评述近年来化学修饰电极在生物样品、药物分析、金属离子测定、环境监测及其它方面应用的最新进展。
关键词:化学修饰电极;电化学;电分析化学;应用前言化学修饰电极是通过化学修饰的方法在电极表面进行分子设计,将具有优良化学性质的分子、离子、聚合物固定在电极表面,造成某种微结构,赋予电极某种特定的化学和电化学性质,以便高选择性地进行所期望的反应,在提高选择性和灵敏度方面具有独特的优越性。
利用化学修饰电极表面上的微结构所提供的多种能利用的势场,使待测物进行有效的分离富集,并借控制电极电位,进一步提高选择性,同时把测定方法的灵敏性和修饰剂化学反应的选择性相结合,成为分离、富集和选择性三者合而为一的理想体系。
国内最早开辟这一研究领域的董绍俊[]在994年出版的专著中系统地介绍了化学修饰电极的由来、制备、表征及应用,展望了化学修饰电极的发展前景。
化学修饰电极以其独特的性能正日益引起分析工作者的广泛关注。
近年来,化学修饰电极的出现,不仅推动了电极过程动力学的基本理论研究,而且呈现出多种有用效应。
特别是在分析中的应用研究得到了迅速发展,使其在电化学中形成了一个新的研究领域。
本文着重评述近几年来化学修饰电极在分析中应用的最新进展。
2 化学修饰电极在生物样品分析中的应用近年来,化学修饰电极在生物样品分析中的研究发展极为迅速,应用各种修饰电极对儿茶酚类神经递质的研究报道较多,特别是神经递质的在体测定是目前较活跃的研究领域,微电极由于体积小可以插入单个细胞而成为当前对活体内神经递质的变化跟踪测定的唯一手段。
孙元喜等[]利用聚中性红膜修饰电极同时测定了多巴胺(DA)及肾上腺素(ep),基本上消除了抗坏血酸(AA)对DA及ep测定的干扰。
电化学修饰电极(1)

电化学氧化法是利用电化学氧化作用使反应物在电 极表面生成特定的产物,该产物最终通过吸附、组 装或共价键合等作用修饰电极表面,从而制备化学 修饰电极的一种方法。用该方法制备修饰电极的报 道还不是很多。
基于金与硫强的相互作用,硫基化合物可在金表 面上自发形成单层膜[X(CH2)nSH,n>10],其能够 很好地操控界面上的反应性。这种单层膜通常是 将金电极浸泡在含有毫摩尔硫醇的乙醇溶液中隔 夜后而获得。形成自组装的有机硫化物单层膜( SAMs),由于它在许多科学与技术领域里的潜 在应用,自20世纪80年代末就已经受到广泛的关 注。除了它的在单层膜结构和长程电子转移研究 应用外,还有在化学传感器和生物传感器方面的 应用,以及信息储存装置和平板印刷等中的应用 。
化学修饰电极
化学修饰电极简介 化学修饰电极的制备 常见的化学修饰电极
化学修饰电极(CMES) 化学修饰电极(CMES)简介
化学修饰电极是20世纪70年代中期发展起来的一门新 兴的、也是目前最活跃的电化学和电分析化学的前沿领域。 化学修饰电极是在电极表面进行分子设计,将具有优 良化学性质的分子、离子、聚合物以化学薄膜的形式排列 在电极表面上,将修饰试剂的电化学行为赋予被修饰的电 极表面,从而改变了其表面性质,使电化学电极有较高选 择性、灵敏度或稳定性。以满足许多电分析问题的要求并 构成了新的分析应用以及不同的传感器的基础。 化学修饰电极扩展了电化学的研究领域,目前已应用 于生命、环境、能源、分析、电子以及材料学等诸多方面。 基于微结构的性质,电极上的修饰层可分为三种类型:修 饰单层,修饰均相复层,修饰有粒界的厚层。
碳纳米管(Carbonnano-tubes,CNTs)是 一种结构中空的纳米材料,具有密度小、强度高、 长径比大、比表面积大、高温稳定而不易与金属发 生反应、电导率和热导率高、热膨胀系数低、耐强 酸强碱和高温氧化等特性。 碳纳米管自1991年发现以来,以其独特的管 状几何形状,优异的物理化学性能、力学性能和稳 定结构成为极具应用潜力的一维纳米材料,很适合 于制备纳米尺度的复合材料,在提高复合材料的力 学性能方面已显示出巨大的潜力。
电化学修饰电极(1)

精选课件
4
滴涂法
滴涂法是将溶解在适当溶剂中的聚合物或者纳米材料 滴加或涂覆于电极表面,待溶剂蒸发干固后,生成涂膜 结合在电极表面从而达到化学修饰的目的。 具体方法为: (A)将电极浸入修饰液中,取出后使附着于电极表面的溶 液干固成膜; (B)用微量注射器把一定已知量的修饰液注射到 电极表面,然后于固成膜; (C)电极在修饰液中旋转,使其溶液附着于电极表面,然 后干固成膜 该方法主要用于制备Nafion或者碳纳米管修饰电极。
精选课件
10
S-H键的清除是单层膜形成的关键: RSH+Au↔RS-Au+e- + H+
烷基间的范德华力决定了单层膜的定向。 通过这样的自组装过程形成了结构完美的单层膜 ,碳氢链相互平行,以约30O斜立于电极的表面上 。 如下图:
精选课件
11
这是一个紧 密堆积的无针孔 的膜(表面覆盖 率 约 为 9×10 - 10mol/cm2 ) 并 阻 碍组分向电极表 面的传质。
精选课件
8
电化学氧化法是利用电化学氧化作用使反应物在电 极表面生成特定的产物,该产物最终通过吸附、组 装或共价键合等作用修饰电极表面,从而制备化学 修饰电极的一种方法。用该方法制备修饰电极的报 道还不是很多。
精选课件
9
自组装单层膜
基于金与硫强的相互作用,硫基化合物可在金表 面上自发形成单层膜[X(CH2)nSH,n>10],其能够很 好地操控界面上的反应性。这种单层膜通常是将 金电极浸泡在含有毫摩尔硫醇的乙醇溶液中隔夜 后而获得。形成自组装的有机硫化物单层膜( SAMs),由于它在许多科学与技术领域里的潜在 应用,自20世纪80年代末就已经受到广泛的关注 。除了它的在单层膜结构和长程电子转移研究应 用外,还有在化学传感器和生物传感器方面的应 用,以及信息储存装置和平板印刷等中的应用。
分析化学第九章电化学分析概论(大学课件)

二. 现代电化学分析的特点及发展趋势
时间和空间上体现“快 小”:仪器袖珍化,电极微型化
(1)化学修饰电极(chemically modified electrode) (2)生物电化学传感器(Biosensor) 生命过程的模拟研究,生命过程的氧化还原反应类似电 极上的氧化还原,用电极膜上反应模拟生命过程,可 深 化认识生命过程。 (3)光谱一电化学方法 ( Electrospectrochemistry) (4)超微电极(Ultramicroelectrode) 活体现场检测(无损伤分析 )
(2)液体接界电位与盐桥
在两种不同离子的溶液或两种不同浓度的溶液接触界 面上,存在着微小的电位差,称之为液体接界电位。 液体接界电位产生的原因:各种离子具有不同的迁移速率 而引起。
二、仪器分析方法的分类
Classification of instrument analytical method
光分析法 电化学分析法 仪器分析 质谱分析法
色谱分析法
分析仪器联用技术
热分析法
电化学分析方法的分类
Classification of electrochemical analysis 电导分析法 电位分析法 电化学分析法 电解分析法
(Galvanic cell) 阳极:发生氧化反应的电极(负极); 阴极:发生还原反应的电极(正极); 阳极≠正极 阴极≠负极 电极电位较正的为正极 (Electrolytic cell ) 阳极:发生氧化反应的电极(正极);
阴极:发生还原反应的电极(负极);
阳极=正极 阴极=负极
2.电极电位与液接电位
(5)微型计算机的应用Fra bibliotek30 25 20 15 b a c
I/
电化学方法检测胆固醇的研究进展

第52卷第8期 辽 宁 化 工 Vol.52,No. 8 2023年8月 Liaoning Chemical Industry August,2023收稿日期: 2022-08-21电化学方法检测胆固醇的研究进展飏吕龙,顾婷婷,尚帅,林常瑞(辽宁科技大学 化学工程学院,辽宁 鞍山 114051)摘 要: 随着人类生活质量的提高,胆固醇的检测成为一个重要的研究课题。
电化学方法具有选择性强、检测速度快等优点。
综述了近年来利用电化学方法在有酶和无酶的条件下测定胆固醇含量的电化学原理和最新进展,并对用电化学方法检测胆固醇进行了展望。
关 键 词:胆固醇;有酶;无酶;电化学传感器中图分类号:O657.1 文献标识码: A 文章编号: 1004-0935(2023)08-1193-04胆固醇是一种化学式为C 27H 46O 的环戊烷多氢菲的衍生物。
胆固醇是人体内最普遍存在的化合物,主要存在于大脑的中枢神经组织,另外还存在于肾脏、脾脏、皮肤以及胆汁。
胆固醇能经由多种途径进入身体。
高胆固醇会引起慢性心脏病、高血压、脑血栓等致命的心脑血管病[1-2]。
目前,胆固醇的检测方法有高效液相色谱法[3-4],比色法[5-6]和光谱法[7-8]等,这些检测方法一般存在检测周期长、灵敏度低、选择性、仪器标准化、样品预处理要求高等缺点。
另一方面,电化学方法[9-10]由于具有选择性强、制备方法简单、仪器简单、成本低、操作方便、检测速度快等特点,受到研究者的广泛关注[11]。
电化学检测胆固醇的方法包括包括差分脉冲伏安法(DPV)[12]、安培法[13-14,15-17]、电荷转移(CT)[18]、循环伏安法(CV )[19-22]、线性扫描伏安法 (LSV)[23-24]、电化学发光法(ECL)[25]和电化学阻抗谱(EIS)[26]。
在这些方法中,电流测量法是许多研究中最常用和最敏感的方法[27]。
随着技术的发展,基于各种材料制备出的胆固醇电化学传感器成为研究热点之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
堆积和有序受到许多因素的影响,如碳链长度
、
端基、溶剂、浸泡时间或基底形貌。随链长的减小
(n<10),堆积密度和覆盖率降低,无序度增加 。这样的以及其他的结构无序性和结构欠缺(例如
针孔),常常导致性能降低。由烷基硫醇混合物形
成的共组装单层膜能够在膜的构架上获得膜的组成
上和形貌上的变化。根据共组装的两种硫醇的差别
化学修饰电极
__________________________________ ________________
化学修饰电极简介 化学修饰电极的制备 常见的化学修饰电极
__________________________________ ________________
化学修饰电极(CMES)简介
电化学法
包括以下三种: 电化学沉积法是一种将电极置于含有一定修饰材料
的电解液中,采用恒电流或恒电位进行沉积而制备 出修饰电极的方法。 电化学聚合法则是一种利用电化学氧化还原引发, 使电活性的单体就地在电极表面发生聚合,生成聚 合物膜而达到修饰目的的方法。这类电活性单体大 多含有乙烯基、羟基和氨基的芳香化合物以及杂环 、稠环多核碳氢化合物和冠醚类化合物等。这种方 法主要被用来制备各种聚合物修饰电极。
共价键合法
共价键合法是对电极表面进行预处理,以引入 键合基,然后进行表面有机合成,通过化学键 合 反应将预定官能团修饰到电极表面。采用这种方 法制备的修饰电极具有分子识别功能和选择性响 应,并且稳定性很高。
__________________________________ ________________
,能够选择性地除去其中的一个组分(例如通过还
原性解吸)。
__________________________________ ________________
__________________________________ ________当溶剂中的聚合物或者纳米材料 滴加或涂覆于电极表面,待溶剂蒸发干固后,生成涂膜 结合在电极表面从而达到化学修饰的目的。 具体方法为: (A)将电极浸入修饰液中,取出后使附着于电极表面的溶 液干固成膜; (B)用微量注射器把一定已知量的修饰液注射到 电极表面,然后于固成膜; (C)电极在修饰液中旋转,使其溶液附着于电极表面,然 后干固成膜 该方法主要用于制备Nafion或者碳纳米管修饰电极。
化学修饰电极扩展了电化学的研究领域,目前已应用 于生命、环境、能源、分析、电子以及材料学等诸多方面。 基于微结构的性质,电极上的修饰层可分为三种类型:修 饰单层,修饰均相复层,修饰有粒界的厚层。
__________________________________ ________________
化学修饰电极的制备
化学修饰电极的制备是化学修饰电极得以开展研究 的关键性步骤。修饰方法的设计合理性与否、操作步骤及优 劣程度对化学修饰电极的活性、稳定性和重现性有直接影响 ,因此是化学修饰电极研究和应用的基础。
目前已经发展的制备化学修饰电极的方法主要有滴 涂法、共价键合法、电化学法、吸附法和掺杂法等。目前人 们研究得比较多的是滴涂法、共价键合法和电化学法这三种 方法,下面对这三种制备方法的研究进展进行论述。
__________________________________ ________________
优缺点:
该方法操作简单且直接。 但是,用滴涂法制备的修饰电极会因为溶剂的挥 发而导致薄膜的厚度不均匀,并且重现性较差。
__________________________________ ________________
__________________________________ ________________
电化学氧化法是利用电化学氧化作用使反应物在电 极表面生成特定的产物,该产物最终通过吸附、组 装或共价键合等作用修饰电极表面,从而制备化学 修饰电极的一种方法。用该方法制备修饰电极的报 道还不是很多。
化学修饰电极是20世纪70年代中期发展起来的一门新 兴的、也是目前最活跃的电化学和电分析化学的前沿领域。
化学修饰电极是在电极表面进行分子设计,将具有优 良化学性质的分子、离子、聚合物以化学薄膜的形式排列 在电极表面上,将修饰试剂的电化学行为赋予被修饰的电 极表面,从而改变了其表面性质,使电化学电极有较高选 择性、灵敏度或稳定性。以满足许多电分析问题的要求并 构成了新的分析应用以及不同的传感器的基础。
__________________________________ ________________
S-H键的清除是单层膜形成的关键: RSH+Au↔RS-Au+e- + H+
烷基间的范德华力决定了单层膜的定向。通 过这样的自组装过程形成了结构完美的单层膜, 碳氢链相互平行,以约30O斜立于电极的表面上。 如下图:
__________________________________ ________________
这是一个紧 密堆积的无针孔 的膜(表面覆盖 率 约 为 9×10 - 10mol/cm2 ) 并 阻 碍组分向电极表 面的传质。
金基底上自组装膜的形成
__________________________________ ________________
__________________________________ ________________
自组装单层膜
基于金与硫强的相互作用,硫基化合物可在金表 面上自发形成单层膜[X(CH2)nSH,n>10],其能够 很好地操控界面上的反应性。这种单层膜通常是 将金电极浸泡在含有毫摩尔硫醇的乙醇溶液中隔 夜后而获得。形成自组装的有机硫化物单层膜( SAMs),由于它在许多科学与技术领域里的潜 在应用,自20世纪80年代末就已经受到广泛的关 注。除了它的在单层膜结构和长程电子转移研究 应用外,还有在化学传感器和生物传感器方面的 应用,以及信息储存装置和平板印刷等中的应用 。