天然气制备合成气

合集下载

第2章 合成气

第2章 合成气

3、脱碳方法的选择
氨加工的品种
取决于
气化所用原料和方法 后继气体精炼方法 各脱碳方法的经济性
2.2.4.原料气的精炼(CO、CO2、O2、水等)
1、铜氨溶液吸收法 氯化铜氨液 吸 蚁酸铜氨液 收 碳酸铜氨液 液 醋酸铜氨液 (1)、铜液的组成
总量≤10ppm
铜离子浓度(铜比) 氨含量 醋酸浓度 残余CO、CO2(再生液)
3、甲烷化法
互逆 甲烷蒸汽转化 机理分析:
甲烷蒸汽转化机理
CH4 + [ ] ? [CH 2 ]
[CO] [ ] + CO
甲烷化机理
CO + [ ] [CO]
H2
[CH2 ] + H2O [CO] + 2H2
[CO] + [ ] [C ] + [O]
[C] + H2 ? [CH2 ] H2 揪快? CH4 [ ]
CH 4 + H 2O CO + 3H 2
H2O + [ ] [O] + H 2
[O] + H2 ? H2O [ ]
CO2 + [ ] ? [CO2 ]
[CO2 ] + [ ] [CO] + [O* ]
CO + [O] [ ] + CO2
CO + H 2O CO2 + H 2
利用催化剂使CO、CO2加氢生成CH4使气体 精炼的方法,可使CO、CO2&度增加都会造成扩散系数下降
5.活性系数与催化剂用量
活性系数指真实工业条件下的使用活性与标准条件下的比值 催化剂用量:
VK
yCO ,2 dy G CO = r òyCO ,1 xA k

天然气自热式转化制合成气的Aspen Plus模拟分析

天然气自热式转化制合成气的Aspen Plus模拟分析

天然气自热式转化制合成气的Aspen Plus模拟分析王玉龙; 周恩利; 武麦桂【期刊名称】《《煤化工》》【年(卷),期】2019(047)005【总页数】6页(P8-12,22)【关键词】天然气; 费托尾气; 自热式转化炉; Aspen Plus; 模拟【作者】王玉龙; 周恩利; 武麦桂【作者单位】赛鼎工程有限公司山西太原030032【正文语种】中文【中图分类】TE665.3天然气的化工利用技术一直是世界各国的关注热点,比如以天然气为原料来生产合成氨、甲醇、氢气、乙二醇、合成油等技术[1]。

然而,无论生产以上哪种产品,都需先将天然气转化成合成气,再由合成气生产最终的产品。

由此可见,转化工艺技术是整个天然气化工的基础和龙头,在天然气化工中有着举足轻重的地位。

目前,天然气转化制备合成气的主要工艺技术有:蒸汽转化工艺、联合转化工艺、换热式转化工艺、非催化部分氧化工艺、自热式转化工艺等[2-3]。

为提高陕西省天然气管网冬季调峰保障能力,满足产品多元化发展的需求,陕西燃气集团拟在陕西富平县建设富平燃气综合利用项目。

项目以天然气和费托合成尾气为原料,通过粗脱硫、转化、脱碳、合成气压缩、费托合成、产品分离等工艺技术,生产10万t/a钴基费托合成蜡产品。

本文以富平燃气综合利用项目为例,利用Aspen Plus对以天然气和费托合成尾气为原料气的自热式转化制合成气工艺流程进行了模拟,获得了该流程的转化气组成、设备负荷等工艺参数及公用工程消耗数据,并对不同操作温度下的水碳比、氧碳比、CO2消耗量进行了定性及定量分析。

结果可为设计工作及实际生产提供建设性指导意见。

1 模拟背景1.1 转化装置概况富平燃气综合利用项目转化装置的设置是为了将原料天然气及费托合成尾气通过转化反应生产合成气,产品气 CO+H2总气量为 103 400 m3/h,n(H2)/n(CO)为2.10,转化气中CH4体积分数≤1.0%。

转化装置原料气为天然气和费托合成尾气。

2合成气(化学工艺学)解析

2合成气(化学工艺学)解析

K P1
P CO
P3 H2
P P CH 4 H 2 O
K P2
P P CO 2 H 2 P CO P H 2 O
b.平衡组成的计算
已知条件: m原 料 气 中 的 水 碳 比 (m H2O)
CH4 P 系 统 压 力 ; T 转 化 温 度 假定:无炭黑析出
计算基准:1mol CH4 在甲烷转化反应达到平衡时,设x为按式(2-3)转化了
压力和水碳比确定后,按平衡甲烷的浓度来确定温度。一般要
求yCH4<0.005,出口温度应为1000℃ 左右。实际生产中,转
化炉出口温度比达到出口气体浓度指标对应的平衡温度高, 这个差值叫平衡温距。
T =T-Te(实际温度-平衡温度) 平衡温距低,说明催化剂活性好。一、二段平衡温距通常分 别为 10~15 ℃ 和 15~30 ℃ 。
为代表来讨论气态烃类蒸汽转化 的主要反应及其控制条件。
➢ 烃类主要进行的反应 烷烃
烯烃 CnH2n n2H2O34nCH4 n4CO2 CnH2n nH2OnCO2nH2 CnH2n 2nH2OnCO2 3nH2
2.1.1.1 甲烷蒸汽转化反应
主要反应
高温、催化 剂
( 1 ) C 4 H H 2 O = C 3 H O 2 2.4 0 km 6 J o ( 2 ) C H O 2 O = C 2 H O 2 4 .2 k 1 /m J
水碳比 反应温度 反应压力
➢ 温度增加,甲烷平衡含量下降,反应温度每降 低10℃,甲烷平衡含量约增加1.0%-1.3%;
➢ 增加压力,甲烷平衡含量随之增大;
➢ 增加水碳比,对甲烷转化有力;
➢ 甲烷蒸汽转化在高温、高水碳比和低压下进行 有利

天然气重整催化剂 空速-概述说明以及解释

天然气重整催化剂 空速-概述说明以及解释

天然气重整催化剂空速-概述说明以及解释1.引言1.1 概述天然气重整催化剂是用于将天然气转化为合成气的关键催化剂。

合成气是一种重要的工业原料,可用于制备合成油、化学品和燃料等。

天然气重整催化剂能够在高温和高压条件下,将天然气中的甲烷和水蒸气进行反应,生成一氧化碳和氢气。

这个反应过程被称为重整反应,是合成气的主要生产方式之一。

天然气重整催化剂的关键成分是镍,它具有良好的催化性能和热稳定性。

该催化剂能够在相对较低的温度下实现高效的重整反应,从而提高合成气的产率和纯度。

同时,天然气重整催化剂还能抑制副反应的发生,提高整个反应过程的选择性,减少能源的浪费和环境污染。

在天然气重整催化剂的选择和设计中,催化剂的空速是一个重要的考虑因素。

空速是指单位时间内通过催化剂床层的气体流量,通常以体积或质量的形式表示。

适当的催化剂空速可以保证反应过程的高效进行,同时避免过高的空速可能引起的催化剂烧结和损耗。

在实际应用中,天然气重整催化剂的空速选择需要综合考虑反应速率、催化剂的性能和设备的限制等多个因素。

过低的空速可能导致催化剂床层内的反应不能充分进行,降低合成气的产率和纯度;而过高的空速则可能引起催化剂颗粒的磨损和催化剂床层的烧结,从而影响催化剂的稳定性和使用寿命。

因此,在天然气重整催化剂的应用和设计中,合理选择和控制催化剂的空速是非常重要的。

通过合适的实验和计算方法,可以确定最佳的催化剂空速范围,以确保反应的高效进行,并实现催化剂的长期稳定运行。

1.2 文章结构文章结构是指将文章的内容按照一定的逻辑顺序进行组织和安排,以确保文章的逻辑性和易读性。

在本文中,我们将按照以下结构组织文章:2.正文2.1 第一个要点在这一部分,我们将介绍天然气重整催化剂的概念、特性和应用。

首先,我们将详细解释天然气重整催化剂的定义和原理,包括其在天然气加工中的重要性和作用。

其次,我们将介绍天然气重整催化剂的组成和结构,包括其常见的载体材料和活性组分。

合成气的制备方法

合成气的制备方法

二甲醚原料----合成气合成气的主要组分为CO和H2,可作为化学工业的基础原料,亦可作为制氢气和发电的原料。

经过多年的发展,目前以天然气、煤为原料的合成气制备工艺已很成熟,以合成气为原料的合成氨、含氧化物、烃类及碳一化工生产技术均已投入商业运行。

清洁高效的煤气化联合循环发电系统的成功开发,进一步促进了合成气制备技术的发展。

合成气的用途广泛,廉价、清洁的合成气制备过程是实现绿色化工、合成液体燃料和优质冶金产品的基础。

1合成气的制备工艺根据所用原料和设备的不同,合成气制备工艺可以分为不同的类型,目前大多数合成气制备工艺是以处理天然气和煤这2种原料的工艺为基础发展起来的。

1.1以天然气为原料的合成气制备工艺以天然气为原料制备合成气是一个复杂的反应过程,其主要的反应包括天然气的蒸汽转化反应(1)、部分氧化反应(2)、完全燃烧反应(3)、一氧化碳变换反应(4)和甲烷与二氧化碳重整反应(5)。

CH4+H2O CO+3H2+206 kJ/mol (1)CH4+0·5O2CO+2H2-36 kJ/mol (2)CH4+2O2CO2+2H2O -802 kJ/mol (3)CO+H2O CO2+H2-41 kJ/mol (4)CH4+CO22CO+2H2+247 kJ/mol (5)这几个主要反应的不同组合、不同的实施方式和生产装置,形成了天然气转化制备合成气的多种工艺。

从工艺特征上来讲,目前成熟的天然气转化制备合成气的工艺可分为管式炉蒸汽转化法、部分氧化法和两者的组合方法等三大类。

1.1.1甲烷蒸汽转化甲烷蒸汽转化的代表反应式为(1)。

工业上使用以Ni为活性组分,载体可用硅铝酸钙、铝酸钙以及难熔的耐火氧化物为催化剂,生成的合成气中H2/CO体积比约为3:0,适合于制备合成氨和氢气为主产品的工艺。

此工艺能耗高,燃料天然气约占天然气总用量的1/3,高温下催化剂易失活,设备庞大,投资和操作费用高。

1.1.2甲烷非催化部分氧化甲烷非催化部分氧化的代表反应式为(2)。

化学工艺学 第 2 章 合成气

化学工艺学  第 2 章  合成气
原则:不析碳,原料充分利用,能耗小。
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.5 转化反应工艺流程及转化炉
燃料用天然气 11
8 9 过 热 蒸 汽
5
2
1 3
一段转化
4
二段转化
对流段
7 10 蒸汽 空气 原料天然气 锅炉给水 转化气去变换 6
氢氮气来自合成
天然气蒸汽转化工艺流程
1、钴钼加氢反应器;2、氧化锌脱硫槽;3、对流段;4、辐射段(一段炉);5、二段转化炉;6、第一废热锅炉;7、批二废热 锅炉;8、汽包;9、辅助锅炉;10、排风机;11、烟囱
图解法或迭代法求解x,y
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素

水碳比 反应温度 反应压力
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素

温度增加,甲烷平衡含量下降,反应温度每降低 10℃,甲烷平衡含量约增加1.0%-1.3%;

增加压力,甲烷平衡含量随之增大;
增加水碳比,对甲烷转化有利; 甲烷蒸汽转化在高温、高水碳比和低压下进行有利
立式圆筒,内径约3米,高约13米;壳体材质 为碳钢,内衬不含硅的耐火材料,炉壳外保温。
上部有燃烧空间的固定床绝热式催化反应器。

天然气制备合成气

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视.天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。

制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气 的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助.天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。

其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。

目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。

本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势. 蒸气转化法蒸气转化法是目前天然气制备合成气的主要途径。

蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成CO H 、2等混合气,其主反应为:2243H CO O H CH +=+,mol /206298KJ H =∆Θ该反应是强吸热的,需要外界供热。

因为天然气中甲烷含量在90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。

甲烷水蒸气转化反应和化学平衡甲烷水蒸气转化过程的主要反应有: 2243H CO O H CH +⇔+,mol /206298KJ H =∆Θ222442H CO O H CH +⇔+,mol /165298KJ H =∆Θ222H CO O H CO +⇔+,mol /9.74298KJ H =∆Θ可能发生的副反应主要是析碳反应,它们是:242H C CH +⇔,mol /9.74298KJ H =∆Θ22CO C CO +⇔,mol /5.172-298KJ H =∆ΘO H C H CO 22+⇔+,mol /4.131-298KJ H =∆Θ甲烷水蒸气转化反应必须在催化剂存在下才有足够的反应速率.倘若操作条件不适当,析碳反应严重,生成的碳会覆盖在催化剂内外表面,致使催化剂活性降低,反应速率下降。

煤与天然气共同气化制备合成气的工艺技术浅析

煤与天然气共同气化制备合成气的工艺技术浅析


实 际上 ,即使输 出产物温 度和 压力一定,煤和天然 气共气化按 化学反应原理可进行 多变调控 ,生成煤气的 H / O 可在 04 : C .~
20范围内调控 。 .
目前工 业上广泛采 用的合 成气 生产 方法是气态烃蒸气转化
法和煤 炭气化法 J 两种转化法 中 H/O不适中 , 这 2 C 前者过大、
维普资讯
20 年 第 l 期 06 2
6 4 WWW.d h m.o g c e c m
第3 3卷 总第 14期 6
煤与天然气共 同气化 制备合成气 的工艺技术浅析
颜凌燕
( 安徽理工大学 化学系,安徽 淮南 2 20 ) 301
[ 摘 要】 煤与天然气共气化足基于天然气蒸气转化和煤气化 工艺耦合 的一种新工艺 ,本文 阐述 了共气化制气 的原理并对技术参
[ 稿 日期 】20—82 收 060 ・8
【 者简介】 1 乍 颜凌燕 (94) 17-,女。安徽巢湖人,本科学历,研究方向为化学工程
维普资讯
20 年 第 l 06 2期 第3 3卷 总第 14期 6
广
东 化 工
6 5・
WW .d h m. m Wg c e t o
化不完全会造成煤气中 C 和 H 0含 量过高 。 O2 2 煤气出 口温度的 确定取决于气化炉上段煤炭热解气中焦 油和烃类完全裂解的温
成 co 8 l 计产 出 10 m H 00 的煤 气 ( 2 O= . , 出热量相当 H/ C 0) 放 4
于燃烧 1 m C 4 1 H 如果用煤气化 多余的热 量来补充天然气蕉 0
中c H 也不能 完全裂解 ;煤气 出口温度太高 ,一方面造成能量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。

天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。

制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气 的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。

天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。

其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。

目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。

本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。

蒸气转化法蒸气转化法是目前天然气制备合成气的主要途径。

蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成CO H 、2等混合气,其主反应为:2243H CO O H CH +=+,mol /206298KJ H =∆Θ该反应是强吸热的,需要外界供热。

因为天然气中甲烷含量在90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。

甲烷水蒸气转化反应和化学平衡甲烷水蒸气转化过程的主要反应有: 2243H CO O H CH +⇔+,mol /206298KJ H =∆Θ222442H CO O H CH +⇔+,mol /165298KJ H =∆Θ222H CO O H CO +⇔+,mol /9.74298KJ H =∆Θ可能发生的副反应主要是析碳反应,它们是:242H C CH +⇔,mol /9.74298KJ H =∆Θ22CO C CO +⇔,mol /5.172-298KJ H =∆ΘO H C H CO 22+⇔+,mol /4.131-298KJ H =∆Θ甲烷水蒸气转化反应必须在催化剂存在下才有足够的反应速率。

倘若操作条件不适当,析碳反应严重,生成的碳会覆盖在催化剂内外表面,致使催化剂活性降低,反应速率下降。

析碳更严重,床层堵塞,阻力增加,催化剂毛细孔内的碳遇水蒸汽会剧烈汽化,致使催化剂崩裂或粉化,迫使停工,经济损失巨大。

所以对于烃类蒸汽转化过程要特别主要防止析碳,而高温有利于甲烷裂解析碳,不利于一氧化碳歧化析碳,也不利于还原析碳,却有利于碳被水蒸气所气化,温度越高,水蒸气比例越大,则越有利于消碳;如果气相中22CO H 、分压很大时,均有利于抑制析碳。

由此可见,影响甲烷水蒸气转化反应平衡的主要因素有温度、水碳比和压力。

温度的影响甲烷与水蒸气反应生成2H CO 和吸热的可逆反应,高温对平衡有利,即2H CO 和的平衡产率高,4CH 平衡含量低。

一般情况下,当温度提高10℃,甲烷的平衡含量可降低1%-1.3%,高温对一氧化碳变换反应的平衡不利,可以少生成二氧化碳,而且高温也会抑制一氧化碳歧化和还原析碳的副反应。

但是,温度过高,会有利于甲烷裂解,当温度高于700℃时,甲烷均相裂解速率很快,会大量析出碳,并沉淀在催化剂和器壁上。

水碳比的影响水碳比对于甲烷转化影响重大,高的水碳比有利于甲烷的蒸气重整反应,在800℃、2Mpa 条件下,水碳比由3提高到4时,甲烷平衡含量由8%将至5%,可见水碳比对甲烷平衡含量影响是很大的。

同时,高水碳比也有利于抑制析碳副反应。

压力的影响甲烷蒸汽转化反应是体积增大的反应,低压有利于平衡,当温度800℃、水碳比4时,压力由2Mpa 降低到1Mpa 时,甲烷平衡含量由5%降至2.5%。

低压也可抑制一氧化碳的两个析碳反应,但是低压对甲烷裂解析碳反应平衡有利,适当加压可抑制甲烷裂解。

压力对一氧化碳变换反应平衡无影响。

总之,从反应平衡考虑,甲烷水蒸气转化过程应该用适当的高温、稍低的压力和高水碳比。

甲烷水蒸气转化催化剂甲烷水蒸气转化,在没有催化剂的情况下反应速率很慢,然而在高温下甲烷会裂解,这样会导致没有工业生产价值,所以必须使用催化剂。

催化剂的组成和结构决定了其催化性能,而对其使用是否得当会影响其性能的发挥。

甲烷水蒸气转化对催化剂的基本要求是高强度、高活性、抗析碳、热稳定性好。

工业装置使用的催化剂均以Ni 为活性组分。

载体通常都用硅铝酸钙、铝酸钙以及难熔的耐火氧化物,如32O Al 、MgO 、CaO 、ZIo2、2TiO 等。

随着工业条件的改变.对载体的耐压、强度也有不同要求。

近年来一般使用32O Al a 作为载体。

目前国内外开发的低Ni 型天然气蒸汽转化催化剂含NiO 12%,而ICI 公司近年来研制的PALL 环负载NiO 量只有2.7%,其活性与工业转化催化剂相同,可见降低Ni 用量还大有潜力。

甲烷水蒸气转化反应动力学 当有催化剂时,反应活性能降低,转化速率显着增大,在700-800℃时已具有工业生产价值。

催化剂的活性越高,反应速率越快。

对于一定的催化剂而言,影响反应速率的主要因素有温度、压力和组成。

温度温度升高,反应速率常数k 增大,反应速率也增大。

压力总压增高,会使各组分的分压也增高,对反应初期的速率提高很有利。

此外,加压尚可使反应体积减少。

组分原料的组成由水碳比决定,42/CH O H 过高时,虽然水蒸气分压高,但甲烷分压过低,反应速率不一定高;反之,42/CH O H 过低时,反应速率也不会高。

所以水碳比要适当。

在反应初期,反应物O H CH 24和的浓度高,反应速率高。

到反应后期,反应物浓度下降,产物浓度增高,反应速率降低,需要提高温度来补偿。

转化反应是气固相催化过程,包括内外扩散和催化剂表面上吸附、反应、产物脱附和扩散等多个步骤,每个步骤对整个过程的总速率都有影响,最慢的一步控制了总速率。

上述动力学方程式是本征动力学方程式。

在工业生产中,反应器内气流速度较快,外扩散影响可以忽略。

但为了减少床层阻力,所用催化剂颗粒较大(>2mn),故内扩散阻力较大,催化剂内表面利用率较低。

在500℃左右时,内表面利用率越30%;温度升到800℃时,内表面利用率仅有1%,这是因为温度升高,表面反应速率加快,孔口侧的反应物消耗快,细孔内反应物浓度因内扩散阻力大而随孔长下降迅速,更多内表面没有被利用。

所以,在工业生产中的反应速率r '低于本征动力学速率r ,两者关系为r r η='。

r '考虑了传质过程的影响,减少催化剂的成型颗粒尺寸和制成环形或车轮形或多孔球形,可以提高内表面利用率,从而提高表观反应速率。

甲烷水蒸气转化过程的工艺条件 在选择工艺条件时,理论依据是热力学和动力学分析以及化学工程原理,此外,还需要结合技术经济、生产安全等进行综合优化。

转化过程主要工艺条件有压力、温度、水碳比和空速,这几个条件之间互有关系,要适当匹配。

压力从热力学特征看,低压有利转化反应。

从动力学看,在反应初期,增加系统压力,相当于增加了反应物分压,反应速率加快。

但到反应后期,反应接近平衡,反应物浓度高,加压反而会降低反应速率,所以从化学角度看,压力不宜过高。

但从工程角度考虑,适当提高压力对传热有利,因为甲烷转化过程需要外部供热,大的给热系数是强化传热的前提。

床层给热系数9.0b e a R ∝,提高压力,即提高了介质密度,是提高雷诺数Re 的有效措施。

为了增大传热面积,采用多管并联的反应器,这就带来了如何将气体均匀地分布的问题,提高系统压力可增大床层压降,使气流均布于各反应管。

虽然提高压力会增加能耗,但若合成气是作为高压合成过程(例如合成氨、甲醇等)的原料时,在制造合成气时将压力提高到一定水平,就能降低后序工段的气体压缩功,使全厂总能耗降低。

加压还可以减少设备、管道的体积,提高设备生产强度,占地面积也小。

综上所述,甲烷水蒸气转化过程一般是加压的,大约3Mpa 左右。

温度从热力学角度看,高温下甲烷平衡浓度低,从动力学看,高温使反应速率加快,所以出口残余甲烷含量低。

因加压对平衡的不利影响,更要提高温度来弥补。

在3Mpa 的压力下,为使残余甲烷含量降至0.3%(干基),必须使温度达到1000℃。

但是,在此高温下,反应管的材质经受不了,以耐高温的HK-40合金钢为例,在3Mpa 压力下,要使反应炉管寿命达10年,管壁温度不得超过920℃,其管内介质温度相应为800-820℃。

因此,为满足残余甲烷%3.0≤的要求,需要将转化过程分为两段进行。

第一段转化在多管反应器中进行,管间供热,反应器称为一段转化炉,最高温度(出口处)控制在800℃左右,出口残余甲烷10%(干基)左右。

第二段转化反应器为大直径的钢制圆筒,内衬耐火材料,可耐1000℃以上高温。

对于此结构的反应器,不能再用外加热方法供热。

温度在800℃左右的一段转化气绝热进入二段炉,同时补入氧气,氧与转化气中甲烷燃烧放热,温度升至1000℃,转化反应继续进行,使二段出口甲烷降至0.3%。

若补入空气则有氮气带入,这对于合成氨是必要的,对于合成甲醇或其他产品则不应有氮。

一段转化炉温度沿炉管轴向的分布很重要,在入口端,甲烷含量最高,应着重降低裂解速率,故温度应低些,一般不超过500℃,因有催化剂,转化反应速率不会太低,析出的少量碳也及时气化,不会积碳。

在离入口端1/3处,温度应严格控制不超过650℃,只要催化剂活性好,大部分甲烷都能转化。

1/3处以后,温度高于650℃,此时氢气已增多,同时水碳比相对变大,可抑制裂解,温度又高,消碳速率大增,因此不可能积碳了,之后温度继续升高,直到出口处达到800℃左右,以保证低的甲烷残余量。

因而,一段转化炉是变温反应器。

二段转化炉中温度虽高,但甲烷含量低,又有氧存在,不会积碳。

水碳比水碳比是诸操作变量中最便于调节的一个条件,又对一段转化过程影响较大。

水碳比高,有利于防止积碳,残余甲烷含量也低。

实验指出,当原料气中无不饱和烃时,水碳比若小于2,温度到400℃时会析碳,而当水碳比大于2时,温度要高达1000℃才有碳析出;但若有较多不饱和烃存在时,即使水碳比大于2,当温度400 ℃时就会析碳。

为了防止积碳,操作中一般控制水碳比在3.5左右。

近年来,为了节能,要降低水碳比,防止积碳可采取的措施有三个,其一是研制、开发新型的高活性、高抗碳性的低水碳比催化剂;其二是开发新的耐高温炉管材料,提高一段炉出口温度;其三是提高进二段炉的空气量,可以保证降低水碳比后,一段出口气中较高残余甲烷能在二段炉中耗尽。

目前,水碳比已可降至3.0,最低者可降至2.75。

气流速度反应炉管内气体流速高有利于传热,降低炉管外壁温度,延长炉管寿命。

当催化剂活性足够时,高流速也能强化生产,提高生产能力。

但流速不宜过高,否则床层阻力过大,能耗增加。

天然气蒸汽转化流程和主要设备 天然气蒸汽转化制备合成气的基本步骤如下图所示。

图1 天然气蒸汽转化制合成气过程 一段转化炉由辐射段和对流段组成,外壁用钢板制成,炉内壁衬耐火层。

相关文档
最新文档